Как компенсировать реактивную мощность в жилом доме

Обновлено: 09.05.2024

Нагрузка электрической цепи определяет, какой ток через неё проходит. Если ток постоянный, то эквивалентом нагрузки в большинстве случаев можно определить резистор определённого сопротивления. Тогда мощность рассчитывают по одной из формул:

По этой же формуле определяется полная мощность в цепи переменного тока.

Нагрузку разделяют на два основных типа:

  • Активную – это резистивная нагрузка, типа – ТЭНов, ламп накаливания и подобного.
  • Реактивную – она бывает индуктивной (двигатели, катушки пускателей, соленоиды) и емкостной (конденсаторные установки и прочее).

Последняя бывает только при переменном токе, например, в цепи синусоидального тока, именно такой есть у вас в розетках. В чем разница между активной и реактивной энергией мы расскажем далее простым языком, чтобы информация стала понятной для начинающих электриков.

Компенсаторы реактивной мощности в квартире

Многие промышленные предприятия, особенно крупные, применяют в целях экономии устройства компенсации реактивной мощности. Однако этот трюк не пройдёт в обычной квартире. Вытекает это из ряда причин:

  1. Бытовые однофазные счётчики электроэнергии, используемые в жилых домах, не способны вычислять реактивную мощность. Соответственно, никто не сможет взыскать за неё оплату. Особенно это относится к старым индукционным счётчикам.
  2. Организации, поставляющие электроэнергию, ведут учёт реактивной мощности только для крупных промышленных предприятий. Установка подобных устройств в жилых домах не является требованием ПУЭ.
  3. С технической точки зрения, проблематично и дорого будет рассчитать УКРМ для каждой квартиры или тем более поставить автоматические системы на микропроцессоре, ведь данные приборы стоят внушительных денег.



Cosф бытовых потребителей

Важно! По интернету гуляют предложения купить мошенническую чудо-коробочку. Она подключается к розетке и тем самым избавляет квартиру от излишков реактивной мощности. Как показывают обзоры, внутри этого прибора не содержится ничего, кроме светодиода. Соответственно, такое устройство никак не поможет сэкономить.

Смысл реактивной нагрузки

В электрической цепи с реактивной нагрузки фаза тока и фаза напряжения не совпадают во времени. В зависимости от характера подключенного оборудования напряжение либо опережает ток (в индуктивности), либо отстаёт от него (в ёмкости). Для описания вопросов используют векторные диаграммы. Здесь одинаковое направление вектора напряжения и тока указывает на совпадение фаз. А если вектора изображены под некоторым углом, то это и есть опережение или отставание фазы соответствующего вектора (напряжения или тока). Давайте рассмотрим каждый из них.


В идеализированной индуктивности угол сдвига фаз равен 90 градусов. Но в реальности это определяется полной нагрузкой в цепи, а в реальности не обходится без резистивной (активной) составляющей и паразитной (в этом случае) емкостной.

В ёмкости ситуация противоположна – ток опережает напряжение, потому что индуктивность заряжаясь потребляет большой ток, который уменьшается по мере заряда. Хотя чаще говорят, что напряжение отстаёт от тока.


Если сказать кратко и понятно, то эти сдвиги можно объяснить законами коммутации, согласно которым в ёмкости напряжение не может изменится мгновенно, а в индуктивности – ток.

Треугольник мощностей и косинус Фи

Если взять всю цепь, проанализировать её состав, фазы токов и напряжений, затем построить векторную диаграмму. После этого изобразить активную по горизонтальной оси, а реактивную – по вертикальной и соединить результирующим вектором концы этих векторов – получится треугольник мощностей.

Он выражает отношение активной и реактивной мощности, а вектор, соединяющий концы двух предыдущих векторов – будет выражать полную мощность. Всё это звучит слишком сухо и запутано, поэтому посмотрите на рисунок ниже:


Буквой P – обозначена активная мощность, Q – реактивная, S – полная.

Формула полной мощности имеет вид:

  • P – Вт, кВт (Ватты);
  • Q – ВАр, кВАр (Вольт-амперы реактивные);
  • S – ВА (Вольт-амперы);

Конденсаторные установки

Для уменьшения реактивной мощности в сетях промышленных предприятий получили распространение конденсаторные установки.

Конденсаторная установка (КУ, или УКРМ — установка компенсации реактивной мощности) — согласно действующему ГОСТ 27389-87, это электроустановка, состоящая из конденсаторов и относящегося к ней вспомогательного электрооборудования (регулятора реактивной мощности, контакторов, предохранителей и т. д.).

Выбрать необходимую конденсаторную установку (калькулятор)

Выбор режима компенсации

По месту установки КУ различают следующие виды компенсации: централизованная на высокой стороне (а), централизованная на низкой стороне (б), групповая (в) и индивидуальная (г) (см. рисунок ниже).

  • При централизованной компенсации на стороне высокого напряжения , когда конденсаторная установка присоединяется к шинам 6-10 кВ трансформаторной подстанции, получается хорошее использование конденсаторов, их требуется меньше и стоимость 1 квар установленной мощности получается минимальной по сравнению с другими способами. При компенсации по этой схеме разгружаются от реактивной мощности только расположенные выше звенья энергосистемы, а внутризаводские распределительные сети и даже трансформаторы подстанции остаются не разгруженными от реактивной мощности, а следовательно, потери энергии в них не уменьшаются и мощности трансформаторов на подстанции не могут быть уменьшены.
  • При централизованной компенсации на стороне низкого напряжения, когда конденсаторная установка присоединяется к шинам 0,4 кВ трансформаторной подстанции, от реактивной мощности разгружаются не только вышерасположенные сети 6—10 кВ, но и трансформаторы на подстанции, однако внутризаводские распределительные сети 0,4 кВ остаются неразгруженными.
  • При групповой компенсации, когда конденсаторные установки устанавливаются в цехах и присоединяются непосредственно к цеховым распределительным пунктам (РП) или шинам 0,4 кВ, разгружаются от реактивной мощности и трансформаторы на подстанции и питательные сети 0,4 кВ Неразгруженными остаются только распределительные сети к отдельным электроприемникам. В целях равномерного распределения компенсирующих устройств целесообразно подключать конденсаторную установку к шинам РП таким образом, чтобы реактивная нагрузка этого РП составляла более половины мощности подключаемой конденсаторной установки.
  • При индивидуальной компенсации, когда конденсаторная установка подключается непосредственно к зажимам потребляющего реактивную мощность электроприемннка, что является основным требованием создания реактивной мощности по возможности ближе к месту ее потребления, такой способ будет наиболее эффективным в отношении разгрузки от реактивной мощности питательной и распределительной сетей, трансформаторов и сетей высшего напряжения. При индивидуальной компенсации происходит саморегулирование выработки реактивной мощности, так как конденсаторные установки включаются и отключаются одновременно с приводными электродвигателями машин и механизмов.

Практически распространенными способами компенсации реактивной мощности электроснабжения промышленных предприятий является групповая компенсация, возможны также варианты комбинированного размещения конденсаторных установок. Определение наивыгоднейших решений выбора способа компенсации реактивной мощности производится на основании технико-экономических расчетов тщательных исследований производственных условий, факторов конструктивного характера и т. д.. При выборе места размещения конденсаторной установки в распределительной сети необходимо учитывать ее влияние на режим напряжения и величину потерь энергии в сети. Как правило, компенсация реактивной мощности должна производиться в той же сети (на том же напряжении), где она потребляется, при этом будут минимальные потери энергии, а следовательно, и меньшие мощности трансформаторов.

Выбор типа компенсации

В зависимости от требований к характеристикам оборудования и сложности управления, КРМ может быть следующих типов:

  • нерегулируемой – путем подключения конденсаторной батареи фиксированной емкости;
  • автоматической – путем включения различного количества ступеней регулирования для подачи требуемой реактивной энергии;
  • динамической – для компенсации быстро изменяющихся нагрузок.
Нерегулируемая компенсация

В схеме используется один или несколько конденсаторов, обеспечивающих постоянный уровень компенсации. Управление может быть:

  • ручным: с помощью автоматического выключателя или выключателя нагрузки;
  • полуавтоматическим: с помощью кнопок и контактора;
  • прямое подсоединение к нагрузке и включение/отключение вместе с ней.
  • к вводным зажимам индуктивных нагрузок (в основном, электродвигателей);
  • к шинам, питающим группы небольших электродвигателей или индуктивных нагрузок, для которых индивидуальная компенсация может быть довольно дорогостоящей;
  • в случаях, когда коэффициент нагрузки должен быть постоянным.
Автоматическая компенсация

Данный тип компенсации предусматривает автоматическое поддержание заданного cos φ путем регулирования количества вырабатываемой реактивной энергии в соответствии с изменениями нагрузки. Оборудование КРМ устанавливается и подключается к тем местам электроустановки, где изменения активной и реактивной мощности относительно велики, например:

  • к сборным шинам главного распределительного щита;
  • к зажимам кабеля, питающего мощную нагрузку.

Нерегулируемая компенсация применяется там, где требуется компенсировать реактивную мощность, не превышающую 15% номинальной мощности трансформаторного источника питания. Если требуется компенсировать более 15%, рекомендуется устанавливать конденсаторную батарею с автоматическим регулированием. Управление обычно осуществляется электронным устройством (контроллером реактивной мощности), которое отслеживает фактический коэффициент мощности и выдает команды на подключение или отключение конденсаторов для достижения заданного коэффициента. Таким образом, реактивная энергия регулируется ступенчато. Кроме того, регулятор реактивной мощности выдает информацию о характеристиках электросети (амплитуда напряжения, уровень искажений, коэффициент мощности, фактическая активная и реактивная мощность) и состоянии оборудования. В случае неисправности подаются аварийные сигналы. Подключение обычно обеспечивается контакторами. Для быстрой и частой коммутации конденсаторов при компенсации сильно изменяющихся нагрузок следует использовать полупроводниковые ключи.

Динамическая компенсация

Данный тип КРМ используется для предотвращения колебаний напряжения в сетях с изменяющимися нагрузками. Принцип динамической компенсации заключается в том, что вместе с нерегулируемой конденсаторной батареей используется электронный компенсатор реактивной мощности, обеспечивающий опережение или запаздывание реактивных токов относительно напряжения. В результате получается быстродействующая изменяющаяся компенсация, хорошо подходящая для таких нагрузок, как лифты, дробилки, аппараты точечной сварки и т. д.

Учет условий эксплуатации и содержания гармоник в сети

Конденсаторные установки следует выбирать с учетом условий эксплуатации на протяжении всего срока службы комплектующих, в первую очередь конденсаторов и контакторов.

Учет условий эксплуатации

Условия эксплуатации оказывают значительное влияние на срок службы конденсаторов. Следует учитывать следующие параметры:

  • температура окружающей среды (°C);
  • ожидаемые повышенные токи, связанные с искажением формы напряжения, включая максимальное непрерывное перенапряжение;
  • максимальное количество коммутационных операций в год;
  • требуемый срок службы.
Учет воздействия гармоник

В зависимости от амплитуды гармоник в электросети применяются различные конфигурации устройств КРМ:

  • Стандартные конденсаторы: при отсутствии значительных нелинейных нагрузок.
  • Конденсаторы увеличенного номинала: при наличии незначительных нелинейных нагрузок. Номинальный ток конденсаторов должен быть увеличен, чтобы они могли выдерживать циркуляцию токов гармоник.
  • Конденсаторы увеличенного номинала с антирезонансными дросселями применяются при наличии многочисленных нелинейных нагрузок. Дроссели необходимы для подавления циркуляции токов гармоник и предотвращения резонанса.
  • Фильтры высших гармоник: в сетях с преобладанием нелинейных нагрузок, где требуется подавление гармоник. Обычно фильтры конструируются для конкретной электроустановки, исходя из результатов измерений на месте и компьютерной модели электросети.

Расчёты

Для вычисления полной мощности используют формулу в комплексной форме. Например, для генератора расчет имеет вид:

А для потребителя:

Но применим знания на практике и разберемся как рассчитать потребляемую мощность. Как известно мы, обычные потребители, оплачиваем только за потребление активной составляющей электроэнергии:

Здесь мы видим, новую величину cosФ. Это коэффициент мощности, где Ф – это угол между активной и полной составляющей из треугольника. Тогда:

В свою очередь реактивная мощность рассчитывается по формуле:

Для закрепления информации, ознакомьтесь с видео лекцией:

Всё вышесказанное справедливо и для трёхфазной цепи, отличаться будут только формулы.

Для чего компенсация реактивной мощности

кВа в кВт — как правильно перевести мощность

Компенсировать реактивную составляющую мощности необходимо для повышения эффективности энергосистемы и снижения нагрузки на питающие кабеля и коммутирующие аппараты.

На производстве в основном преобладают потребители индуктивного характера. Для компенсации реактивной мощности, возникающей из-за их работы, чаще всего применяют конденсаторные установки. Их использование позволяет добиться следующих положительных эффектов:

Известно, что электрическая энергия состоит из двух частей: активной и реактивной. Первая преобразуется в различные виды полезной энергии (тепловую, механическую и пр.), вторая – создаёт электромагнитные поля в нагрузке (трансформаторы, электродвигатели, дроссели, индукционные печи, осветительные приборы). Несмотря на необходимость реактивной энергии для работы указанного оборудования, она дополнительно нагружает электросеть, увеличивая потери активной составляющей. Это приводит к тому, что промышленный потребитель принужден дважды платить за одну и ту же энергию. Сначала по счётчику реактивной энергии и ещё раз косвенно, как потери активной составляющей, фиксируемые прибором учёта активной энергии.

Шкаф с конденсаторами

Для решения этой задачи (уменьшение реактивной части энергии) были разработаны и сегодня широко используются во всём мире установки компенсации реактивной мощности. Они снижают значения потребляемой мощности за счёт выработки реактивной составляющей непосредственно у потребителя и бывают двух видов: индуктивными и емкостные. Индуктивные реакторы, обычно, применяют для компенсации наведённой емкостной составляющей (например, большая протяженность воздушных линий электропередачи и т.п.). Конденсаторные батареи применяются для нейтрализации индуктивной составляющей реактивной мощности (индуктивные печи, асинхронные двигатели и др.).

Компенсатор реактивной энергии позволяет:
- уменьшить потери мощности и снижение напряжения в различных участках электросети;
- сократить количество реактивной энергии в распределительной сети (воздушные и кабельные линии), трансформаторах и генераторах;
- снизить затраты на оплату потреблённой электрической энергии;
- сократить влияние сетевых помех на работу оборудования;
- снизить асимметрию фаз.

Учитывая, что характер нагрузки в бытовых и промышленных сетях имеет преимущественно активно-индуктивный тип, наиболее широко распростанены как средство компенсации статические конденсаторы. Их основными достоинствами являются:
- малые потери активной энергии (в рамках 0,3-0,45 кВт/100квар);
- незначительная масса конденсаторной установки не требует фундамента;
- несложная и недорогая эксплуатация;
- увеличение или уменьшение количества конденсаторов в зависимости от ситуации;
- компактность, дающая возможность монтажа установки в любом месте (у электроустановок, группой в цеху или крупной батареей). При этом наилучший эффект получается при размещении установки непосредственно в трансформаторной подстанции и подключении к шинам низкой стороны (0,4 кВ). В этом случае компенсируются сразу все индуктивные нагрузки, запитанные от данной ТП;
- независимость работоспособности установки от поломки отдельного конденсатора.
Конденсаторные установки с фиксированным значением мощности применяют в трёхфазных сетях переменного тока. В зависимости от типа нерегулируемые установки имеют мощность 2,5 – 100 кВАр на низком напряжении.

Ручная регулировка количества конденсаторов не всегда удобна и не успевает за изменением ситуации на производстве, поэтому всё чаще новые производства приобретают для компенсации реактивной энергии автоматические установки. Регулируемые компенсаторы повышают и автоматически корректируют cos φ на низком напряжении (0,4 кВ). Кроме поддержания установленного коэффициента мощности в часы минимальных и максимальных нагрузок, установки устраняют режим генерации реактивной энергии, а также:
- постоянно отслеживают изменение количества реактивной мощности в компенсируемой цепи;
- исключают перекомпенсацию и её следствие – перенапряжение в сети;
- проводят мониторинг главных показателей компенсируемой сети;
- проверяют работу всех составляющих компенсаторной установки и режим её работы. При этом оптимизируется распределение нагрузки в сети, что снижает износ контакторов.
В регулируемых компенсаторных установках предусматривается система отключения при возникновении аварийной ситуации с одновременным оповещением обслуживающих специалистов. В некоторых моделях также предусматривается система поддержания нормальной температуры, включающая автоматический обогрев или вентиляцию установки.

none Опубликована: 2011 г. 0 1


Вознаградить Я собрал 0 0

Сегодня открою небольшую тайну. Предприятие, о котором я писал в той статье – это пивзавод! Поэтому давайте попробуем рассмотреть проблему реактивной мощности с этой, освежающей стороны)

Как выглядит реактивная мощность?

Итак, давайте обсудим популярную тему в сфере сбережения электроэнергии – компенсацию реактивной мощности. Пожалуй, лучшей иллюстрации того, что такое реактивная мощность и не придумаешь:

Иллюстрация о реактивной мощности

Иллюстрация о реактивной мощности – сравнение с пивом

Бокал – это выделенная или полная мощность, пиво – активная, а пена – реактивная мощность.

Она заполняет бокал, но пользы от неё нет. Лучше, если весь бокал будет заполнен пивом, не так ли?

Наглядно процесс образования реактивной мощности, которая возникает при питании электродвигателя, изображен на картинке. Кстати, именно электродвигатели – главные “виновники” появления реактивной составляющей мощности в питающих сетях.

Как выглядит полная мощность при питании электродвигателя


Компенсация реактивной мощности на конденсаторной установке

В принципе это всё, что нужно знать о компенсации реактивной мощности, если не погружаться в специфику. Но тут возникают вопросы, связанные с экономическим аспектом внедрения УКРМ, а также особенности совместной работы с другим оборудованием.

Разбор экономических аспектов компенсации реактивной мощности

Экономия на оплате электроэнергии

Во-первых, большинство потребителей – частных, коммерческих и промышленных – не платят за потреблённую реактивную мощность, а платят только за активную, т.е. не за пиво с пеной, а только за пиво. Поэтому снижение реактивной мощности (кВАр) не позволит напрямую снизить плату за активную энергию (кВт).

Во-вторых, промышленные потребители при подключении к электросетям единовременно платят за выделение мощностей – за строительство подстанции и за подведение кабельных сетей. Поэтому если вам нужно много пива, а покупать новый стакан дорого, имеет смысл снизить уровень пены: это мера временная, но действенная.

В-третьих, промышленные потребители платят не только за поставленную мощность, но и за выделенную, т.е. полную мощность, которая измеряется в кВА и состоит из активной и реактивной. Тут тоже актуально снизить полную мощность, скомпенсировав реактивную.

Снижение потерь электроэнергии

Проходя через систему электроснабжения, часть мощности теряется в виде нагрева проводов, трансформаторов и оборудования. Эти потери омические, то есть расходуется активная мощность (кВт). Но следует учесть, что доля потерь во внутренней сети электроснабжения по причине нескомпенсированной реактивной мощности вряд ли достигает единиц процентов. Ими можно пренебречь на фоне изменчивого напряжения в сети питания, провалов напряжения, гармонических искажений, взаимного влияния нелинейной или резко переменной нагрузки и других проблем электросети, которые вызывают нерациональное использование электроэнергии.

Как возместить реактивную мощность – пример с бокалом

Разбор технических аспектов решения

Снижение загруженности электросети

Во-первых, в результате снижения реактивной мощности и уменьшения перетоков энергии между сетью и конечным оборудованием мы получим уменьшение падения напряжения во внутренней электросети. Это важно если на предприятии есть протяжённые кабельные трассы. Как следствие, снизятся суточные колебания напряжения при минимальном и пиковом потреблении.

Однако нужно учесть, что превышение номинала напряжения вызовет проблемы в оборудовании, такие, как ускоренное старение осветительных приборов, а также повышение энергопотребления, но этот вопрос можно решить регулировкой прямо на подстанции.

В целом снижение диапазона колебаний напряжения в течение суток положительно скажется на работе оборудования с точки зрения энергопотребления и ресурса.

Влияние гармоник на работу УКРМ

Во-вторых, подключив классическую установку компенсации реактивной мощности можно столкнуться с проблемой гармоник. Современное силовое и бытовое оборудование в целях повышения энергоэффективности использует импульсные блоки питания. В качестве контрпримера можно привести лампы накаливания и обычные электрические обогреватели, которые, напротив, нельзя назвать энергоэффективными. Импульсные блоки питания потребляют ток из сети не линейно, а импульсно, и, при этом, генерируют помехи обратно в сеть. Форма сигнала отличается от гармонической синусоиды с частотой 50Гц и содержит компоненты с частотой кратной 50 Гц: 150 Гц, 250 Гц, 350 Гц и выше.

Для рабочего элемента классической УКРМ – конденсатора – это проблема, так как с ростом частоты снижается полное сопротивление и повышается его электрическая мощность. Ток на частоте, выше чем 50 Гц преодолевает меньшее сопротивление и быстрее нагревает конденсатор. В свою очередь это увеличивает уровень высоких гармоник, повышает напряжение в сети, повышает энергопотребление и потери, снижает эффективность работы всей системы электроснабжения. Тут уже стоит говорить не столько об энергоэффективности, а о надежности и безопасности работы электроустановок.

Для устранения этой проблемы современные компенсаторные установки (УКРМ) содержат фильтр низкой частоты, подавляющий гармоники.

Выводы по мифам

Компенсация реактивной мощности как способ экономии оплаты за электроэнергию – вот главный миф, который правдив лишь в некоторых ситуациях. Грубо говоря, если потребители не платят за реактивную мощность, то и экономический эффект от внедрения установки находится на уровне погрешности измерения. В дополнение к этому нужно обратить внимание, где внедряется установка компенсации реактивной мощности, насколько “загрязнена” электрическая сеть. И получается, что при неправильном внедрении вместо экономии возникают дополнительные проблемы.

Поделитесь в комментариях, как решают вопрос компенсации реактивной мощности на вашем предприятии?

ЗевсЭлектро: Электричество измеримо

Лаборатория занимается сложными случаями, там, где некачественная электроэнергия является проблемой. Гармоники, провалы напряжения, пробои изоляции, импульсные помехи и много другое, что доставляет головную боль энергетикам.

Они консультируют, измеряют, внедряют и снова измеряют. Это гарантирует результат.

  • Фиксация параметров качества электроэнергии с частотой от 24кГц в режиме реального времени
  • Контроль дифференциальных токов от 5мА и токов протекающие по контурам заземления.
  • Программное обеспечение для анализа результатов длительных наблюдений и составления прогнозов надежности электроснабжения.

Рекомендую похожие статьи:

Внимание! Автор блога не гарантирует, что всё написанное на этой странице - истина.
За ваши действия и за вашу безопасность ответственны только вы!

Устройство уличных светодиодных прожекторов

Выбор автоматов защиты в квартирный электрощиток

Измерение качества электроэнергии

Я че-то не увидел мифа по поводу компенсации электроэнергии. Просто указаны дополнительные источники помех в сети, помимо реактивной, не вижу здесь ни какого мифа. Просто физика. Само собой есть пробел не знания многих потребителей об этом, то это да. Но ничего общего с мифами тут нет. Я уже подумал что сама компенсация реактивной мощности на заводе это миф. Не удачное название стати.

Спасибо за комментарий. Компенсация реактивной мощности как способ экономии оплаты за электроэнергию – вот главный миф, который правдив лишь в некоторых ситуациях. Грубо говоря, если потребители не платят за реактивную мощность, то и экономический эффект от внедрения установки находится на уровне погрешности измерения. В дополнение к этому нужно обратить внимание, где внедряется установка компенсации реактивной мощности, насколько “загрязнена” электрическая сеть. И получается, что при неправильном внедрении вместо экономии возникают дополнительные проблемы. Статья об этом.

Тоже хочу работать электриком на пивзаводе!
еееееееслиб было море пива.

Спасибо за комментарий, учтем. Мы только начали, и ваш отклик хороший ориентир, куда двигаться дальше. Да статья рекламная только в последнем абзаце. Дальше будет интереснее. У нас много материала, и мы думаем как его изложить и полезно и интересно.

Отправляя комментарий, Вы соглашаетесь с Правилами комментирования и разрешаете сбор и обработку персональных данных. Политика конфиденциальности.

Terneo SX – умный регулятор температуры пола с Wi-Fi

Свежие статьи на СамЭлектрик.ру: 27.12.2021

Terneo SX – умный регулятор температуры пола с Wi-Fi

Умным домом сейчас никого не удивить. Многие вещи вокруг нас стали “умными”, иногда даже слишком. Человеку.

Почему лучше ставить автоматы с характеристикой “В”?

Сейчас настали такие времена, что ценность человеческой жизни стала главным приоритетом, и в то же время бывают.

Солнечная электростанция на основе гибридного инвертора – своими руками

На СамЭлектрик.ру есть статья на тему включения солнечных батарей в домашнюю электросеть через инвертор. На этот.

Реле напряжения TOMZN TOVPD1-60-ЕС – обзор параметров и отзыв о работе

В связи с приближением сезона безделья (зима), чтобы было чем-то заняться, приобрёл новую модель реле напряжения.

Зачем компенсировать и как это делается

Любое электрическое оборудование в процессе работы использует энергию. Полная мощность делится на два вида: активная мощность и реактивная мощность.

Причём второй вид не несёт никакой полезной нагрузки, внося при этом дополнительные потери в цепи.

Поэтому последствия реактивной мощности стараются компенсировать, применяя разнообразные технические решения. Прочитав статью, вы узнаете, что это за решения и зачем они нужны.

Определение

Зачем компенсировать

Полная мощность определяется по следующей формуле:

Реактивное напряжение образуется в электрических и магнитных и полях, присущих индуктивной и ёмкостной нагрузке в цепях тока переменного значения.

Когда работает активная, напряжение и ток совпадают. При включении индукции напряжение отстаёт, при ёмкостной нагрузке опережает ток.

Зачем компенсировать

Поскольку по кабелям идёт ток полной мощности, то при составлении проектной документации необходимо брать в расчёт расход активной и реактивной нагрузки.

При избыточном значении реактивной мощности придётся наращивать величину сечения проводников, что приведёт к дополнительным тратам.

Вот поэтому и необходима компенсация для уменьшения сетевой нагрузки и улучшения экономических показателей производства.

Зачем компенсировать

Вначале разберёмся, в каких случаях и где нужно компенсировать, для чего необходимо определить источники реактивной нагрузки.

Такими источниками могут быть:

  • коллекторные либо асинхронные двигатели, особенно при недостаточной нагрузке в режиме работы;
  • электрические механизмы (клапана, магниты, соленоиды);
  • электромагнитные устройства коммутации;
  • трансформаторы при работе в холостом режиме.

В основе большинства производственных электрических хозяйств находится электрический привод, что влечёт за собой большой расход реактивной мощности, которую предприятия обязаны оплачивать, в отличие от бытовых потребителей. А это от десяти до тридцати процентов от общего счёта за использованное электричество.

Разновидности компенсаторов, принцип работы

Зачем компенсировать

Для уменьшения реактивной нагрузки применяют компенсирующие устройства (УКРМ): конденсаторные батареи, синхронные электродвигатели. Поскольку со временем величина реактивной мощности меняется, то компенсаторы бывают следующих видов:

  1. Без регулировки – конденсаторная батарея, где нет возможности выключения конденсаторов по отдельности для изменения ёмкости.
  2. Автоматические – уровень компенсации меняется по сетевым характеристикам.
  3. Динамические компенсаторы – включаются в работу при быстром изменении нагрузки.

С учётом величины реактива в схеме применяется от одного конденсатора до батареи, которые вводятся либо, выводятся из схемы. В этом случае управление бывает:

  1. С использованием автоматики.
  2. Полуавтоматы (кнопочный блок с контактами).
  3. Без управления (включение и отключение происходит вместе с нагрузкой).

Батареи конденсаторов монтируются как на подающих станциях, так и рядом с потребителями (подключение производится к их питающим проводникам).

В этом случае идёт расчёт на компенсацию конкретно каждого силового агрегата, что нередко применяется для электрооборудования в сетях 0.4 кв.

Зачем компенсировать мощность

Центральная компенсация применяется или на балансовой сетевой границе, или на подающей подстанции с напряжением 110 киловольт. Хорошо разгружает высоковольтные сети, но плохо саму трансформаторную подстанцию.

Такой вариант компенсировать более экономичный по сравнению с другими способами. При этом разгружается низкая сторона (подключение производится к шинам с уже вторичной трансформаторной обмоткой).

Ещё один вариант – выполнение компенсации при помощи синхронных электродвигателей. Происходит это при работе двигателя в перевозбуждённом режиме. Применяется в линиях шесть и десять тысяч вольт.

Плюсом такого решения является совершение компенсатором полезного функционала (работа мощных компрессорных станций, насосов и так далее).

Заключение

Читайте также: