Роботы для обеспечения безопасности и где они применяются

Обновлено: 07.07.2024

Мы живем в мире природных, техногенных, социальных и других опасностей, которые часто угрожают нашему здоровью и жизни. Каждый день газеты, радио и телевидение сообщают нам об очередных авариях, катастрофах или стихийных бедствиях, из-за которых погибли или пострадали люди.

При возникновении чрезвычайных ситуаций люди проводят аварийно-спасательные и другие неотложные работы, направленные на спасение жизни и сохранение здоровья людей, а также на снижение размеров ущерба окружающей среде и материальных потерь.

В современном мире с техническим развитием человечество научилось избегать бедствий, изобретая всё новые и новые средства защиты от негативных факторов. Вместе с характером чрезвычайных ситуаций изменился и способ их ликвидации, проведения спасательных работ. Технологические достижения в области аварийно-спасательных работ представляют собой роботизированные технологии, которые могут в автономном режиме проводить поисково-спасательные операции при авариях как техногенного, так и природного происхождения.

Представьте, что вы находитесь в здании, которое обрушилось. Оказавшись в ловушке под тоннами неустойчивых обломков, вы ощущаете, как медленно начинает поступать запах газа и он усиливается с каждой минутой. Кажется, шансы, что вас спасут вовремя, сокращаются до минимальных. И в этот момент, когда вы лежите неподвижно, механическое устройство пробирается прямо к вам сквозь щели, слишком узкие и опасные для человека. Как только вы вдыхаете кислород, доставленный этим необычным существом, ваше точное местоположение передается команде спасателей, и они начинают выполнять операции по вашему освобождению. Это не футуристический сон, а вполне реальные устройства. В этой статье мы разберёмся в разнообразии, особенностях и эффективности роботов-спасателей.

Роботы-спасатели при землетрясениях и авариях техногенного происхождения:

В то время, когда СМИ постоянно сообщают нам о различных прототипах двуногих японских гуманоидов, всё большего применения в городской среде набирают ползающие, карабкающиеся и бегающие роботы, которые спасают жизни людей.

Роботы способны быстро действовать в непредсказуемой и опасной среде. Их системы видения, связи и движения работают в самых напряженных условиях дыма, пыли и огня в зоне бедствия.
Сейчас роботы-спасатели чаще всего применяются в чрезвычайных ситуациях геологического происхождения. Большое число передовых разработок посвящено именно теме землетрясений. Как оказалось, это не паранойя, а вполне адекватная подготовка к форс-мажору, которая уже позволила спасти огромное число жизней.


Следующее задание спасателей – найти выживших. Собаки, конечно, являются подходящим способом поиска, но они могут служить на короткий период времени и другие работы должны быть приостановлены, чтобы не мешать животным. Собаки также не всегда смогут проникать в труднопроходимые места. Это те случаи, когда миниатюрные роботы, оснащены камерами и датчиками для обнаружения признаков жизни, могут помочь в значительной степени.

Небольшая тележка на гусеницах, робот Cougar10-LTM способен видеть сквозь стены и также находить людей под руинами. Благодаря передовым радарным технологиям, устройство способно видеть не только движущихся людей, но и потерявших сознание и лежащих на полу. Помимо радара у робота есть набор видеокамер дневного и ночного видения. Робот применяется как во время поисково-спасательных операций, так и для обнаружения захватчиков и террористов внутри зданий.



После нахождения выживших людей, выплывает следующая задача – поставить им воду и пищу, а также средства связи с поверхностью. Эта задача достижима небольшими роботами-трансферами, например TARDEC, которые также способны проникать в труднопроходимые места и нести на себе полезный груз, обходя препятствия.

Наконец, выживший должен быть эвакуирован. Поднять тяжеленные бетонные глыбы над хрупкими телами людей – это задача, которая является самой сложной даже для самых опытных мчсников, но роботы могут с лёгкостью обнаруживать и поднимать обломки зданий весом до тонны.

Благодаря трём парам колес, робот Tamiya может двигаться по очень сложным поверхностям, преодолевать препятствия, которые непреодолимы для обычных спасательных средств. Его дистанционное управление способно позволить ему подбирать и перемещать объекты. Робот может разламывать бетонные заграждения, растаскивать руины и выполнять другие действия при помощи сменных различных приспособлений.

Российский современный многофункциональный робот МРК-35 создан для выполнения спасательных работ в подразделениях МЧС России.


  • визуальная разведка
  • газовая, химическая и радиационная разведка местности
  • проведение аварийно-спасательных работ в условиях химического заражения и в зонах повышенной радиоактивности
  • поиск, эвакуация и уничтожение взрывных устройств
  • транспортировка предметов.

Гуманоид может оценивать окружающую среду, взаимодействовать с ней и даже предсказывать действия людей. Робот может передвигаться со скоростью до 9 км/ч и предоставлять данные о состоянии окружающей среды.

Робот Quince, разработанный университетами Тиба и Тохоку, уже успел зарекомендовать себя в работе на АЭС Фукусима-1. Это единственный японский робот, нашедший применение в ликвидации аварии. Он способен пробираться через самые сложные завалы, передавать на удалённый компьютер изображение, отснятое в условиях плохой видимости и почти в полной темноте, делать замеры радиации и уровня воды, а также брать пробы радиоактивной воды и пыли из подземных помещений энергоблоков.


Кроме перечисленных устройств для ликвидации аварии на АЭС используются так называемые киберкостюмы или экзоскелеты. Компания CYBERDINE представила на выставке усовершенствованный робот-киберкостюм HAL (Hybrid Assistive Limb), переделанный в рекордные сроки под нужды ликвидаторов аварий. Его предшественник был создан для облегчения передвижения пожилых людей и людей со слабыми двигательными способностями. Костюм не просто поддерживает тело человека во время движения, но фактически берет на себя работу ослабленных или атрофированных мышц. Это крайне необходимо для ликвидаторов аварии на АЭС, потому что им часто приходится присутствовать в особо радиоопасной среде и поднимать тяжёлый груз.


Такие антропогенные катастрофы, как Чернобыльская авария (26 апреля 1986 года) могли бы обойтись без такого количества жертв и ущерба, если бы во время ликвидации последствий аварии использовались роботы. Ведь они могли бы проводить поисково-спасательные операции в местах, охваченных огнём и в других ситуациях, где люди-спасатели были беспомощны.

В помощь шахтёрам:

Работа шахтёра считается одной из самых трудных и самых опасных профессий. Взрывы газа, затопления, осыпи и завалы – всё это часть нелёгких будней горнорабочих. После взрыва на шахте спасателям необходимо время на оценку масштабов аварии, на построение плана спасения пострадавших, а ведь за это время люди могут погибнуть. Сразу спустится в шахту спасатели тоже не могут, так как есть опасность обострения ядовитых газов, затопленных участков и неустойчивых конструкций.

В этом деле применение роботов крайне необходимо. В августе этого года специалисты Sandia National Laboratories представили специального робота Gemini-Scout Mine Rescue Robot. Хотя робот не сможет вытащить на поверхность людей, зато сможет доставить в разрушенную шахту продукты питания и медикаменты. Робот имеет гусеницы для передвижения по практически любым поверхностям, датчики, распознающие опасные вещества в воздухе и камеру, транслирующую изображение на удаленный компьютер. Камера помогают устройству обнаруживать живых людей в завалах.


Тот же восьмиколесный QUINCE, который используется во время проведения спасательных операций в зоне радиации, также сможет доставлять оказавшимся под завалами людям средства связи, воду и пищу. Одним из преимуществ робота является то, что он оснащен инфракрасным сенсором и датчиком, улавливающим содержание углекислого газа.

На помощь горнякам придёт и робот-спасатель V2. Оборудованный мощным манипулятором и осветительными приборами устройство может пройти до полутора километров в опасных для человека туннелях, вызволяя пострадавших от аварии.

Роботы-пожарные:

Пожары — это неконтролируемое распространения огня, причиняющее материальный ущерб, вред жизни и здоровью людей, интересам общества и государства. Возникают пожары как по вине матушки-природы (степные, торфяные), так и по вине самого человека, что происходит чаще всего.

В горящем помещении очень трудно пожарным найти и вызволить потерпевших. Поэтому логично, если работу пожарных-людей возьмут на себя пожарные-роботы. И подобные устройства существуют. К примеру, робот SACI заливает огонь водой и пеной, разгребает горящие обломки и исследует задымленные помещения.


Существуют также роботы, которые занимаются эвакуацией людей. Оснащенный четырьмя гусеницами робот из Йокогамы способен вывезти из рушащегося горящего здания человека весом до 110 кг, преодолевая при этом любые препятствия в виде обгоревших балок и обломков бетона. При этом машина призвана не только защищать эвакуируемого человека от огня, но и отслеживать его состояние. Эта функция реализуется с помощью датчиков пульса, давления и ряда других медицинских параметров, которые устанавливаются внутри аппарата.


Скромный безымянный робот-герой, созданный японским изобретателем Кикучи, способен также пробираться в труднодоступные охваченные огнём места, где люди могут находиться в опасности. С помощью тепловизора робот самостоятельно реагирует даже на людей, которые потеряли сознание, подбирает их, помещая в специальную кабину и вывозит по тому же маршруту, по которому он пробирался внутрь. Пожалуй, такие роботы пригодились бы в нашей стране, чтобы уберечь любителей выпить от неприятностей, связанных с ночевкой на асфальте.

Спасатели на воде и на суше:

  • отсутствие необходимых знаний о спасении
  • халатность в отношении предостережений об опасности
  • недостаток оборудования для слабых пловцов
  • невнимательность со стороны членов семьи или самого спасателя к потенциальным жертвам.

Робот EMILY (EMergency Integrated Lifesaving lanYard), разработанный сотрудниками компании Hydronalix, представляет собой автономное плавательное средство, способное самостоятельно обнаружить утопающего и максимально быстро примчаться на помощь. Для этого он снабжен гидролокатором и акустическими датчиками. В режиме ожидания сигнала робот может находиться около 100 часов, в режиме патрулирования, на скорости 8 км/ч, - 8 часов. Однако, как только робот получает сигнал, скорость его возрастает до 64 км/ч и в таком режиме он может искать цель в течении 35 минут. Важно и то, что робот оснащен камерой, динамиками и микрофоном. Это позволяет береговой службе спасения находиться в контакте с нуждающимся в помощи человеком.


Наша планета подвергается различным природным бедствиям, таким как ураганы, бури, тайфуны, лавины, оползни, сели. К счастью, на сегодняшний день любую природную катастрофу можно предвидеть с помощью синоптиков и гидрометцентров. Но это позволяет лишь в частичной мере произвести эвакуацию людей и принять меры предосторожности, но на сто процентов это выполнить невозможно. В результате стихийных бедствий люди также оказываются в опасности. И роботы спешат им на помощь.

Разработанный русским конструктором Игорем Лобановым, робот Isopod представляет собой небольшое устройство с камерой вместо головы и средствами аудио-и видеосвязи. Он предназначается для осуществления разведки в районах стихийного бедствия. Он уже был использован в спасательных операциях, и, как предполагается, будет играть ключевую роль в борьбе со стихийными бедствиями.



Проанализировав всё вышеуказанное мы видим, что роботы-спасатели являются действительно эффективным инструментом в решении столь ответственного дела как спасение людей. Ведь многие человеческие системы уже устарели и поисково-спасательные службы нуждаются в современных технологиях, да и среда, в которой приходится работать спасателям, очень непредсказуема. Но без человеческого фактора всё равно никак не обойтись. Но будем надеяться, что вскоре искусственный интеллект сможет самостоятельно нести поисково-спасательную службу в чрезвычайных ситуациях.

Мы привыкли считать, что человек – венец творения. Стоя на верхней ступени эволюции, он приспособился использовать природные ресурсы для своих целей, и вот пещерный охотник, который недавно ставил капкан для мамонта, уже исследует космос.

Но чем шире размах – тем больше требуется ресурсов. Со временем человечество стало поручать рутинную и тяжелую работу компьютерным алгоритмам. Сегодня применение роботов в современном мире уже никого не удивляет.

На плечи механических друзей ложится множество разнообразных задач. Медицина, банковское обслуживание, промышленность, даже развлечения – основные области применения роботов. Однако с каждым годом появляется все больше работы, которая по зубам искусственному интеллекту.

Примеры использования роботов в различных сферах деятельности

Медицина

Здравоохранение – одна из самых прогрессивных сфер, в которой применяется труд роботов. В настоящее время активно развивается роботизированная хирургия .

Так весной 2017 года в Московском клиническом научном центре была проведена успешная операция на желудке 77-летней пациентки под руководством доктора из Южной Кореи Янга Ву Кима. Уникальность события в том, что большую часть манипуляций в брюшной полости онкобольной произвел медицинский робот.

Всем известный голливудский киборг Робокоп еще в XX веке казался невероятным футуристическим изобретением. Однако будущее уже наступило. Благодаря кибернетическим технологиям человек может вернуть утраченную часть тела.

В медицине достигнут большой прорыв с тех пор, как стали использоваться бионические протезы , которыми человек может управлять при помощи собственной нервной системы.

После ампутации конечности в организме остаются двигательные нервы, и хирург прикрепляет их остатки к небольшому участку крупной мышцы. Например, если была утрачена рука, нервы перемещают в область грудной мыщцы.

Далее происходит самое интересное: человек хочет вытянуть руку, мозг направляет сигнал мышце с присоединенным нервом. Электроды фиксируют сигнал и отправляют импульс по проводам в процессор внутри протеза руки.

Более того, при помощи протеза человек может чувствовать прикосновение, тепло и давление.

В июне 2017 года слепоглухому 59-летнему россиянину успешно имплантировали кибернетическую сетчатку. Устройство показывает картинку из пикселей, и пациент видит окружающие предметы в виде черно-белых очертаний, а специальные упражнения позволяют мозгу распознавать их.

Космос

Космороботы активно используются человеком в освоении просторов Вселенной – механизмы собирают образцы почвы и исследуют новые пространства в условиях повышенной радиации и экстремальных температур.

На 2021 год запланирован запуск российского космического робота на МКС – для технического обслуживания аппаратов и работ в открытом космосе.

Системы безопасности

Не менее успешно роботизированные системы применяют в сфере безопасности: устройства со специальными датчиками оперативно обнаруживают пожароопасные ситуации и успешно предотвращают их.

Существуют военные базы, где используют роботов, имитирующих действия противника. Такие тренировочные механизмы могут воспроизводить повадки человека. Помимо этого, существуют разведывательные и боевые модели. Ходят слухи, что российские войска применили роботов во время войны в Сирии.

Производство

Современные заводы и предприятия далеко продвинулась за счет современных технологий. Автоматизированные промышленные роботы применяются для сварки, укладки, покраски и прочих операций, требующих многократного повторения и высокой точности.

Чаще всего такие механические работники представляют собой механизм, напоминающий человеческую руку. Обычно это универсальное устройство с несколькими осями подвижности и фланцем для закрепления рабочего инструмента.

Использование промышленных роботов значительно увеличивает производительность, в то время как человеческие ресурсы освобождаются для более важных задач.

Быт

Если бы вас попросили ответить не задумываясь, в каких областях применяют роботов, вы бы наверняка первым делом представили футуристические пейзажи, на фоне которых андроиды завоевывают космос. Второе, что приходит на ум – более приземленные научные центры, где гуманоидов собирают из деталей, на крайний случай – заводы с механизмами-манипуляторами.

Но роботы гораздо ближе к людям, чем кажется, многие из них успешно используются в быту. Самые распространенные – робот-пылесос , робот-газонокосильщик, а также массажер и даже чистильщик бассейна.

Развлечения

Один из популярных роботов – англичанин Теспиан – гуманоид, созданный для общения. Кроме того, что Теспиан отличный собеседник, он еще декламирует стихи и умеет разыгрывать театральные постановки, уверенно при этом жестикулируя и отображая смену эмоций на лице.

Этот психологический феномен заключается в том, что люди испытывают неконтролируемый страх при виде неживого объекта, который выглядит человекоподобным (в роли объекта может выступать гиперреалистичная скульптура или персонаж в видеоигре).

Проведение презентаций

Гостей зеленого банка на входе приветствовал проморобот, который отвечал на вопросы, пел и танцевал. Благодаря системе распознавания лиц он также запоминал собеседников, делал фото и даже демонстрировал эмоции на дисплее.

Мы перечислили лишь немногие сферы применения роботов в современном мире, при этом с каждым годом роботизация приобретает все больший масштаб.

Применение роботов в различных областях влечет плюсы и минусы.

Преимущества роботизации:

  • wow-эффект – новые технологии встречают с восторгом, роботы вызывают интерес и симпатию (особенно на публичных мероприятиях);
  • экономия – использование роботов позволяет оптимизировать работу человеческих ресурсов и сэкономить (при длительном использовании стоимость механизма окупается);
  • оптимизация – роботы могут выполнять рутинную и тяжелую работу, в то время как ценные кадры возьмут на себя более сложные аналитические задачи;
  • качество – действия роботов исключает негативные последствия человеческого фактора, результат работы механизма будет более точным;
  • скорость – темп работы гораздо выше, не требуется время на перерывы и обед.

Недостатки роботизации:

  • хрупкость – как и любые другие механизмы, роботы нуждаются в техническом обслуживании и ремонте;
  • энергопотребление – работоспособность механизмов полностью зависит от источников питания, и объемы потребления энергии довольно велики;
  • безработица – замена кадров роботами может привести к сокращению как синих, так и белых воротничков: в Сбербанке, например, планируют заменить 4,5 тыс. сотрудников искусственным интеллектом (впрочем, старший вице-президент банка обещает, что работники будут переобучены и смогут работать над другими проектами);
  • деградация – существует мнение, согласно которому современные роботы и их применение может негативно сказаться на человеке в будущем. Если всю тяжелую (а в дальнейшем – и мыслительную) работу будет выполнять искусственный интеллект, человек может перестать развиваться.

Главное отличие робота от человека

Ты всего лишь машина, только имитация жизни. Робот сочинит симфонию? Робот превратит кусок холста в шедевр искусства (с)

Разработчик Кристофер Гессе представил проект Edges2cats, который превращает рисунки домов, котов, обуви и сумок в фотографичные изображения.

Что будет дальше?

В настоящее время мы видим, что между человеком и роботом лежит огромная пропасть, однако с каждым годом алгоритмы обучения машин совершенствуются, и вполне может статься, что через несколько десятков лет искусственный разум превзойдет человеческий.

Сертификат и скидка на обучение каждому участнику

Любовь Богданова

Проектно-исследовательская работа

по основам безопасности жизнедеятельности

hello_html_5c87f726.jpg
hello_html_5afb7b1f.jpg

Выполнил: Моргунов Захар Александрович,

ученик 7Б класса

Руководитель: Рудишин Игорь Андреевич,

учитель основ безопасности жизнедеятельности

Братск – 2019 г.

Глава 1. Применение роботизированных систем при ликвидации чрезвычайных ситуаций

Основные понятия и определения ЧС

Классификация катастроф и ЧС

Ликвидация последствий ЧС

Глава 2. Разработка роботизированной модели робота-спасателя

Человечество живёт в мире природных, техногенных и других опасностей, которые часто угрожают нашему здоровью и жизни. Каждый день в средствах массовой информации и интернет сети нам сообщают об очередных авариях, катастрофах или стихийных бедствиях, из-за которых погибли или пострадали люди.

При возникновении различных чрезвычайных ситуаций специальным государственным структурам приходится проводить аварийно-спасательные и другие неотложные работы, направленные на спасение жизни и сохранение здоровья людей, а также на снижение размеров ущерба окружающей среде и материальных потерь.

В современном мире с технологическим развитием человечества изменился характер чрезвычайных ситуаций, способы их ликвидации и возможности проведения спасательных работ. Технологические достижения в области аварийно-спасательных работ представляют собой роботизированные технологии, которые могут в автономном режиме проводить поисково-спасательные операции при авариях как техногенного, так и природного характера.

С каждым годом интерес к исследованию и созданию роботизированных систем растёт. Ученые из различных стран мира придумывают не только более сложные, но и более полезные и совершенные роботизированные системы – роботы. Однако в повседневной жизни эти технологические инновации редко используются. Хотя уже сейчас появляется необходимость по внедрению роботов в разные сферы нашей жизни.

В различных странах и любых городах каждый день происходят происшествия – пожары, обрушения, наводнения, аварии. Очень часто появляется такая ситуация, когда спасатели не могут оперативно помочь пострадавшим и поэтому необходимо, чтобы на службе у структур МЧС были специально разработанные роботы-спасатели.

Цель проекта – составить перечень существующих моделей роботов спасателей и разработать собственную модель робота спасателя.

Основные задачи проекта:

- подобрать и проанализировать материал о существующих роботах спасателях;

- разработать и настроить программную систему модель робота спасателя.

Глава 1. Применение роботизированных систем при ликвидации чрезвычайных ситуаций

Основные понятия и определения ЧС

Известно, что любая деятельность потенциально опасна, а сами опасности имеют постоянный и непрерывный характер.

Словарь русского языка С. Ожегова предлагает следующее определение: чрезвычайный — исключительный, очень большой, превосходящий все.

В жизни все отклонения от нормального или обычного, люди называют чрезвычайным происшествием или ситуацией. В нормативных документах даются следующие определения.

Чрезвычайная ситуация (ЧС) — это обстановка на определенной территории, сложившаяся в результате аварии, опасного природного явления, катастрофы, стихийного или иного бедствия, которые могут повлечь или повлекли за собой человеческие жертвы, ущерб здоровью людей или окружающей природной среде, значительные материальные потери и нарушение условий жизнедеятельности людей.

Экстремальное событие — это отклонение от нормы процессов или явлений.

Авария — это экстремальное событие техногенного характера, происшедшее по конструктивным, производственным, технологическим или эксплуатационным причинам, либо из-за случайных внешних воздействий, и заключающееся в повреждении, выходе из строя, разрушении технических устройств или сооружений.

Производственная или транспортная катастрофа — это крупная авария, повлекшая за собой человеческие жертвы, значительный материальный ущерб и другие тяжелые последствия.

Опасное природное явление — это стихийное событие природного происхождения, которое по своей интенсивности, масштабу распространения и продолжительности может вызвать отрицательные последствия для жизнедеятельности людей, экономики и природной среды.

Стихийное бедствие — это катастрофическое природное явление, которое может вызвать многочисленные человеческие жертвы, значительный материальный ущерб и другие тяжелые последствия.

Экологическая катастрофа (экологическое бедствие) — чрезвычайное событие особо крупных масштабов, вызванное изменением состояния суши, атмосферы, гидросферы и биосферы, сопровождающееся массовой гибелью живых организмов и экономическим ущербом.

Классификация катастроф и ЧС

Классификация катастроф.

I группа – Естественные (природные) катастрофы

метеорологические (бури (ураганы), морозы, засухи, пожары)

теллурические и тектонические(извержения вулканов, землетрясения)

топологические (наводнения, сели, оползни, снежные обвалы)

космические (падение метеоритов и прочие космические катаклизмы)

II группа – Искусственные (техногенные) катастрофы

транспортные (авиа- и космические, железнодорожные, автодорожные, на речном и морском флоте)

производственные (механические, химические, радиационные, термические)

III группа – Специфические катастрофы

IV группа – Биолого-социальные катастрофы

наркомания (токсикомания), алкоголизм.

Во время ЧС на людей и окружающую природную среду могут воздействовать следующие поражающие факторы:

динамический (механический) – приводит к различным травмам и ранениям. Такие поражения часто встречаются при землетрясениях, смерчах, транспортных авариях.

термический – приводит к различной степени ожогам или обморожениям (световое излучение, пожары, морозы, наводнения и т.д.)

радиационный – приводят к лучевой болезни, лучевым ожогам кожи и поражениям внутренних органов при попадании радиоактивных веществ внутрь.

химический – воздействует на людей при химических авариях, вызывая разнообразные по характеру и тяжести поражения (отравления).

биологический – это бактерии и др. биологические агенты, выброс и распространение которых возможен при авариях на биологически опасных объектах, что может привести к массовым инфекционным заболеваниям (эпидемиям).

психоэмоциональный (психотравмирующий) – приводит к различным нарушениям психики, от легких психогенных реакций (ступор, страх, истерия), до стойких нервно-психических заболеваний (депрессия, психоз) требующих длительной госпитализации и лечения.

Опасные и вредные факторы ЧС, воздействуя на население, конкретную территорию с расположенными на ней сооружениями, флорой и фауной образуют очаг поражения .

Использование роботизированных системы в ликвидации последствий ЧС

В условиях ликвидации последствий чрезвычайной ситуации различного характера основной задачей служб МЧС или гражданской обороны является проведение спасательных и других неотложных работ в очагах поражения.

Спасательные работы проводятся с целью розыска пострадавших, извлечения их из-под завалов, из разрушенных зданий и защитных сооружений для оказания им первой медицинской и первой доврачебной помощи и эвакуации их из очагов поражения в лечебные учреждения.

К спасательным работам относятся:

разведка маршрутов движения и участков (объектов) работ;

расчистка проходов (проездов) в завалах;

локализация и тушение пожаров;

розыск и спасение пострадавших;

вскрытие заваленных защитных сооружений и извлечение пострадавших;

оказание первой медицинской помощи пострадавшим и эвакуация их в лечебные учреждения.

Указанные выше работы люди выполняют с огромным риском для здоровья, а порой и для жизни.

При ликвидации последствий ЧС условия особого риска, при которых существует реальная угроза для жизни человека, требуется применение роботизированных систем.

В таблице 1 приведены примеры некоторых произошедших крупномасштабных аварий, при ликвидации которых была необходимость в использовании роботизированных систем.

В современном прогрессивно-техническом мире эта область не могла быть не замечена учёным миром. Бесспорно, роботы для работы в очагах радиационного заражения появились не вчера и не сегодня, работы в этой области в нашей стране ведутся с 1986 года и толчок в области развития экстремальной робототехники дала авария на Чернобыльской АЭС.

Тип и кол-во выброшенного вещества

Крупномасштабная химическая авария

Аварийный выброс аммиака (ПО “Азот” г. Ионава), 1989 г.

Крупномасштабные радиационные аварии

г. Чернобыль, СССР, 1986 г.

Взрыв реактора, радиоактивное загрязнение

Крупномасштабные аварии на взрывопожароопасных объектах

Пожар на 102-м арт. арсенале МО РФ, пос. Пугачево, Удмуртия, 2011 г.

Пожар, взрыв, разлет осколков, боеприпасов

Пожар на 99 арсенале МО РФ, пос. Урман, Башкирия, 2011 г.

Пожар, взрыв, разлет осколков, боеприпасов

Таблица 1. – Некоторые произошедшие крупномасштабные аварии

на потенциально опасных объектах, их поражающее действие и последствия

Роботы закупались в других странах, но они не отличались надёжностью и выходили из строя под воздействием ионизирующего излучения. Тогда в кратчайшие сроки были разработаны и введены в строй мобильные роботы различных типов отечественного производства такие как:

1) робот разведчик РР-Г1 выполняющий следующие задачи: визуальный осмотр; определение радиационной обстановки на местности, внутри и снаружи зданий;

2) мобильный робот — Мобот-Ч-ХВ для расчистки территории.

Мобот, является первым опытным образцом робота, который был сконструирован МГТУ имени Н. Э. Баумана.

1.3 Применение роботизированных систем для проведения аварийно-спасательных работ при чрезвычайных ситуациях

В январе 1998 года под Грозным с помощью МРК-25 (Рисунок 2) была проведена операция по локализации и контейнированию кобальта - радиоактивного источника. Робот обнаружил его местонахождение, растопил замерзший грунт и поместил извлеченный источник в специальный контейнер для его последующего захоронения.

hello_html_3c73c821.jpg

hello_html_2685bbe7.jpg

Ежегодно на протяжении с 2005 года по 2010 год с помощью роботизированных систем MF -4, МРК-27 (Рисунок 4, Рисунок 5) производилось разминирование посевных площадей и животноводческих пастбищ в Чеченской республике.

hello_html_5940cc4b.jpg

hello_html_1b64978e.jpg

В городе Волгограде в 2009 году управлением при использовании BROKK -110 D (Рисунок 3) очищена от радиоактивного загрязнения территория площадью 595 м 2 . Собрано, законсервировано и сдано на длительное хранение 52, 4 м 3 радиоактивных отходов.

В 2010 году в городе Вологда и Тверской области специалистами управления при использовании BROKK -110 D и BROKK -330 (Рисунок 6) произведена утилизация 12 баллонов с аварийно-химическим опасным веществом и 150 кг. отравляющего химического вещества.

hello_html_m243812c4.jpg

В ФГБУ ВНИИПО МЧС России был образован научно-исследовательский центр робототехники (далее - НИЦ Р) (Рисунок 7.).

Учитывая приобретенный опыт, в последующие годы был разработан ряд наземных противопожарных роботизированных систем легкого, среднего и тяжелого классов.

В 2006 г. совместно с МГТУ им. Н.Э. Баумана был разработан мобильный робот разведки и пожаротушения легкого класса (МРК-РП) (Рисунок 8), а также автомобиль быстрого реагирования для проведения пожарной разведки, а также аварийно-спасательных работ и пожаротушения в условиях повышенной опасности (АБР-РОБОТ) (Рисунок 9), собранный на шасси КАМАЗ-4326.

hello_html_m356a9504.jpg

Рисунок 7. – Эмблема научно-исследовательского центра робототехники ФГБУ ВНИИПО МЧС России

hello_html_ce3faa5.jpg

hello_html_m5010c331.jpg

В 2010 г. завершена разработка мобильной системы воздушного видеонаблюдения с использованием нескольких привязных аэростатов АКВ – 05 (Рисунок 10.), размещенных над защищаемым объектом. Комплекс предназначен для оперативного информационного обеспечения аварийно-спасательных работ и пожаротушения на потенциально-опасных промышленных и оборонных объектах.

При анализе зарубежных роботизированных систем, было найдено несколько современных разработок, которые проходят проверку в условиях повышенной сложности, для выявления технических недостатков и дальнейшей модернизации.

hello_html_m32a818e1.jpg
hello_html_7ba6b1e7.jpg

hello_html_m61688aca.jpg


Расширение сферы применения промышленных роботов, их возрастающий искусственный интеллект не уменьшает актуальность проблем обеспечения безопасности труда. Рассмотрена система технического зрения, выделены основные причины аварийной ситуации и требования, предъявляемые к безопасности труда.

Ключевые слова: промышленный робот, безопасность труда, система технического зрения.

Приводим определение промышленные роботы (ПР): автоматический манипулятор, осуществляющий перепрограммируемые перемещения в пространстве, многофункциональный, способный выполнять обработку и ориентацию материалов, деталей, инструментов или специализированных устройств в процессе разнообразных перемещений назначенный для достижения разнообразных целей, состав входят одна или несколько рук, на концах которых имеется схват. Управляющая система ПР включает в себя запоминающее устройство (ЗУ) и при необходимости, устройства для восприятия различной информации об условиях окружающей среды с целью адаптации. Эти многофункциональные устройства разработаны, главным образом, для выполнения в виде повторяющихся циклов заданной функции и могут быть перестроены для выполнения других функций без существенной модификации устройства.

Основными причинами, формирующими опасные, критические и аварийные ситуации при эксплуатации ПР, являются:

1. непредусмотренные движения исполнительных устройств промышленных роботов при наладке, ремонте, во время обучения и исполнения управляющей программы;

2. внезапный отказ в работе промышленного робота или технологического оборудования, совместно с которым он работает;

3. ошибочные (непреднамеренные) действия оператора или наладчика во время наладки и ремонта, при работе в автоматическом режиме;

4. доступ человека в рабочее пространство робота, функционирующего в режиме исполнения программы;

5. нарушение условий эксплуатации промышленного робота, роботизированного технологического комплекса;

6. нарушение требований эргономики и безопасности труда при планировке роботизированного технологического комплекса и участка (размещение технологического оборудования, промышленных роботов, пультов управления, загрузочных и разгрузочных устройств, накопителей, тары, транспортных средств и других средств технологического оснащения).

Мы предлагаем большее внимание уделять вопросам использования в промышленности различных сенсорных систем, в частности систем технического зрения (СТЗ). Типичными задачами, требующими зрительного очувствления являются зрительная инспекция продукции, контроль и управление процессами, робототехнические задачи, связанные с манипулированием заготовками, автоматизированной сборкой (рис.1).


Рис. 1. Взаимосвязь различных областей применения и задач зрительных систем в производстве

Применение, СТЗ особенно перспективно там, где возможности человеческого глаза (быстродействие, точность, надежность, объективность и т. д.) оказываются недостаточными, где технические и организационные альтернативы приводят к значительно большим затратам. Так например применение СТЗ в процессе сборке автомобилей см. рис.2

http://www.autopilot.ru/Images/2010/10/103-2.jpg

Рис. 2. Применение СТЗ на автомобильном заводе

В области манипулирования деталями и автоматизированной сборки можно выделить две группы задач:

1. измерение относительного смещения (инструмент — деталь, деталь — деталь) неточно позиционируемых объектов (например, деталей в паллетах) или определение геометрических параметров формы детали;

2. распознавание деталей и определение их положения.

Измерение смещения производится при автоматической сборке узлов.

Бесконтактное зрительное измерение особенно важно при монтировании деталей на крупном и тяжелом основании, как, например, при сборке автомобиля, когда альтернативные методы, связанные с повышением точности фиксаций узла и уменьшением допусков, оказываются экономически невыгодными. Характерными примерами являются отыскание начала шва при сварке и навеска колес.

Целесообразность применения зрительных систем при контроле производственных процессов обусловлена тем, что в условиях современного высокопроизводительного производства человек не может обеспечить стопроцентный контроль всех операций. В результате брак обнаруживается слишком поздно, что приводит к большим потерям материалов и средств. Области применения СТЗ при контроле процессов включают в себя: контроль поверхностей на производственных линиях (прокат, производство стекла, пластиков, тканей), слежение за швом (сварка, склейка, полировка), измерение распределения размеров изделий, контроль состояния инструмента; контроль рабочей зоны.

В области визуальной инспекции типичными применениями СТЗ являются: контроль отливок на отсутствие трещин, контроль листового стекла (волнистость, вкрапления), контроль печатных плат и масок в электронной промышленности, контроль кабелей и др. [1–6]

Таким образом, мы приходим к выводу, что для безопасности использования промышленных роботов необходимо применять различные сенсорные системы, например рассмотренную нами систему технического зрения. Кроме того, средства защиты должны создаваться, исходя из учета различного характера деятельности персонала, работающего с ПР и высокой эксплуатационной надежностью таких средств, при этом затраты на их реализацию должны быть экономически оправданы.

1. Федотов А. Г., Поезжаева Е. В., Заглядов П. В., Безопасность труда при взаимодействии с промышленными роботами//Экология и научно-технический прогресс. Урбанистика,2014,стр. 14–15.

2. Поезжаева Е. В. Промышленные роботы: учеб.пособие: в 3 ч./ Е. В. Поезжаева. — Пермь Изд-во Пермь.гос, тех. ун-та, 2006.- Ч.1.-64 с.

3. Зенкевич С. Л., Ющенко А:.С. Управление роботами.- М.:Изд-во МГОУ им. Н. Э. Баумана, 2006.

4. Корендясев А. И. Теоретические основы робототехники: в 2 кн./ А. И. Корендясев, Б. Л. Саламандра, Л. И. Тывес; отв. Ред. С. М. Каплунов.– М.:Наука,2006.

5. Хорн Б. К. Зрение роботов.– М.:Мир,1989.

6. Михайлов С. В., Романов В. В., Заикин Д. А., Система технического зрения для диагностики процесса резания материалов//Вестник компьютерных и информационных технологий.,2007,№ 4,стр 23–26

Основные термины (генерируются автоматически): техническое зрение, безопасность труда, промышленный робот, рабочая зона, автоматизированная сборка, деталь, контроль, робот, роботизированный технологический комплекс, технологическое оборудование.


Ро́бот (чеш. robot , от robota — подневольный труд или rob — раб) — автоматическое устройство, предназначенное для осуществления производственных и других операций, обычно выполняемых человеком (иногда животным). Использование роботов позволяет облегчить или вовсе заменить человеческий труд на производстве, в строительстве, при рутинной работе, при работе с тяжёлыми грузами, вредными материалами, а также в других тяжёлых или небезопасных для человека условиях [1] [2] .

Робот может управляться оператором, либо работать по заранее составленной программе.

Содержание

История возникновения слова

Предыстория

Мифические искусственные существа

Идея искусственных созданий впервые упоминается в древнегреческом мифе о Кадме, который, убив дракона, разбросал его зубы по земле и запахал их, из зубов выросли солдаты, и в другом древнегреческом мифе о Пигмалионе, который вдохнул жизнь в созданную им статую — Галатею. Также в мифе про Гефеста рассказывается, как он создал себе различных слуг. Еврейская легенда рассказывает о глиняном человеке — Големе, который был оживлён пражским раввином (махараль ми-Праг) Йехудом Бен Бецалелем (1509(?)-1609) при помощи каббалистической магии.

Похожий миф излагается в скандинавском эпосе Младшая Эдда. Там рассказывается о глиняном гиганте Мисткалфе, созданном троллем Рунгнером для схватки с Тором, богом грома.

Технические устройства

Очевидно, первыми прообразами роботов были механические фигуры, созданные арабским ученым и изобретателем Аль-Джазари (1136—1206). Так, он создал лодку с четырьмя механическими музыкантами, которые играли на бубнах, арфе и флейте.

Чертёж человекоподобного робота был сделан Леонардо да Винчи около 1495 года. Записи Леонардо, найденные в 1950-х, содержали детальные чертежи механического рыцаря, способного сидеть, раздвигать руки, двигать головой и открывать забрало. Дизайн скорее всего основан на анатомических исследованиях, записанных в Витрувианском человеке. Неизвестно, пытался ли Леонардо построить робота. [3]

Хронология

Конец XIX века — русский инженер Пафнутий Чебышёв придумал механизм — стопоход, обладающий высокой проходимостью.

1898 — Никола Тесла разработал и продемонстрировал миниатюрное радиоуправляемое судно.

1950-е — Для работы с радиоактивными материалами стали разрабатывать механические манипуляторы, которые копировали движения рук человека, находящегося в безопасном месте.

1960 — Дистанционно управляемая тележка с манипулятором, телекамерой и микрофоном применялась для осмотра местности и сбора проб в зонах высокой радиоактивности.

1968 - Японская компания Kawasaki Heavy Industries, Ltd. получила лицензию на производство робота от американской фирмы Unimation Inc. и собрала своего первого промышленного робота. C тех пор Япония начала неуклонное движение к тому, чтобы стать мировой столицей роботов – с более чем 130 компаниями, вовлеченных в их производство. Изначально сконструированные в США, первые роботы Японии импортировались в малых количествах. Инженеры изучали их и применяли в производстве в таких специфических работах, как сварка и распыление. В 70-х годах были разработаны многочисленные возможности практического применения в данной области.

1979 — В МГТУ им. Н. Э. Баумана по заказу КГБ был сделан аппарат для обезвреживания взрывоопасных предметов — сверхлёгкий мобильный робот МРК-01.

1980– коммерческое начало для роботов, производимых на основе высоких технологий. С этого момента рынок начал расти, несмотря на обвал, произошедший в экономике Японии, и на то, что производство (в основном потребительская электроника) было перемещено за рубеж, что повлияло на уменьшение спроса внутри страны в 90-х годах. Постепенно японская экономика восстановилась, и с 2003 года опять наблюдается рост. В настоящее время на долю Японии приходится около 45% функционирующих в мире промышленных роботов. Если говорить об абсолютных цифрах, то к концу 2004 года в Японии было задействовано 356500 промышленных роботов, на втором месте со значительным отрывом шли Соединенные Штаты Америки (122000 промышленных роботов). Япония также занимает первое место в мире и по экспорту промышленных роботов. Ежегодно эта страна производит более 60 тысяч роботов, почти половина из которых идет на экспорт. Такой разрыв, безусловно, делает нашествие японских роботов еще более заметным.

1986 — в Чернобыле, впервые в СССР применены роботы для очистки радиоактивных отходов.

2007 — МВД России в г. Перми проводило испытания тестового робота-милиционера Р-БОТ 001

Читайте также: