Как обеспечить аквариум со2

Обновлено: 19.05.2024

Зачем нужен СО2 в аквариуме? Всем известно из школьного курса биологии что главный источник питания растений это углекислый газ СО2. В природных водоемах растения используют растворенный в воде СО2. Причем за счет огромного объема воды концентрация СО2 в природных водоемах довольно постоянна, чего нельзя сказать про домашние аквариумы. Если в аквариуме растут растения, то они очень быстро потребляют весь растворенный СО2 из воды и восстановление прежней концентрации СО2 в аквариумной воде само по себе не происходит, так как аквариум это замкнутая система. Аквариумные рыбы выдыхают лишь мизерную долю СО2. В итоге, рост аквариумных растений останавливается. К тому же вода с низким содержанием СО2 имеет высокий рН что еще больше вредит аквариумным растениям. Думаю, многие начинающие аквариумисты замечали, что водопроводная вода имеет более низкий рН чем она же после добавления в аквариум с растениями. Это связано с тем что СО2 образует угольную кислоту в воде, которая снижает рН. А значит, чем больше СО2 в воде тем меньше рН.

Для того чтобы поддерживать постоянную концентрацию СО2 как в природных водоемах, нужно подавать углекислый газ искусственно. Существует несколько типов систем подачи СО2 в аквариум. Каждый из этих методов-систем имеет свои преимущества и недостатки. Ниже все они будут перечислены, и вы сможете выбрать наиболее подходящий метод для вашего аквариума.

Баллонная установка СО2 для аквариума.

Для аквариумов большого объема наиболее оптимальный метод подачи СО2 - это углекислота из баллонной установки. Баллонная система подачи СО2 состоит из баллона и системы контроля, в которую входит: редуктор (1), электромагнитный клапан (2), фитинг (3), катушка с разъемом (4) обеспечивающие работу электромагнитного клапана, пневмодроссель (5) для тонкой регулировки темпа подачи СО2, блок питания (6). Такую установку можно собрать своими руками. Но есть в продаже и готовые к использованию установки, правда, в несколько раз дороже.



  • экономичность в долгосрочной перспективе;
  • большой запас СО2;
  • полный контроль интенсивности подачи СО2;
  • стабильность подачи СО2;
  • возможность автоматизации (путем подключения рН-контроллера).
  • сложность сборки;
  • высокая стоимость оборудования;
  • необходимость работы с баллоном высокого давления.

Генераторы СО2

Другой тип подачи СО2 это использование генератора СО2. Существует два типа генераторов СО2. Первый это брага. Второй – химический генератор с применением реакции карбонатов с кислотой. Оба способа пригодны для аквариумов среднего размера – до 100 литров. В больших аквариумах и тем более с высокой плотностью посадки аквариумных растений может не хватить интенсивности генерирования СО2.

СО2 для аквариума из браги

Такой генератор главным образом состоит из герметично закрытого сосуда с брагой и трубкой выходом для СО2. В качестве сосуда может выступать пластиковая бутылка. Иногда используют дополнительную ловушку из второй пластиковой бутылки, на случай если брага вспенится и вылезет из бутылки. Ловушка предотвращает попадание браги в аквариум. Сама брага может состоять из 300 грамм сахара (не растворенного), 0.3 грамм сухих дрожжей "СафЛевюр"(для напитков и выпечки), 1 литр воды в 2 литровой бутылке. Иногда сахар растворяют вместе с желатином в 0.5 литров воды и сверху него заливают 0.5 литров смеси дрожжей и теплой воды. Играет, как правило, такая брага не больше двух недель. Вариаций рецептов браги просто море, но редко когда удается подлить ее работу больше 2-3 недель.

  • легкость сборки;
  • низкая цена материалов для сборки;
  • безопасность.
  • нестабильность подачи СО2;
  • низкий ресурс;
  • отсутствие контроля подачи.

Генератор СО2 из лимонной кислоты и соды.

В отличие от браги, такой генератор СО2 обеспечивает более стабильную подачу углекислого газа. Потому что гораздо проще реализовать равномерное прибавление раствора лимонной кислоты к раствору соды с выделением СО2, чем равномерный процесс брожения сахара.



Суть такой установки генератора СО2 в том, что лимонная кислота поступает из сосуда А в сосуд В с содой, при этом образуется СО2. Образовавшийся углекислый газ создает повышенное давлением в обоих сосудах, так как они соединены каналом 2-1-10-9 с обратными клапанными на обоих концах (3 и 8). Причем клапаны 3,8 и 7обеспечивают движение СО2 только в одном направлении – от сосуда В к А и в аквариум, но не обратно. Как только СО2 выходит из генератора, в канале 2-1-10-9 и сосуде В снижается давление, но не в сосуде А (клапан 3 его задерживает). Поэтому повышенное давление в сосуде А выдавливает лимонную кислоты из сосуда А в сосуд В и снова происходит генерация СО2.
Интенсивность генерации регулируется игольчатым клапаном D.

  • низкая цена материалов для сборки;
  • безопасность;
  • удовлетворительная стабильность подачи СО2;
  • возможность контролировать интенсивность подачи СО2.
  • сложность сборки, не смотря на дешевизну материалов;
  • низкий ресурс;
  • низкая интенсивность подачи СО2.

Для перечисленных систем подачи СО2 необходим реактор, с помощью которого СО2 растворяется/распыляется в аквариуме и счетчик пузырьков, с помощью которого контролируется количество СО2 подаваемого в аквариум. Есть огромное множество реакторов работающих по различным принципам. Самый простой вариант и достаточно эффективный – это подача СО2 на вход внутреннего фильтра в аквариуме.

Газировка как источник СО2 для аквариума

Для наноаквариумов до 20 литров связываться с баллонной установкой СО2 не каждый захочет. Можно сделать генератор СО2 на браге или соде. Но можно поступить проще. Есть древний и незаслуженно забытый метод подачи СО2 это использование газированной воды. Газированная вода это своего рода концентрат углекислого газа уже растворенного в воде. Содержание СО2 в газировке обычно около 5000-10000мг/л, а после открытия бутылки стремится к 1450мг/л. Если посчитать сколько необходимо газированной воды для доведения концентрации СО2 в аквариуме до 10мг/л, то выходит довольно экономично. Свежей газировки нужно всего 20мл на 10л аквариумной воды, что даст 10мг/л СО2 в аквариуме. Достаточно просто по утрам вносить газировку вместе с удобрениями. После стояния, вносить газировку можно и в больших количествах, так как углекислый газ выветривается. Приблизительно, 1 литра газировки хватит для 10-20л аквариума на месяц. Подойдет любая газированная вода, конечно, кроме соленой. Лучше использовать самые дешевые. Их обычно делают из водопроводной воды :). Больше чем до 10мг/л лучше концентрацию СО2 таким методом не доводить. Во-первых, не известно сколько углекислоты содержит ваша газировка 5000мг/л или 10000мг/л. Во-вторых, большие колебания концентрации СО2 в аквариуме не желательны. После добавления газировки концентрация будет постепенно снижаться из-за потребления аквариумными растениями. Постоянные колебания СО2 от 10мг/л до нуля и обратно не страшны. Но колебания от 20-30мг/л до нуля гораздо хуже для баланса в аквариуме.

  • не нужен реактор для растворения СО2 и счетчик пузырьков, так как СО2 уже растворен в газированной воде;
  • простота использования;
  • экономичен в краткосрочной перспективе;
  • удобен для наноаквариумов.
  • нестабильная концентрация СО2 в аквариуме;
  • цена 1 грамма СО2 самая высокая из перечисленных методов, то есть неэкономичный в долгосрочной перспективе и для аквариумов большого объема;
  • слабая подача СО2 в сравнении с другими методами.

Какой должна быть концентрация СО2 в аквариумной воде? Сколько нужно подавать СО2 в аквариум?

В природных водоемах концентрация СО2 колеблется от 2 до 10 мг/л (в проточных водах) и может достигать 30 мг/л в стоячих водах болот. В водопроводной воде содержится обычно 2-3 мг/л СО2. В аквариуме с растениями и без подачи СО2 его концентрация обычно меньше 1 мг/л или вовсе стремится в нулю.

Должно быть вполне очевидно, что аквариумные растения нуждаются в таких же условиях, которые они имеют в своей природной среде обитания. Для каких-то видов это 2-10 мг/л, а для каких-то лучше 20-30мг/л. То есть, как минимум, в аквариуме нужно довести и поддерживать концентрацию СО2 на уровне 3-5 мг/л. Максимум – это 30 мг/л, так как при более высоких концентрациях могут пострадать аквариумные рыбы и креветки. Концентрацию СО2 можно оценить с помощью длительного теста СО2 - дропчекер.

Путем варьирования концентрации СО2 в аквариумной воде также можно регулировать скорость роста аквариумных растений. Но лучше это делать совместно с изменением уровня освещения. Если вместо концентрации СО2 в интервале 20-30 мг/л, вы решили сделать 10-15 мг/л, тогда лучше снизить уровень освещения с 1 ватт/л до 0.5 ватт/л.

Счетчик пузырьков это обязательный элемент, так как с помощью него можно оценивать кол-во СО2 подаваемого в аквариум. Считать пузырьки лучше в течении минуты для определения темпа в наиболее часто используемой размерности пузырек в секунду (п/с).

Многие начинающие обладатели аквариумов задумываются, для чего все-таки требуется углекислый газ. Он оказывается необходимым для рыбок, так как в противном случае они не смогут активно развиваться.

Задачи CO2

Как известно, углекислый газ обладает особенной ролью. Он требуется для того, чтобы в аквариуме, в домике рыб, растительность всегда была густой и полноценной, красивой, зеленой. Для фотосинтеза аквариумные растения могут использовать CO2, который в любом природном водоеме может находиться на оптимальном уровне, но в домашних условиях не способен поддерживаться без человеческой помощи. В аквариуме оптимальные показатели необходимо поддерживать самостоятельно, так как нужный объем воды отсутствует.

В обычных домашних аквариумах растениям требуется углекислый газ, но его должно быть достаточно по объему. Самостоятельное восстановление первоначальной газовой массы оказывается невозможным. Рыбки способны выделять только ограниченное количество CO2, поэтому баланс следует поддерживать человеческими усилиями.

Подача CO2 в аквариум – это поддержание постоянного показателя pH, который является оптимальным для аквариумных обитателей. Данный аспект является важным, как для активности и здоровья рыбок, так и для успешного роста растений.

В наши дни для контроля CO2 и его поддержания используются различные системы и диффузоры, в результате чего можно гарантировать успешное поддержание комфортных показателей для рыб.

Газировка – источник углекислого газа

СО2 для аквариума можно подавать даже с помощью газированной воды. Данный способ завоевывает своих почитателей, ведь далеко не каждый захочет иметь отношение с большой баллонной установкой. К тому же обычная газированная вода из бутылки может быть эффективной.

Содержание CO2 в газированной воде обычно составляет 5 000 – 10 000 мг на литр. После того, как бутылка будет открыта, показатель измениться: около 1450 мг на литр. Если же провести подсчеты, можно отметить экономию, но важно понимать, что она будет отмечаться только в краткосрочной перспективе. Для 10 литров воды потребуется всего лишь 20 миллилитров свежей газировки.

В результате добавлять в аквариум газированную воду со специальными удобрениями оказывается поистине легко. Важно отметить, что после стояния объем добавляемой газировки можно увеличить, ведь углекислый газ способен быстро выветриваться. Если провести расчеты, можно отметить, что одного литра газировки будет достаточно на целый месяц.

Однако что же использовать?

  • рекомендуется использование самых дешевых газировок. Их создают на основе водопроводной воды;
  • концентрация CO2 должна быть доведена до 10 мг на литр с помощью газировки. При этом показатель не должен превышать установленную цифру;
  • повышенная осторожность – это обязательное требование. Газировка может содержать в себе 5 000 или 10 000 мг/л, но при этом точный показатель не удастся выяснить. В связи с этим, СО2 в аквариум нужно подавать с особенной осторожностью. Если же все-таки будут допущены большие изменения концентрации, рыбкам будет угрожать опасность вплоть до летального исхода;
  • важно понимать, что после добавления газировки достигнутая концентрация по любому будет снижаться, ведь воду активно потребляют растения. В то же время постоянные колебания углекислого газа от десяти мг на литр до нуля и обратно не представляют опасности. Однако колебания 20 – 30 мг/л оказываются нежелательными.

Почему СО2 в аквариум можно подавать с помощью газировки? Преимущества способа:

  • отсутствует потребность в реакторе для растворения CO2 и установке счетчика, ведь углекислый газ пребывает в газированной воде;
  • простота проведения процедуры;
  • экономичность;
  • удобство использования газировки.

Однако методика все-таки обладает определенными минусами:

  • CO2 в аквариуме оказывается нестабильным;
  • цена одного грамма углекислого газа будет самой высокой. По данной причине, несмотря на краткосрочную экономичность, способ перестает быть экономичным в долгосрочной перспективе. Разница будет всерьез ощущаться в больших аквариумах;
  • углекислый газ подается слабо.

Несмотря на это, способ все-таки себя зарекомендовал на хорошем уровне, поэтому его используют достаточно часто.

Важные рекомендации

Как лучше всего подойти к выполнению поставленной задачи? Многие аквариумные растения будут успешно расти, если окажется достаточно обычной подкормки CO2. При этом лучше немного недокормить растения, чем перекормить. Для контроля за углекислым газом требуется индикатор, даже если используется газировка. Лучше всего стремиться к зеленому индикатору. Если же устройство успело изменить свой цвет, все равно паниковать не следует.

Как лучше всего подойти к выполнению поставленной задачи? Многие аквариумные растения будут успешно расти, если окажется достаточно обычной подкормки CO2. При этом лучше немного недокормить растения, чем перекормить. Для контроля за углекислым газом требуется индикатор, даже если используется газировка. Лучше всего стремиться к зеленому индикатору. Если же устройство успело изменить свой цвет, все равно паниковать не следует.

Если рыбки чувствуют себя хорошо, подмена воды не требуется. Достаточно снять бутылку с газированной водой и на время положить ее в холодильник, так как за минимальный промежуток времени растения смогут усвоить избыточное количество углекислоты и начнут вести себя гораздо активнее.

Для успешного поддержания здоровья растений рекомендуется соблюдать правила подачи углекислого газа в аквариум с учетом суточных ритмов рыбок и растений. Даже, если утром будет отмечено повышенное количество CO2 в аквариуме, вечером растения обязательно возьмут его себе. Подобный режим будет соответствовать оптимальным суточным изменениям воды и потребностям аквариумных обитателей.

Подача СО2 в аквариум: как лучше?

  • перезаправка бутылки с газированной водой – это ответственный этап. В это время крайне важно правильно расположить трубочки, ведь в противном случае вода может стекать на пол;
  • за подачей углекислого газа нужно следить. В этом поможет специальное колесико;
  • бутыль нельзя ставить на теплые лампы аквариума. В противном случае будет слишком активное брожение воды;
  • для каждого аквариума требуется отдельная бутыль.

Все эти рекомендации позволяют понять, как лучше всего действовать для поддержания оптимального показателя CO2.

Бутылка со сладкой водой

Второй способ предполагает использование 2-литровой пластиковой бутылки с брагой. В этом случае не предполагается использование изначально газированной воды, но при этом допускается брожение.

Для приготовления браги потребуются следующие компоненты:

  • 1 литр воды;
  • 300 грамм сахара;
  • 0,3 грамма дрожжей.

Сырье необходимо залить литром воды, причем сахар не следует перемешивать.

Теперь бутылочную пробку нужно закрыть трубкой шлангом. В то же время другой конец используемой трубки следует опустить в воду аквариума. После того, как будет начато брожение, пойдет выделение углекислого газа, который окажется полезным для аквариума.

Важная задача – это предотвращение потенциальных сгустков, которые могут появляться в браге. Для этого следует использовать не только основную емкость, но и дополнительный предмет в виде пластиковой бутылочке небольших размеров. Ко всей этой конструкции следует подсоединить дополнительные две трубки. В результате углекислый газ с продуктами брожения вначале попадут в малую емкость, а затем – в аквариум.

Однако способ все-таки обладает определенными недостатками:

  • углекислый газ невозможно полноценно контролировать при подаче в аквариум. К тому же он может подаваться нестабильно;
  • система СО2 сможет работать только до двух недель.

Если все-таки будет правильно организовано поступление углекислого газа, можно рассчитывать на успешное поддержание жизни в аквариуме.

Как самостоятельно создать генератор?

Еще один вариант – это полноценная система СО2 в аквариум. В этом случае обладатель аквариума должен самостоятельно создать генератор. Для этого требуется минимум временных, финансовых затрат. Даже трудозатраты практически не требуются.

Итак, по какой схеме может подаваться co2 в аквариум, если самостоятельно создается генератор? Изначально устройство должно связать две емкости, которые будут обеспечивать стабильный контакт между имеющимися растворами. На основе химической реакции можно гарантировать поступление CO2 в аквариум (дом) для рыб.

Создание генератора

Для этого требуется взять 2 обычные бутылки из пластика, причем можно ограничиться объемом в 1 литр. Через крышечки пластиковых бутылочек нужно выполнить установку шлангов. Трубочки должны соединять две емкости друг с другом.

Емкости также нужно соединить с аквариумом, ведь именно в него будет поступать углекислый газ. В обязательном порядке должен использоваться тройник, позволяющий выполнять все процессы регулировки.

Реактивы

Для того, чтобы реактор СО2 для аквариума успешно работал, требуются специальные реактивы.

Итак, необходимо использовать следующие растворы:

  • содовый раствор для первой емкости: 60 грамм соды на сто грамм воды;
  • лимонная кислота для второй емкости: 50 грамм кислоты и 100 миллилитров воды.

Для того, чтобы растворы взаимодействовали друг с другом и не приводили к лишним проблемам, рекомендуется позаботиться о надежной герметизации конструкции. К тому же герметизация позволит предотвратить потенциальную утечку углекислого газа. Лучше всего использовать для обработки смолу или силикон.

Первый шланг следует опустить в растворы, причем трубочки тройника не должны соприкасаться с растворами. Только по такой схеме можно гарантировать, что жидкости будут успешно проходить по всей конструкции.

Начало работы

CO2 в аквариум будет подаваться только после того, как вся система начнет правильно работать. Для этого следует надавить на вторую бутылку. Лимонная кислота сможет поступить в содовый раствор, после чего начнет выделяться CO2. Обратный клапан не позволит вернуться раствору во вторую емкость, поэтому углекислый газ будет направлен в аквариум. Так и происходит подача СО2 в аквариум.

В обязательном порядке отмечаются два направления движения жидкости:

  • бутылка с лимонной кислотой. В результате можно рассчитывать на давление с постоянной генерацией;
  • центральный патрубок, который является частью тройника. В результате углекислый газ поступит в аквариум.

Специальный краник, благодаря чему эффективность системы для подачи CO2 будет максимальной. В результате контроль за происходящим процессом обещает быть максимальным.

Нужно отметить, что контроль за показателем содержания углекислого газа обязателен. В последнее время активно используются специальные счетчики пузырьков, которые позволяют наблюдать за всеми реакциями.

CO2 в аквариуме определяется с учетом кислотности и карбонатной жесткости. Все эти параметры важны для качественной воды, здоровой растительности и активных рыбок.


Рыбки и другие существа, живущие в аквариумах, способны питаться не только тем кормом, который покупает и высыпает в воду владелец, но и флорой, произрастающей в аквариуме. Чтобы такие растения не увядали, им тоже нужно чем-то питаться. Оптимальным для этого является углекислый газ, который растворён в воде. Но в условиях замкнутого пространства вода быстро его теряет. Поэтому имеет смысл сделать генератор СО2 для аквариума своими руками.

цо 2 картинка

Некоторым аквариумным растениям нужен углекислый газ, который растворён в воде.

Необходимость выработки углекислоты

Достаточно часто собираются такие системы, которые способны доставлять углекислый газ в аквариумную воду. Часто они имеют множество применений, которые не ограничиваются этим. Они участвуют во многих процессах, например:

  • Выработка кислорода. Кроме питательных веществ, растения в процессе фотосинтеза могут снабжать воду этим веществом. Таким образом, рыбки, которые живут в аквариуме, будут нормально дышать и не умрут от нехватки кислорода.
  • Контроль уровня pH. Кислотность немного повышается, снижая тем самым его показатель. Это создаёт гораздо более приемлемые условия для нормального функционирования всех живых существ внутри.

Стоит отметить, что полностью перекладывать на растения работу по насыщению воды кислородом нельзя. Ночью, при отсутствии солнечного света, который нужен для образования глюкозы из углекислоты, процесс не запустится. Поэтому обязательно нужен аэратор — механизм, который сможет автоматически подавать воздух в воду, после чего какое-то количество кислорода будет в ней растворяться и не давать погибнуть живности внутри.

Кроме того, в темноте растения вместо выработки O2 его поглощают, вызывая в своих клетках обратную реакцию. При ней выделяется углекислый газ и вода, а значит, потребность в доставке дыхательной смеси возрастает ещё сильнее.

Допустимые уровни концентрации

Чтобы все процессы происходили правильно, нужно некоторое минимальное количество молекул углекислоты в воде. Несмотря на то, что жители аквариума в процессе жизнедеятельности тоже выделяют этот газ, его количества абсолютно недостаточно для протекания фотосинтеза.

Поэтому стоит знать, насколько большой должна быть концентрация газа, чтобы при этом не перенасытить воду им. Это не приведёт ни к чему хорошему, так как в ночное время может происходить кислородное голодание у живых существ.

Показатель зависит от объёма аквариума, но при этом подчиняется закону, при котором можно вывести его среднее значение. Оно равняется 2—10 миллиграммам на литр. Для стоячих водоёмов могут быть нормальными показатели и в 30, но всё слишком индивидуально.

В первую очередь нужно знать, в каких условиях жили те растения, которые были высажены. Если привычное для них состояние — лёгкое или почти отсутствующее течение, то можно добавлять больше углекислоты и не бояться перерасхода. Если же они появляются только в акваториях с ощутимым течением, то можно снизить дозу и от этого ничего страшного не случится.

Минимально допустимое значение находится на уровне 3—5 миллиграмм, поэтому нормальное для домашних условий содержание в 1 мг — недопустимо.

цо2

Нужно следить за уровнем СО2, так как перенасыщение может привести к кислородному голоданию аквариумных рыбок.

Способы доставки CO2

Для того чтобы выбрать оптимальный вариант, следует знать обо всех имеющихся. Каждый из них различается как своей сложностью, так и ценой за применение и последующую эксплуатацию установки. Если задача стоит сделать генератор CO2 для аквариума своими руками, не стоит надеяться на сильное удешевление процесса. Особенно если используется более надёжный, долговечный и автоматизированный способ.

Итак, подачу углекислого газа в аквариум можно проводить такими способами:

  • С помощью системы брожения. От владельца в этом случае понадобится только снабжать самодельную установку реагентами для беспрерывного выделения углекислоты.
  • Регулярным введением содержащих CO2 препаратов. Способ действенный, но требует построения графика и точного его соблюдения.
  • Подведение баллона с газом, находящимся под большим давлением. Если такое устройство будет снабжено автоматическим клапаном, участие человека сведётся к минимуму.
  • Использование газированной воды. Обычная бутылка, купленная в магазине, способна обеспечить надолго весь резервуар питательным веществом.

Последний способ, естественно, не претендует на большую эффективность, но несмотря на это, обычная бутылка воды — это довольно серьёзный источник углекислоты.

обслуживать аквариум

Обеспечить подачу СО2 можно реакцией брожения – экономный вариант для аквариумистов с небольшим бюджетом.

Использование брожения

Подача CO2 в аквариум с помощью этой реакции может помочь аквариумистам с ограниченным бюджетом, так как здесь не используются ни дорогие компоненты, ни сложные реагенты. Всё, что нужно — это собрать несколько составных частей:

  • Сахар — примерно 300 грамм.
  • Дрожжи — меньше грамма, лучше придерживаться соотношения 1:1000 и брать количество исходя из массы сахара. В этом случае их должно быть 0,3 грамма.
  • Вода — 1 литр, взбалтывать смесь не разрешается.
  • Бутылка пластиковая, объёмом от полутора литров.
  • Трубка достаточной длины.

Конструкция предельно проста — в крышечке от бутылки проделывается отверстие, в него вставляется трубка, другой конец которой опускается в воду. Через неё выделяющийся в результате реакции газ будет поступать в аквариум и насыщать его.

Если при этом бутылка со смесью будет нависать вертикально над аквариумом, то лучше приделать в систему дополнительный резервуар. Со временем в основной ёмкости образуется брага, которая может быть подхвачена углекислотой и отправлена в воду. Это недопустимо, так как растворение сахара только повредит обитателям. Лучше приделать в систему ещё одну ёмкость, в которую сначала будет попадать газ и возможные комки.

Однако нельзя абсолютно точно сказать, какое количество углекислоты попадает в аквариум: реакция просто протекает без малейшего контроля и может быть очень неравномерной из-за того, что сама смесь выделяет газ неоднородно. Кроме того, каждые две недели ёмкость придётся менять, так как именно через это время реакция полностью прекращается.

тетра цо2 плюс

Применение специальных препаратов может быть эффективной заменой технике брожения.

Применение препаратов

Одним из самых эффективных реактивов можно назвать Tetra CO2 Plus, который легко растворяется в воде и распространяется в виде сильно насыщенного газом раствора. Одной упаковки при обычном использовании должно хватить на 100 применений в 20-литровом аквариуме, а это несколько лет непрерывного снабжения углекислым газом.

Подавать СО2 в аквариум с его помощью легко — достаточно вливать 2,5 миллилитра в воду раз в неделю. Постепенное высвобождение газа будет долго питать растения и поддерживать процесс фотосинтеза.

Преимущества:

  • Не нужно сооружать громоздких конструкций для функционирования.
  • Простота в эксплуатации.
  • Относительно длительный период работы средства.
  • Препятствие излишнему росту водорослей.

При этом растения насыщаются чистым углекислым газом, что положительно влияет на их динамику развития и роста. Они остаются здоровыми и активно синтезируют кислород в воде.

Баллон со сдавленным газом

Называются такие приборы по-разному, но суть их всегда одна — обеспечить как можно более плавное введение газа в толщу воды так, чтобы он не оказался сразу на поверхности. Для этого в них, как правило, установлены специальные ограничители потока, запускающиеся в момент включения. Несколько вариантов наименований:

  • флиппер;
  • диффузор:
  • реактор;
  • генератор.

Они зависят, в первую очередь, от производителя, который пытается привлечь внимание к своему продукту. Принцип действия же везде более или менее похож.

К баллону прикрепляются специальные датчики, которые измеряют различные показатели состава воды и на их основании отмеряют выпуск газа. Есть модели с автоматическими определителями уровня pH с помощью электрода, выведенного в воду. Если у выбранной модели отсутствуют такие модули, придётся постоянно самостоятельно следить за уровнем кислотности.

Кроме того, если слежка за pH не осуществляется, то эти баллоны контролируют подачу с помощью специального магнитного клапана, который по таймеру выпускает строго отмеренное количество CO2.

Если система только что была установлена, не стоит сразу открывать вентиль на полную. Это нужно делать плавно, чтобы не допустить повреждения тонкой мембраны, которая находится в редукторе.

Со 2 своими руками

При помощи специальных датчиков, прикрепленных к баллону, удобно следить за уровнем важных показателей.

Газированная вода

При использовании сверхмалых объёмов, такой способ является одним из самых эффективных и быстрых. Это так из-за того, что сама газировка уже является раствором в воде углекислоты. Сладкая вода по объективным причинам не подходит. В ней много ненужных веществ, которые могут попасть в воду и навредить. Поэтому лучше использовать марки без содержания сахаров, но и не имеющих в составе минералов.

Концентрация в закрытой бутылке стремится к 10 тысячам миллиграммов на литр. После открытия газ высвобождается и число стремительно уменьшается до показателя в 1500 мг/л, но даже этого более чем достаточно. На каждые 10 литров воды нужно будет добавлять всего 20 мл газировки.

Однако не стоит слишком сильно обнадёживаться. Главным недостатком, как и в случае с брагой из сахара и дрожжей, будет именно незнание точной концентрации газа. А это усложняет расчёт оптимальной дозировки.

Кроме того, как ни странно, именно это метод — самый дорогой из всех представленных. Цена в пересчёте на один грамм углекислоты выше в три раза по сравнению с ближайшим конкурентом. Поэтому стоит рассматривать газировку, как способ экстренно поднять концентрацию нужного показателя до приемлемого значения, когда другие по каким-то причинам недоступны.

Средства контроля и измерения

Чтобы эффективно насыщать воду углекислотой, нужно обязательно знать её текущий уровень. Имея эти данные, очень просто отрегулировать уровень газа и привести его в норму. Среди таких приборов есть:

  • Дропчекер. Это ёмкость, одна часть которой заполнена эталонным раствором для измерения карбонатной жёсткости, а вторая — таким же веществом, но для определения pH. Между ними всегда есть прослойка воздуха, которая не даёт смешиваться.
  • Счётчик пузырьков. Представляет собой прозрачную колбу, в которой находится вода. С обеих сторон она врезана в трубку, по которой идёт углекислый газ. От того, каким будет интервал вхождения в счётчик соседних пузырьков в воде, фактически зависит скорость подачи. Это самый наглядный пример того, как можно пронаблюдать степень насыщения.

Кроме этого, можно отдельно замерить все показатели, которые показывает дропчекер и воспользоваться таблицей, приводящей соотношение двух величин с концентрацией CO2. Есть и онлайн-калькуляторы, которые делают все расчёты автоматически. Единственное, что нужно учитывать — временной период, на который производится вычисление.

Тогда по одному наблюдению за тем, как быстро выделяются пузырьки, специалист может сказать насколько сильно будет меняться содержание углекислоты за любой временной период. Опасность такого расчёта состоит в том, что знать какой объём биомассы в резервуаре невозможно, так как в нём постоянно идёт размножение. В результате можно сильно просчитаться, особенно если не знать примерное выделение газа каждым из видов флоры.

Tekhi - Юр, и ты, и Serpentarius - мне уже столько рассказали про параметры воды и про подачу удобрений и про углекислый газ, что кажется уже и спросить нечего. Но когда мне нужно не что-то конкретное, а возникает сразу несколько вопросов, то приходится вспоминать, где и когда ты мне что именно рассказывал. Может как-то попробуешь рассказать об этой триаде все вкратце, так чтоб основное было в одном месте. И максимально доступно – вдруг нашу беседу захочет кто-нибудь из новичков – аквариумистов прочесть?

Ю.В. - Да не вопрос. С чего начнем?

Tekhi - Ну, давай с растений, что ли 🙂

Ю.В. - Ну, с растений, так с растений.

1. Растения строят свои ткани не из нитрата, фосфата, азота, фосфора, железа, микроэлементов, углекислого газа и т.д. Они строят свои ткани из белка, основой которого является углерод. А вот углерод они берут из углекислого газа, растворенного в воде.

2. Растения под лампочкой не греются и не загорают – под воздействием света в пигменте под названием хлорофилл происходит процесс под названием фотосинтез. Во время этого процесса из углекислого газа (СО2) извлекается углерод (С) и выделяется “побочный продукт”- молекулярный кислород (О2). Для справочки, именно благодаря фотосинтезу, когда Земля была еще юной, из углекислого газа, который в атмосферу “накачали” вулканы, самые древние из водорослей, сине-зеленые (те самые, с которыми мы боремся в аквариуме) надули в атмосферу кислород, которым чуть позже начали дышать все организмы. Ну, почти все – остались анаэробные реликты, которым кислород был не нужен, ибо когда они возникли, кислорода в атмосфере еще не было. Именно они параллельно с сине-зелеными, накачали в атмосферу азот и сейчас помогают нам в аквариуме в процессе денитрификации. Так что сифонить грунт до стерильной чистоты не нужно – анаэробным тоже нужно оставлять жизненное пространство.

3. Из извлеченного из СО2 углерода, растения и строят все необходимые им органические соединения. Именно для этого им и нужны другие элементы. В первую очередь, калий, азот и фосфор. Не будет азота (аквариумисты его знают в составе конечного, как для неспециалиста соединения, нитрата (NO3)) и фосфора (аквариумисты о нем знают как о фосфате (РО4)), то хоть газировкой залей растения и под зенитный прожектор поставь, ничего путного не будет.

4. Растения и водоросли, в первую очередь, отличаются друг от друга типом питания. Как для себя-дилетанта, я это понимаю как то, что растения потребляют больше питательных веществ и могут накапливать их про запас, на черный день, а водоросли потребляют меньше, но им нужно питаться постоянно. И в этом их слабость – при правильном подходе нормально растущие растения сами способны подавить конкурентов. Повторяю, при правильном подходе. Достаточно создать растениям условия для динамичного развития и водоросли сами отступят. Повторяю “для динамичного” не означает “для очень быстрого и интенсивного”. Пусть растут медленно, но гармонично, ни в чем не нуждаясь.

5. Если в связке свет – углерод – макроэлементы возникает перекос (ну, например, чего-то не хватает), то растение ну никак не будет расти быстрее, чем ему позволяет наличие недостающего элемента. Такой элемент называется “лимитирующий фактор“. Он есть всегда. И задача аквариумиста его понять и действовать по двум направлениям. Либо добавить того, чего не хватает, либо уменьшить поступление лишнего. Ибо, если этого не сделает аквариумист, то растение приостановится. Чем тут же воспользуются водоросли. Не хватает света для переработки углерода и азотистых, находящихся в воде, растения выше головы не прыгнут – сколько потребят, столько потребят. А излишек останется в воде. Тут водоросли и скажут спасибо. Ибо, как мы опять же, выяснили выше, им нужно меньше.

Tekhi - Ну, хорошо. С лимитирующим фактором, который напрямую связан с биологическим равновесием примерно понятно. Но, может есть какие-то количественные соотношения, позволяющие как-то настраивать аквариумную систему?

Ю.В. - Количественные… Понимаешь, каждый аквариум настолько индивидуален… Ну, в самых общих чертах попробую.
Для начала, давай попробуем связать свет и азот. Вот достаточно известные данные по освещенности в разных условиях. От них и будем танцевать.

Уровень освещения в люксах (данные по Махлину):
Солнечное освещение сквозь зелень леса – 30 000 люкс
То же в пасмурный день – 10 000 люкс
Нимфеи хорошо развиваются при – 4000 люкс
Другие плавающие растут при – 2000-3000 люкс
Длинностебельные травы, валлиснерия – 1200-1700 люкс
Криптокорины, эхинодорусы, апоногетоны – 800-1000 люкс
Барклайя от 500 люкс
На погруженные листья в непрозрачной воде падает 200-400 люкс
Лесные ручьи с заросшими берегами – 100 люкс

Поскольку люксометры есть далеко не у всех, то постараюсь “на пальцах” провести параллель с более доступными в быту способами “оценки” освещенности в аквариуме. Наиболее часто упоминается величина “ватт/литр” (вт/л). Это “безобразие” обычно привязывается к люминисцентным лампам (ЛЛ). Имеется в виду тот “ватт”, который написан на люминисцентной лампе, а не тот условный “ватт”, который он заменяет на лампочке Ильича, и что особенно любят рассказывать продавцы, когда пытаются тебе продать люминисцентную лампу, энергосберегайку или МГ при продаже ламп. Попутно буду упоминать и более свежее обозначение – “люмен/литр” (лм/л). Это обозначение вошло в обиход с появлением светодиодного света (СД). Светоотдача в люменах (ЛМ, lm) обычно пишется на СД ламочке. Тебе останется просто разделить ее на объем своего аквариума.

Так вот, “сильным” освещением условно можно считать свет свыше 1 вт/л объема аквариума. Ну, в лм/л это соответствует цифрам начиная с 40 – 45 лм/л. Он должен обеспечить в среднестатистическом аквариуме высотой около 35 – 45 см освещенность на дне около 2500 – 3000 Лк. Среднее освещение 1500 – 2000 Лк можно получить имея 0,5 – 0,8 вт/л (25 – 40 лм/л) , слабым (до 1500 Лк) будем наслаждаться, имея 0,3 – 0,4 вт/л (18 – 25 лм/л).

Tekhi - Все, эту тему закрыли до того момента, пока все не обзаведутся люксометрами?

Ю.В. - Как тебе сказать… Если ты на свой замечательный смартфон закачаешь приложение-люксометр, то установив над ним свой конкретный аквариумный светильник на высоте, соответствующей высоте столба воды в аквариуме, то очень приблизительно, +- 10 – 20% сможешь ориентироваться об освещенности на дне своего аквариума с учетом ослабления светового потока водой.

Tekhi - Если, конечно, вода чистая?

Ю.В. - Естественно 😆

Так вот, при слабом освещении, весь нитрат, который свыше 5, максимум 10 мг/л и СО2 свыше 5, максимум 7 мг/л пойдет на корм водорослям. Отсюда и исходи, рассчитывая свои покупные удобрения и следуя “левым” советам дунуть газу.

При среднем освещении растения уже в состоянии воспользоваться бОльшим количеством углекислого газа. Его спокойно можно поднять и до 10 – 15 мг/л. Но это потребует и бОльшего количества нитрата для его усвоения. NO3 спокойно можно (и нужно) поднимать до 10 – 15 мг/л.

При сильном освещении СО2 обычно держат в районе 20 – 30 мг/л и нитрат в районе 20 – 25 мг/л.

При изменении какого-либо из факторов “триады” (ну, например, перегорела лампа) нужно вносить соответствующие изменения.

7. Соотношение Редфилда. Вот оно, о котором все так много говорят.

Пропорция Редфилда рассматривает оптимальное соотношение углерода и фосфора необходимого для жизни. Так как потребности в энергии наземных и водных растений одинаковы, оптимальным соотношением C:P является 106C:1P для обоих. Таким образом, полная Пропорция Редфилда (оптимальное соотношение C к N к P) для наземной и водной жизни: на суше – 106C:16N:1P; в воде – 106C:13N:1P. (прим. перев.: атомарное!).

Эта цитата взята с “амании”. Я ни разу не химик, не биолог и не переводчик. Поэтому не буду здесь разбираться что правда, а что неправда. Изложу только свое личное понимание этого, и как я лично стараюсь регулировать соотношение макроэлемнтов в воде в травнике. Наиболее часто встречающаяся рекомендация на аквафорумах по соотношению нитрата и фосфата звучит примерно так: “Держите его примерно 13:1. Не можете 13:1, держите в интервале 15:1”. Предполагаю, что ноги этого растут все с той же цитаты с “амании”. Но тут все намного сложнее. Начиная с того, что соотношение Редфилда определялось автором для фитопланктона в океане, и заканчивая тем, что азот растения потребляют не только из нитрата, но и из аммония. А аммоний в воде есть (хоть наши тесты “врут” что его нет , и количество его в связке с аммиаком зависит от рН, которое у всех разное и заканчивая (многое пропустил) тем, что корневые растения, как правило, категорически стараются брать фосфат из грунта. Поэтому скажу так. Мой личный опыт и анализ опыта достаточно большого количества успешных аквариумов говорит о том, что растения прекрасно растут, а водоросли не сильно докучают при соотношении нитрат/фосфат 20:1. При низких количествах нитрата фосфат должен слегка определяться тестами – “следы”. Но он должен обязательно быть. Ну а 13:1 – на здоровье – нормальная “стартовая” цифра, от которой можно начинать двигаться, набирая свой личный опыт. Но, повторяю, у меня получается так, что держа нитрат/фосфат, как обычно рекомендуют 10:1 – 15:1, мы получаем избыток фосфата. И нитрат автоматически становится лимитирующим фактором с последствиями, описанными выше.

Tekhi - Ну, очень даже системно у тебя получилось. И понятно.

Ю.В. - Спасибо. ))

Tekhi - А можно я теперь попробую сформулировать основные выводы и рекомендации? А ты меня, если что, поправишь. ))

Ю.В. - Конечно. Нужно даже. ))

Tekhi - Выводы и рекомендации.

1. Перед тем как что-то лить, дуть, сыпать и т.д. в аквариум, подумайте “а зачем?”

Ю.В. - Жестко. )) Но согласен.

Tekhi - 2.Танцуйте всегда от наличия света в вашем аквариуме. Пусть лимитирующим фактором будет свет. И уже от него думайте, что нужно добавлять.

Ю.В. - Логично. )) Ты очень хорошо излагаешь. 🙂 Продолжай пожалуйста.

Tekhi - 3. “Что нужно добавлять”, конечно, очень зависит от факторов, изложенных тобой, но не только. Большое значение имеет и плотность и видовой состав растений в аквариуме. Поэтому то, что ты сказал выше, говоря словами классика, “не догма, а руководство к действию” (С). Перед принятием решения нужно принимать во внимание конкретные условия вашего аквариума – растения в нем, скорость их роста, мутность воды и т.д.

Tekhi - 4. Нужно поменьше пользоваться комплексными удобрениями, каждый производитель по-разному комплектует его соотношением нитрата и фосфата, он не знает какой именно нужен нам. Посему либо нужно подбирать то, что нужно именно нам, либо, что еще лучше, пользоваться моносоставами. Т.к. вносить корректировки придется и с переходом на другой корм, и с прополкой и т.д.

Ю.В. - Угу. Сразу дополню пятым пунктом.

5. Калий можно вносить с избытком, кроме случаев очень мягкой воды.

Tekhi - Попробую сформулировать насчет нитрата и фосфата.

6. По нитрату, придерживаясь в общем изложенного выше, нужно вносить корректировки в каждом конкретном случае. Лучше, чтоб нитрата было чуть-чуть больше, чем надо, чем чуть-чуть меньше (мы ж выяснили, что общим лимитирующим фактором должен быть свет).

7. В паре нитрат/фосфат лимитирующим желателен фосфат. Пусть его будет чуть-чуть меньше. С учетом вышеизложенного, он должен или еле-еле определяться тестами, или быть 0,5, максимум 1 при нитрате свыше 20. Но ни в коем случае не обнулен полностью!

8. В идеале, если с утра внесенное удо к вечеру полностью обнулиться. Мы ж помним, что водоросли “про запас” себе ничего не берут и это для них губительно. Но в аквариуме с рыбами такого добиться очень-очень сложно.

Ю.В. - Извини, перебью. Хочу еще пару слов сказать про органику, растворенную в воде.

9. Наличие большого количества органики в воде тормозит развитие растений, но не мешает водорослям. Поэтому не стоит пренебрегать еженедельными подменами и чисткой аквариума. Не нужно забывать, что разложение органики – первый этап азотного цикла. И разлагается эта органика на аммиак/аммоний+СО2, фосфат+СО2 и сульфиды+СО2. Чем больше органики разложится, тем более “неуправляемый” в плане баланса макроэлементов будет наша вода. Так пусть же эта разбалансировка будет меньше – легче будет корректировать удобрениями.

Tekhi - И еще про СО2 можно?

Ю.В. - Нужно. ))

10. Перед началом подачи СО2 очень хорошо подумай. СО2 нельзя подавать по принципу “сегодня подаю, завтра не подаю”.

Растения (при условии, что подача СО2 вписывается в “триаду”), достаточно быстро к нему “привыкают” и резкое снижение его концентрации в аквариуме приводит к немедленной остановке роста растений. Процесс перестройки может занять некоторое время, вполне достаточное для обрастания вашего аквариума водорослями. Изменять/прекращать подачу газа нужно постепенно, в течение примерно двух недель.

11. Рассчитать необходимую дозировку удобрений в аквариум очень просто. Мы об этом уже с тобой говорили. Но есть еще один, более “эмпирический” способ.

После того, как ты купила новое для себя удобрение, берешь ведро воды, например из водопровода. Меряешь в нем нитрат и/или фосфат (в зависимости от того, это комплекс или моносостав). Запоминаешь. Потом добавляешь 1 мл своего удобрения. И опять меряешь те же параметры. После чего, из второго значения вычитаешь первое. И понимаешь, что 1 мл твоего удо поднимает в 10 л воды нужный тебе параметр/параметры на такую-то величину. Исходя из этого, понимаешь сколько нужно лить удо в аквариум для поднятия необходимого параметра на необходимую величину.

Чтобы понимать, сколько тебе нужно лить, меряешь нужные параметры утром до включения света и вечером после выключения. И понимаешь, сколько растения выели за день. Потом еще раз меряешь утром и понимаешь, сколько за ночь добавилось естественным путем. Отсюда становится ясно, сколько нужно добавить. Абсолютно ничего сложного.

Tekhi - А если у меня не моносостав, а комплекс?

Ю.В. - Если ты пользуешься не моносоставом, а комплексом макро, то фактически необходимое количество довнесения может не обеспечиваться данным конкретным удобрением. Значит, нужно подбирать другой комплекс, у разных производителей соотношение нитрат/фосфат разные. Именно с этим связано то, что на вопрос “каким комплексным удобрением лучше воспользоваться”, грамотный собеседник обязан ответить “фиг его знает”. И ни в коем случае не “Вот этим и только этим”. Кстати, по этой же причине не стоит слепо доверять рекламе и имени производителя.

При этом не забываешь, что поскольку растения растут, то в дозировки нужно периодически вносить корректировки. И обязательно после прополки, т.к. меняется как количественное потребление питательных веществ, так и структура потребления. Именно исходя из этих соображений, те аквариумисты, которые понимают, что они делают и для чего, пользуются моносоставами макроудобрений.

Tekhi - Ясно. )) Все ясно. )) Спасибо огромное!

Ю.В. - Не за что. И еще. Не забывай и о контроле не только макроэлементов, но и других параметров воды.

Читайте также: