Кто из ученых впервые сформулировал принципы наследования на разных сортах посевного гороха

Обновлено: 30.06.2024

Мы наследуем от своих родителей не только цвет глаз и волос, форму носа и группу крови. Мы наследуем черты темперамента и особенности движений, склонность к изучению языков и способность к математике. Мы рождаемся на свет, имея свой уникальный наследственный материал, ту программу, на основе которой под влиянием факторов внешней среды, мы станем такими, какие мы есть – неповторимые и в то же время похожие на предыдущие поколения.

Наследственность и изменчивость – два свойства живых организмов, неразрывно связанные друг с другом как две стороны одной медали. Закономерности наследственности и изменчивости изучает одна из самых важных областей биологии – генетика.

Наследственность – это способность живых организмов передавать свои признаки, свойства и особенности развития следующему поколению. Наследственность обеспечивает материальную и функциональную преемственность между поколениями, сохраняя определенный порядок в природе. Некоторые виды могут оставаться относительно неизменными на протяжении сотен миллионов лет. Например, многие современные акулы мало чем отличаются от акул, живших в раннем меловом периоде более 130 млн лет тому назад.

Клетки организмов не содержат готовых признаков взрослой особи, наследование признаков происходит на молекулярном уровне. Основными структурами, которые обеспечивают материальную основу наследственности, являются хромосомы. Строго говоря, мы наследуем не свойства, а генетическую информацию. Элементарной структурной единицей наследственности является ген – участок ДНК, содержащий информацию о структуре одного белка. Генотип – это сумма всех генов организма, т. е. совокупность всех наследственных задатков.

Изменчивость – свойство, противоположное наследственности. Оно заключается в способности живых организмов существовать в различных формах, т. е. приобретать в процессе индивидуального развития признаки, отличные от качеств других особей того же вида.

Совокупность свойств и признаков организма, которые являются результатом взаимодействия генотипа особи и окружающей среды, называют фенотипом. Мы рождаемся с определенным цветом кожи, но стоит нам летом съездить в более южные края, как наша кожа приобретает смуглый оттенок. С возрастом светлеет радужка глаз и седеют волосы. Перенесенные в детстве болезни могут нарушить рост или развитие каких-то органов. Реализация наследственной информации находится под постоянным давлением факторов окружающей среды. Однако следует отметить, что существуют признаки, проявление которых не зависит от влияния внешней среды. Где бы мы ни жили: на севере или на юге, как бы нас ни кормили в детстве и какими бы болезнями мы ни болели, группа крови, с которой мы родились, останется неизменной на протяжении всей жизни.

У истоков генетики. Основные закономерности наследования признаков впервые были описаны во второй половине XIX в. австрийским ученым Грегором Менделем (1822–1884). Мендель не был первым ученым, который пытался ответить на вопрос: как передаются из поколения в поколение свойства и признаки? Многие исследователи до него скрещивали разнообразные организмы, стараясь увидеть какую-то систему в получаемых результатах. Стремясь добиться успеха как можно быстрее, исследователи скрещивали разные виды, получая при этом бесплодное потомство, брали для изучения сложные, трудно определяемые признаки, не вели точных математических подсчетов.

Рассмотрим основные особенности работы Менделя, которые позволили ему добиться успеха:

– в качестве экспериментальных растений Мендель использовал разные сорта посевного гороха, поэтому потомство, получаемое в таких внутривидовых скрещиваниях, было плодовито;

– горох – самоопыляющееся растение, т. е. цветок защищен от случайного попадания посторонней пыльцы; при постановке нужного скрещивания Мендель удалял тычинки, чтобы исключить возможность самоопыления, а затем кисточкой переносил на пестик пыльцу другого родительского растения;

– горох неприхотлив и имеет высокую плодовитость;

– при обработке получаемых данных Мендель вел строгий математический учет фенотипов всех растений и семян.

В течение восьми лет Мендель экспериментировал с 22 сортами гороха, которые отличались друг от друга по семи признакам. За это время он изучил в общей сложности более 10 тыс. растений. Скрещивая различные организмы и исследуя получаемое потомство, Мендель, по сути, разработал основной и специфический метод генетики. Гибридологический метод – это система скрещиваний в ряду поколений, дающая возможность при половом размножении анализировать наследование отдельных свойств и признаков организмов, а также обнаруживать возникновение наследственных изменений.

Работа Менделя значительно опередила уровень развития науки того времени. Лишь когда в 1900 г. сразу в трех лабораториях открыли заново закономерности наследования, ученый мир вспомнил, что 35 лет тому назад они уже были сформулированы. 1900 год считается годом рождения генетики, но закономерности, установленные в свое время Грегором Менделем, справедливо носят его имя.

Вопросы для повторения и задания

2. Кто впервые открыл закономерности наследования признаков?

3. На каких растениях проводил опыты Г. Мендель?

4. Благодаря каким особенностям организации работы Г. Менделю удалось открыть законы наследования признаков?

3.11. Закономерности наследования. Моногибридное скрещивание

Вспомните!

Какой набор хромосом содержат половые клетки?

Закон единообразия гибридов первого поколения. Мендель начал работу с постановки эксперимента по наиболее простому, моногибридному скрещиванию, в котором родительские особи отличались друг от друга по одному изучаемому признаку. Поскольку горох – самоопыляющееся растение, в пределах одного сорта не существует изменчивости по конкретному признаку: на растениях, выросших из желтых семян, всегда созревают желтые семена, а на растениях, выросших из зеленых, – зеленые. Учитывая это свойство, Мендель скрестил растения гороха, отличающиеся по цвету семян (рис. 67). Гибридные семена первого поколения все оказались желтого цвета. Аналогичные результаты Мендель получил, изучая наследование остальных пар признаков. Следовательно, у гибридов первого поколения из каждой пары альтернативных признаков развивается только один. Второй признак как бы исчезает, не проявляется. Явление преобладания у гибрида признака одного из родителей Мендель назвал доминированием. Признак, проявляющийся у гибрида первого поколения и подавляющий развитие другого признака, был назван доминантным, а противоположный признак, не проявляющийся у гибридов, т. е. подавляемый, – рецессивным.

В результате такого скрещивания была установлена важнейшая закономерность наследования, получившая название закона единообразия гибридов первого поколения, или закона доминирования (первый закон Менделя): при скрещивании двух гомозиготных организмов, обладающих альтернативными признаками, все гибриды первого поколения будут иметь признак одного из родителей, т. е. будут единообразны по фенотипу. Впоследствии было установлено, что явление доминирования широко распространено и является общей закономерностью для наследования многих признаков у большинства организмов.


Людей всегда интересовали закономерности наследования признаков. Почему дети похожи на своих родителей? Есть ли риск передачи наследственных заболеваний? Эти и многие другие вопросы оставались под завесой тайны вплоть до XIX века. Именно тогда Менделю удалось аккумулировать все накопленные знания по данной теме, а также путем сложных аналитических опытов установить конкретные закономерности.

закономерности наследования признаков опыты менделя

Вклад Менделя в развитие генетики

Основные закономерности наследования признаков - это принципы, в соответствии с которыми определенные характеристики передаются от родительских организмов к потомству. Их открытие и четкая формулировка явля.тся заслугой Грегора Менделя, который проводил по данному вопросу многочисленные опыты.

Главное достижение ученого - это доказательство дискретного характера наследственных факторов. Иными словами, за каждый признак отвечает конкретный ген. Первые карты были построены для кукурузы и дрозофилы. Последняя является классическим объектом для проведения генетических опытов.

Заслуги Менделя трудно переоценить, о чем говорят и отечественные ученые. Так, знаменитый генетик Тимофеев-Ресовский отметил, что Мендель был первым, кто провел фундаментальные опыты и дал точную характеристику явлениям, которые ранее существовали на уровне гипотез. Таким образом, его можно считать пионером математического мышления в области биологии и генетики.

Предшественники

Стоит отметить, что закономерности наследования признаков по Менделю были сформулированы не на пустом месте. Его исследования основывались на изысканиях предшественников. Стоит особенно отметить следующих ученых:

  • Дж. Госс проводил эксперименты на горохе, скрещивая растения с плодами разного цвета. Именно благодаря этим исследованиям были открыты законы единообразия первого поколения гибридов, а также неполного доминирования. Мендель лишь конкретизировал и подтвердил данную гипотезу.
  • Огюстен Саржэ - это растениевод, выбравший для своих опытов тыквенные культуры. Он первым стал изучать наследственные признаки не в совокупности, а по отдельности. Ему принадлежит утверждение, что при передаче тех или иных характеристик они не смешиваются между собой. Таким образом, наследственность является константной.
  • Ноден проводил исследования на различных видах такого растения, как дурман. Проанализировав полученные результаты, он счел нужным говорить о наличии доминирующих признаков, которые в большинстве случаев будут преобладать.

Таким образом, уже к XIX веку были известны такие явления, как доминантность, единообразие первого поколения, а также комбинаторика признаков у последующих гибридов. Тем не менее всеобщих закономерностей выработано не было. Именно анализ имеющейся информации и выработка достоверной методики исследования являются главной заслугой Менделя.

Методика работы Менделя

Закономерности наследования признаков по Менделю были сформулированы в результате фундаментальных исследований. Деятельность ученого осуществлялась следующим образом:

    рассматривались не в совокупности, а по отдельности;
  • для анализа выбирались только альтернативные признаки, которые представляют существенную разницу между разновидностями (именно это позволило наиболее четко объяснить закономерности процесса наследования);
  • исследования были фундаментальными (Мендель исследовал большое количество сортов гороха, которые были как чистыми, так и гибридными, а потом скрещивал "потомство"), что позволило говорить об объективности результатов;
  • использование точных количественных методов в ходе анализа полученных данных (используя знания в области теории вероятностей, Мендель снизил показатель случайных отклонений).

закономерности наследования признаков по менделю

Закон единообразия гибридов

Рассматривая закономерности наследования признаков, стоит уделить особое внимание единообразию гибридов первого поколения. Он был открыт путем опыта, в ходе которого производилось скрещивание родительских форм с одним контрастным признаком (форма, окраска и т. д.).

Менделем было принято решение провести эксперимент на двух разновидностях гороха - с красными и белыми цветками. Как результат, гибриды первого поколения получили пурпурные соцветия. Таким образом, появилось основание говорить о наличии доминантных и рецессивных признаков.

Стоит отметить, что данный опыт Менделя был не единственным. Он использовал для экспериментов растения с другими оттенками соцветий, с разной формой плодов, разной высотой стебля и прочие варианты. Опытным путем ему удалось доказать, что все гибриды первого порядка единообразны и характеризуются доминантным признаком.

закономерности наследования признаков установленные менделем

Неполное доминирование

В ходе изучения такого вопроса, как закономерности наследования признаков, проводились опыты как на растениях, так и на живых организмах. Таким образом, удалось установить, что далеко не всегда признаки находятся в отношениях полного доминирования и подавления. Так, например, при скрещивании кур черного и белого окраса удалось получить серое потомство. Так же было с некоторыми растениями, когда разновидности с пурпурными и белыми цветками на выходе давали розовые оттенки. Таким образом, можно скорректировать первый принцип, указав, что первое поколение гибридов будет иметь одинаковые признаки, при этом они могут быть промежуточными.

Расщепление признаков

Продолжая исследовать закономерности наследования признаков, Мендель счел необходимым подвергнуть скрещиванию двух потомков первого поколения (гетерозиготных). Как результат, было получено потомство, часть которого носило доминантный признак, а другая - рецессивный. Из этого можно сделать вывод, что второстепенный признак у первого поколения гибридов не исчезает вовсе, а лишь подавляется и вполне может проявиться в последующем потомстве.

Независимое наследование

Много вопросов вызывают закономерности наследования признаков. Опыты Менделя коснулись также особей, которые отличаются друг от друга сразу по нескольким признакам. По каждому в отдельности предыдущие закономерности соблюдались. Но вот, рассматривая совокупность признаков, не удалось выявить какой-либо закономерности между их комбинациями. Таким образом, есть основания говорить о независимости наследования.

Закон чистоты гамет

Некоторые закономерности наследования признаков, установленные Менделем, носили чисто гипотетический характер. Речь идет о законе чистоты гамет, который заключается в том, что в них попадает лишь по одному аллелю из пары, содержащейся в гене родительской особи.

Во времена Менделя не было технических средств для подтверждения данной гипотезы. Тем не менее ученому удалось сформулировать общее утверждение. Суть его состоит в том, что в процессе образования гибридов наследственные признаки сохраняются в неизменном виде, а не смешиваются.

закономерности наследования признаков менделя

Существенные условия

Генетика - это наука, изучающая закономерности наследования признаков. Мендель сделал существенный вклад в ее развитие, выработав фундаментальные положения по данному вопросу. Тем не менее, чтобы они выполнялись, необходимо соблюдение следующих существенных условий:

  • исходные формы должны быть гомозиготными;
  • альтернативность признаков;
  • одинаковая вероятность формирования разных аллелей у гибрида;
  • равная жизнеспособность гамет;
  • при оплодотворении гаметы сочетаются случайным образом;
  • зиготы с разными комбинациями генов жизнеспособны в равной степени;
  • численность особей второго поколения должна быть достаточной, чтобы считать полученные результаты закономерными;
  • проявление признаков не должно быть зависимо от влияния внешних условий.

Стоит отметить, что данным признакам соответствует большинство живых организмов, в том числе человек.

основные закономерности наследования прихнаков

Закономерности наследования признаков у человека

Несмотря на то, что изначально генетические принципы исследовались на примере растений, для животных и человека они также справедливы. Стоит отметить такие типы наследования:

  • Аутосомно-доминантный - наследование доминирующих признаков, которые локализуются посредством аутосом. При этом фенотип может быть как сильно выраженным, так и едва заметным. При данном типе наследования вероятность получения ребенком патологического аллеля от родителя составляет 50 %.
  • Аутосомно-рецессивный - наследование второстепенных признаков, соединенных с аутосомами. Заболевания проявляются посредством гомозигот, причем пораженными будут оба аллеля.
  • Доминантный Х-сцепленный тип подразумевает передачу доминантных признаков детерминированными генами. При этом у женщин заболевания встречаются в 2 раза чаще, чем у мужчин.
  • Рецессивный Х-сцепленный тип - наследование происходит по более слабому признаку. Заболевание или его отдельные признаки всегда проявляются у потомства мужского пола, а у женщин - только в гомозиготном состоянии.

наука изучающая закономерности наследования признаков

Основные понятия

Для того чтобы понять, как работают закономерности наследования признаков Менделя и прочие генетические процессы, стоит ознакомиться с основными определениями и понятиями. К ним относятся следующие:

  • Доминантный признак - преобладающая характеристика, которая выступает в качестве определяющего состояния гена и подавляет развитие рецессивных.
  • Рецессивный признак - характеристика, которая передается по наследству, но не выступает в качестве определяющей.
  • Гомозигота - диплоидная особь или клетка, в хромосомах которой содержатся одинаковые клетки указанного гена.
  • Гетерозигота - диплоидная особь или клетка, которая дает расщепление и имеет разные аллели в рамках одного гена.
  • Аллель - это одна из альтернативных форм гена, которая расположена в определенном месте хромосомы и характеризуется уникальной последовательностью нуклеотидов.
  • Аллель - это пара генов, которые расположены в одних и тех же зонах гомологичных хромосом и контролируют развитие определенных признаков. находятся на разных участках хромосом и несут ответственность за проявление различных признаков.

закономерности наследования признаков

Заключение

Мендель сформулировал и на практике доказал основные закономерности наследования признаков. Описание их приведено на примере растений и слегка упрощено. Но на практике оно является справедливым для всех живых организмов.

Мы наследуем от своих родителей не только цвет глаз и волос, форму носа и группу крови. Мы наследуем черты темперамента и особенности движений, склонность к изучению языков и способность к математике. Мы рождаемся на свет, имея свой уникальный наследственный материал, ту программу, на основе которой под влиянием факторов внешней среды, мы станем такими, какие мы есть – неповторимые и в то же время похожие на предыдущие поколения.

Наследственность и изменчивость – два свойства живых организмов, неразрывно связанные друг с другом как две стороны одной медали. Закономерности наследственности и изменчивости изучает одна из самых важных областей биологии – генетика.

Наследственность – это способность живых организмов передавать свои признаки, свойства и особенности развития следующему поколению. Наследственность обеспечивает материальную и функциональную преемственность между поколениями, сохраняя определенный порядок в природе. Некоторые виды могут оставаться относительно неизменными на протяжении сотен миллионов лет. Например, многие современные акулы мало чем отличаются от акул, живших в раннем меловом периоде более 130 млн лет тому назад.

Клетки организмов не содержат готовых признаков взрослой особи, наследование признаков происходит на молекулярном уровне. Основными структурами, которые обеспечивают материальную основу наследственности, являются хромосомы. Строго говоря, мы наследуем не свойства, а генетическую информацию. Элементарной структурной единицей наследственности является ген – участок ДНК, содержащий информацию о структуре одного белка. Генотип – это сумма всех генов организма, т. е. совокупность всех наследственных задатков.

Изменчивость – свойство, противоположное наследственности. Оно заключается в способности живых организмов существовать в различных формах, т. е. приобретать в процессе индивидуального развития признаки, отличные от качеств других особей того же вида.

Совокупность свойств и признаков организма, которые являются результатом взаимодействия генотипа особи и окружающей среды, называют фенотипом. Мы рождаемся с определенным цветом кожи, но стоит нам летом съездить в более южные края, как наша кожа приобретает смуглый оттенок. С возрастом светлеет радужка глаз и седеют волосы. Перенесенные в детстве болезни могут нарушить рост или развитие каких-то органов. Реализация наследственной информации находится под постоянным давлением факторов окружающей среды. Однако следует отметить, что существуют признаки, проявление которых не зависит от влияния внешней среды. Где бы мы ни жили: на севере или на юге, как бы нас ни кормили в детстве и какими бы болезнями мы ни болели, группа крови, с которой мы родились, останется неизменной на протяжении всей жизни.

У истоков генетики. Основные закономерности наследования признаков впервые были описаны во второй половине XIX в. австрийским ученым Грегором Менделем (1822–1884). Мендель не был первым ученым, который пытался ответить на вопрос: как передаются из поколения в поколение свойства и признаки? Многие исследователи до него скрещивали разнообразные организмы, стараясь увидеть какую-то систему в получаемых результатах. Стремясь добиться успеха как можно быстрее, исследователи скрещивали разные виды, получая при этом бесплодное потомство, брали для изучения сложные, трудно определяемые признаки, не вели точных математических подсчетов.

Рассмотрим основные особенности работы Менделя, которые позволили ему добиться успеха:

– в качестве экспериментальных растений Мендель использовал разные сорта посевного гороха, поэтому потомство, получаемое в таких внутривидовых скрещиваниях, было плодовито;

– горох – самоопыляющееся растение, т. е. цветок защищен от случайного попадания посторонней пыльцы; при постановке нужного скрещивания Мендель удалял тычинки, чтобы исключить возможность самоопыления, а затем кисточкой переносил на пестик пыльцу другого родительского растения;

– горох неприхотлив и имеет высокую плодовитость;

– при обработке получаемых данных Мендель вел строгий математический учет фенотипов всех растений и семян.

В течение восьми лет Мендель экспериментировал с 22 сортами гороха, которые отличались друг от друга по семи признакам. За это время он изучил в общей сложности более 10 тыс. растений. Скрещивая различные организмы и исследуя получаемое потомство, Мендель, по сути, разработал основной и специфический метод генетики. Гибридологический метод – это система скрещиваний в ряду поколений, дающая возможность при половом размножении анализировать наследование отдельных свойств и признаков организмов, а также обнаруживать возникновение наследственных изменений.

Работа Менделя значительно опередила уровень развития науки того времени. Лишь когда в 1900 г. сразу в трех лабораториях открыли заново закономерности наследования, ученый мир вспомнил, что 35 лет тому назад они уже были сформулированы. 1900 год считается годом рождения генетики, но закономерности, установленные в свое время Грегором Менделем, справедливо носят его имя.

Вопросы для повторения и задания

2. Кто впервые открыл закономерности наследования признаков?

3. На каких растениях проводил опыты Г. Мендель?

4. Благодаря каким особенностям организации работы Г. Менделю удалось открыть законы наследования признаков?

3.11. Закономерности наследования. Моногибридное скрещивание

Вспомните!

Какой набор хромосом содержат половые клетки?

Закон единообразия гибридов первого поколения. Мендель начал работу с постановки эксперимента по наиболее простому, моногибридному скрещиванию, в котором родительские особи отличались друг от друга по одному изучаемому признаку. Поскольку горох – самоопыляющееся растение, в пределах одного сорта не существует изменчивости по конкретному признаку: на растениях, выросших из желтых семян, всегда созревают желтые семена, а на растениях, выросших из зеленых, – зеленые. Учитывая это свойство, Мендель скрестил растения гороха, отличающиеся по цвету семян (рис. 67). Гибридные семена первого поколения все оказались желтого цвета. Аналогичные результаты Мендель получил, изучая наследование остальных пар признаков. Следовательно, у гибридов первого поколения из каждой пары альтернативных признаков развивается только один. Второй признак как бы исчезает, не проявляется. Явление преобладания у гибрида признака одного из родителей Мендель назвал доминированием. Признак, проявляющийся у гибрида первого поколения и подавляющий развитие другого признака, был назван доминантным, а противоположный признак, не проявляющийся у гибридов, т. е. подавляемый, – рецессивным.

В результате такого скрещивания была установлена важнейшая закономерность наследования, получившая название закона единообразия гибридов первого поколения, или закона доминирования (первый закон Менделя): при скрещивании двух гомозиготных организмов, обладающих альтернативными признаками, все гибриды первого поколения будут иметь признак одного из родителей, т. е. будут единообразны по фенотипу. Впоследствии было установлено, что явление доминирования широко распространено и является общей закономерностью для наследования многих признаков у большинства организмов.

Генетика изучает закономерности наследования. И хотя давно уже люди заметили сходство между родителями и потомством, научная дисциплина генетика появилась не так давно.

План урока:

Что изучает генетика

Генетика изучает закономерности наследования. И хотя давно уже люди заметили сходство между родителями и потомством, научная дисциплина генетика появилась не так давно. В середине XIX века чешский монах Грегор Мендель изучал растения гороха и благодаря его заслугам генетика стала наукой.

  • Вывел математические закономерности наследования, а без математики наука не является наукой.
  • Разработал надёжный метод изучения наследования признаков.

Но, к сожалению, основатель направления, которое перевернёт биологию, не получил в своё время должного признания.

Однако тогда не было такой ясной информации о генах, какая есть сейчас. Под генами Грегор Мендель подразумевал некие наследственные задатки или факторы, которые отвечали за передачу признака от родителей к потомству.

Грегор Мендель и его законы наследования

Грегор Мендель (1822 — 1884) был монахом августинского монастыря, жил в австрийском городе Брюнне (Брно).

Во второй раз законы Менделя открыли в первом десятилетии XX века Гуго де Фриз (Голландия), Карл Корренс (Германия), Эрих Чермак (Австрия). Они получили сходные результаты и признали приоритет чешского монаха. В начале XX века Люсьен Кено (Франция), Вильям Бэтеон (Великобритания), Вильям Кастл (США) показали, что законы Менделя действуют не только у растений, но и у животных.

Грегор Мендель разработал метод, до которого раньше никто не додумался. Именно этот метод позволил не только проследить наследование признаков, но и сформулировать законы, которым оно подчиняется.

Что же нового сделал Мендель.

1. Он отслеживал не облик растения в целом, а наследование только одного признака, например, формы семян. Это было гораздо проще и понятнее.

2. Использовал растения только чистых линий. Он 2 года выращивал растения и отбирал только те линии, в которых признак воспроизводился из поколения в поколение.

3. Подсчитал количество проявления признака, например, количество семян гладкой формы и жёлтой окраски. Это помогло понять, с какой частотой проявляются разные признаки. Он обратился к статистике, без которой и сейчас невозможно верить результатам эксперимента.

Моногибридное скрещивание

Грегор Мендель изучал несколько признаков: гладкость/морщинистость семян, жёлтый/зелёный цвет семян, расположение цветков и другие.

Получив чистые линии, Мендель стал скрещивать растения, которые различались по одному признаку. Такое скрещивание называется моногибридным:

растение с гладкими семенами + растение с морщинистыми семенами;

растение с жёлтыми семенами + растение с зелёными семенами.

Моногибридное скрещивание (форма семян)

Моногибридное скрещивание (цвет семян)

У потомков первого поколения проявлялся лишь один признак: гладкие семена или жёлтые семена. Растения, полученные от родителей с разными признаками, называются гибриды. В данном случае речь идёт о гибридах первого поколения.

Также Грегор Мендель ввёл терминологию на основе латинского языка, которая используется в генетике и сейчас. Латинский язык до сих пор входит в число международных языков науки. А так как Грегор Мендель был монахом, он прекрасно знал латынь.

P — поколение родителей (от латинского слова parentes - родители)

F — поколение потомков (от латинского слова filii — дети)

F1 — поколение гибридов первого поколения

Обнаружилось, что у всех гибридов первого поколения есть признак лишь одного родителя — жёлтые или гладкие семена. В этом заключается закон единообразия гибридов первого поколения или первый закон Менделя.

Затем он допустил самоопыление гибридов первого поколения и изучал признаки их потомков — гибридов второго поколения. И во втором поколении появились морщинистые или зелёные семена. Значит этот признак у первого поколения не исчез, он сохранялся в скрытом виде. И что ещё важно, он появился у меньшинства — всего четверть горошин имела зелёный цвет или морщинистую форму.

Из раза в раз доминантный и рецессивные признаки обнаруживались в строгом соотношении 3 к 1. Произошло как бы расщепление признака в неравной пропорции. И в этом заключается закон расщепления или второй закон Менделя.

Два закона приводят к следующим выводам:

  • У родителей есть два задатка (два аллеля), один из которых (рецессивный) проявляет себя не в каждом поколении.
  • Потомок проявляет только один задаток (аллель), который он получает от родителей через половые клетки (гаметы).

Почему признаки наследуются так или иначе, видно из таблицы.

A — гамета с доминантным аллелем (жёлтый цвет семян)

a — гамета с рецессивным аллелем (зелёный цвет семян)

Aa — у особи есть доминантный и рецессивный признак; доминантный признак будет преобладать, поэтому семена будут жёлтыми.

Итак, ген — это носитель наследственности. Он может существовать в двух формах — аллелях. Например, у гороха есть ген, определяющий цвет семян. Существуют два аллеля этого гена: аллель для жёлтого цвета и аллель для зелёного цвета.

У гибридов первого поколения проявлялся лишь один из альтернативных признаков — доминантный:

жёлтый цвет семян.

Рецессивные признаки встречались у гибридов второго поколения (в соотношении 3:1):

Если посмотреть на внешний признак — цвет семян, то видно, что у гибридов второго поколения он появляется в соотношении 3:1. Но расщепление по генетической структуре другое: 1AA (жёлтый): 2Aa (жёлтый) : 1aa (зелёный). В этом и заключается отличие генотипа (набора генов) от фенотипа (внешнего вида). За одинаковым фенотипом могут стоять разные комбинации генов, например, жёлтый цвет гороха может определяться сочетанием AA или Aa. Рисунок 3а_Гибриды второго поколения

Дигибридное скрещивание

Дигибридное скрещивание позволяет определить, как одновременно наследуются два отдельных признака.

A — жёлтые горошины, a — зелёные горошины.

B — гладкие горошины, b — морщинистые горошины.

Скрещивают гибридов 1 поколения, у них только гладкие жёлтые семена.

У гибридов 2 поколения происходит расщепление признаков в соотношении 9:3:3:1. Но если обратить внимание только на один признак, то снова получится соотношение 3:1.

12 жёлтых и 4 зелёные горошины

12 гладких и 4 морщинистые горошины.

Получается, что эти два гена A и B не сливаются друг с другом. Они отдельны друг от друга на протяжении всей жизни особи. При формировании гамет расходятся в разные гаметы. В этом заключается третий закон Менделя.

Другие типы наследования

Абсолютное доминирование одних признаков над другими встречается не всегда. Взаимодействие между генами — тема сложная, результат не всегда строго подчиняется закономерностям наследования Менделя. Геном человека расшифрован полностью, но мало знать, как он устроен. Важно понимать, как он работает. Часто проводят аналогию с головным мозгом. Можно досконально изучить его строение, но важнее разобраться в том, по каким механизмам он создаёт психическую жизнь человека.

При неполном доминировании в первом поколении появляется признак, промежуточный между родительскими признаками. Например, у растения ночная красавица (Mirabilis jalapa) красные цветки являются доминантным признаком (AA), белые цветки — рецессивным признаком (aa). Промежуточный признак — розовые цветки (Aa).

При кодоминировании потомки наследуют признаки обоих родителей. Наряду с общепринятой системой четырёх групп крови ABO существуют другие системы. Они не имеют такого важного значения в медицине, поэтому о них меньше говорят. Есть система групп крови MN. В этом случае генотип может быть представлен аллелями Lm и Ln. Если один родитель гомозиготен по аллелю Lm (MM), то его эритроциты будут нести антиген (молекулу) M. Если другой родитель гомозиготен по аллелю Ln (NN), то его эритроциты несут антиген N. А вот у их гетерозиготного ребёнка (MN) на эритроцитах будут оба антигена M и N.

Методы исследования наследственности

Генеалогический метод основан на составлении родословной. Например, люди, предки которых больны наследственным заболеванием, при планировании семьи обращаются к врачу-генетику. Врач составляет родословную и смотрит, проявляется ли болезнь в каждом поколении. Болеют только мужчины, либо болезнь проявляется у обоих полов.

Близнецовый метод позволяет узнать, признак имеет чисто генетическую природу или больше зависит от влияния окружающей среды. Монозиготные (однояйцевые) близнецы имеют одинаковый генотип, потому что развиваются из одной яйцеклетки. Дизиготные (разнояйцевые) близнецы похожи между собой просто как родные братья и сёстры.

У монозиготных близнецов совпадают группа крови и цвет глаз, у дизиготных может быть разная группа крови и разный цвет глаз. Значит, группа крови и цвет глаз определяются строго генетически, а не под действием факторов окружающей среды.

Если один монозиготный близнец болен туберкулёзом, то есть вероятность, что и второй монозиготный близнец им заболеет. Если один дизиготный близнец заболел туберкулёзом, то вероятность болезни у второго дизиготного близнеца ниже. Это говорит о том, что в развитии туберкулёза генетическая предрасположенность играет весомую роль.

Цитогенетический метод заключается в том, что из клеток выделяют хромосомы и окрашивают их. Изучая строение и количество хромосом, можно определить особенности генотипа и некоторые заболевания. Например, синдром Дауна или некоторые лейкозы — злокачественные опухоли костного мозга.

Популяционно-статистический метод изучает, насколько часто встречаются определённые аллели в популяции.

Биохимический метод определяет генетические нарушения по изменению обмена веществ. Например, при наследственном заболевании фенилкетонурии аминокислота фенилаланин не может перейти в тирозин и накапливается. Это опасно поражением головного мозга и умственной отсталостью. У новорождённого можно измерить количество фенилаланина и заподозрить фенилкетонурию. Правильно подобранная диета сильно замедляет развитие болезни.

Генотип и фенотип

Как упоминалось выше, внешние признаки не всегда чётко совпадают с генотипом. Например, жёлтый цвет горошин может быть обусловлен двумя сочетаниями аллелей. Дело в том, что активность одних генов зависит от других генов. Кроме того, на внешние признаки организма влияют факторы окружающей среды.

В 1909 году Вильгельм Иогансен сформулировал различия между генотипом и фенотипом. Генотип лишь определяет, какой фенотип сложится у организма. Разнообразие возможных фенотипов при данном генотипе называется нормой реакции. Например, человек со светлыми волосами и голубыми глазами имеет светлую кожу. Под действием солнечного света она потемнеет, но не станет такой же тёмной, как у африканца.

Если сосна растёт на открытой местности, она будет невысокой и с широкой кроной. Сосны, растущие в лесу, высокие, а их ветви не такие длинные и мощные.

Читайте также: