С какой целью в промышленности осуществляют процесс риформинга

Обновлено: 28.06.2024

Нефть – это маслянистая жидкость от желтого или светло-бурого до черного цвета с характерным неприятным запахом. Нефть легче воды и не растворима в ней. Она встречается во многих местах земного шара, пропитывая пористые горные породы на различной глубине.

У нефти есть удивительная способность – образовывать на поверхности воды тончайшие пленки: чтобы покрыть микронной пленкой 1 км 2 требуется всего 10 л нефти.

Большой вред приносит загрязнение нефтью и нефтепродуктами водоемов.

Состав

Нефть – смесь газообразных, жидких и твердых углеводородов (всего более 100 различных соединений). Кроме углеводородов в нефти еще содержатся в небольшом количестве органические соединения, содержащие O, N, S и др. Имеются также высокомолекулярные соединения в виде смол и асфальтовых веществ.

Состав нефти еще зависит от месторождения. Но все они обычно содержат три вида углеводородов:

парафины, в основном нормального соединения,

По мнению большинства ученых, нефть представляет собой геохимически измененные остатки некогда населявших земной шар растений и животных. Эта теория органического происхождения нефти подкрепляется тем, что в нефти содержатся некоторые азотистые вещества – продукты распада веществ, присутствующих в тканях растений.

Есть и теории о неорганическом происхождении нефти : образовании ее в результате действия воды в толщах земного шара на раскаленные карбиды металлов (соединения металлов с углеродом) с последующим изменением получающихся углеводородов под влиянием высокой температуры, высокого давления, воздействия металлов, воздуха, водорода и др.

При добыче из нефтеносных пластов, залегающих в земной коре иногда на глубине нескольких километров, нефть либо выходит на поверхность под давлением находящихся на нем газов, либо выкачивается насосами.

Нефтяная отрасль промышленности сегодня – это крупный народно-хозяйственный комплекс, который живет и развивается по своим законам.

Что значит нефть сегодня для народного хозяйства страны?

сырье для нефтехимии в производстве синтетического каучука, спиртов, полиэтилена, полипропилена, широкой гаммы различных пластмасс и готовых изделий из них, искусственных тканей;

источник для выработки моторных топлив (бензина, керосина, дизельного и реактивных топлив), масел и смазок, а также котельно-печного топлива (мазут), строительных материалов (битумы, гудрон, асфальт);

сырье для получения ряда белковых препаратов, используемых в качестве добавок в корм скоту для стимуляции его роста.

Нефть – наше национальное богатство, источник могущества страны, фундамент ее экономики.

Нефтяной комплекс России включает 148 тыс. нефтяных скважин, 48,3 тыс. км магистральных нефтепроводов, 28 нефтеперерабатывающих заводов общей мощностью более 300 млн т/год нефти, а также большое количество других производственных объектов.

Из нефти вырабатывают реактивное топливо

На предприятиях нефтяной отрасли промышленности и обслуживающих ее отраслей занято около 900 тыс. работников, в том числе в сфере науки и научного обслуживания – около 20 тыс. человек. За последние десятилетия в структуре топливной отрасли промышленности произошли коренные изменения, связанные с уменьшением доли угольной отрасли промышленности и ростом отраслей по добыче и переработке нефти и газа. Если в 1940 г. они составляли 20,5%, то в 1984 г. – 75,3% от суммарной добычи минерального топлива. Теперь на первый план выдвигается природный газ и уголь открытой добычи. Потребление нефти для энергетических целей будет сокращено, напротив, расширится ее использование в качестве химического сырья. В настоящее время в структуре топливно-энергетического баланса на нефть и газ приходится 74%, при этом доля нефти сокращается, а доля газа растет и составляет примерно 41%. Доля угля 20%, оставшиеся 6% приходятся на электроэнергию.

Первичная переработка нефти

Переработку нефти впервые начали братья Дубинины на Кавказе.

Первичная переработка нефти заключается в ее перегонке.

Перегонку производят на нефтеперерабатывающих заводах после отделения нефтяных газов.

Нефть нагревают в трубчатой печи до 350 С, образовавшиеся пары вводят в ректификационную колонну снизу.

Ректификационная колонна имеет горизонтальные перегородки с отверстиями - тарелки .

Схема переработки нефти методом ректификации

Из нефти выделяют разнообразные продукты, имеющие большое практическое значение. Сначала из нее удаляют растворенные газообразные углеводороды (преимущественно метан). После отгонки летучих углеводородов нефть нагревают. Первыми переходят в парообразное состояние и отгоняются углеводороды с небольшим числом атомов углерода в молекуле, имеющие относительно низкую температуру кипения. С повышением температуры смеси перегоняются углеводороды с более высокой температурой кипения. Таким образом, можно собрать отдельные смеси (фракции) нефти. Чаще всего при такой перегонке получают четыре летучие фракции, которые затем подвергаются дальнейшему разделению.

Основные фракции переработки нефти методом ректификации

Газолиновая фракция , собираемая от 40 до 200 °С, содержит углеводороды от С 5 Н 12 до С 11 Н 24 . При дальнейшей перегонке выделенной фракции получают газолин ( t кип = 40–70 °С), бензин ( t кип = 70–120 °С) – авиационный, автомобильный и т.д.

Лигроиновая фракция , собираемая в пределах от 150 до 250 °С, содержит углеводороды от С 8 Н 18 до С 14 Н 30 . Лигроин применяется как горючее для тракторов. Большие количества лигроина перерабатывают в бензин.

Керосиновая фракция включает углеводороды от С 12 Н 26 до С 18 Н 38 с температурой кипения от 180 до 300 °С. Керосин после очистки используется в качестве горючего для тракторов, реактивных самолетов и ракет.

Газойлевая фракция ( t кип. >275°С), по-другому называется дизельным топливом .

М азут – о статок после перегонки нефти – содержит углеводороды с большим числом атомов углерода (до многих десятков) в молекуле.

Мазут также разделяют на фракции перегонкой под уменьшенным давлением, чтобы избежать разложения.

В результате получают:

Соляровые масла (дизельное топливо).

Смазочные масла (автотракторные, авиационные, индустриальные и др.).

Вазелин (технический вазелин применяется для смазки металлических изделий с целью предохранения их от коррозии, очищенный вазелин используется как основа для косметических средств и в медицине).

Из некоторых сортов нефти получают парафин (для производства спичек, свечей и др.).

После отгонки летучих компонентов из мазута остается гудрон . Его широко применяют в дорожном строительстве. Кроме переработки на смазочные масла мазут также используют в качестве жидкого топлива в котельных установках.

Продукты переработки нефти

РИФОРМИНГ

(вторичная переработка нефти)

Бензина, получаемого при перегонке нефти, не хватает для покрытия всех нужд. В лучшем случае из нефти удается получить до 20% бензина, остальное – высококипящие продукты.

В связи с этим перед химией стала задача найти способы получения бензина в большом количестве. Удобный путь был найден с помощью, созданной А.М. Бутлеровым теории строения органических соединений. Высококипящие продукты разгонки нефти непригодны для употребления в качестве моторного топлива. Их высокая температура кипения обусловлена тем, что молекулы таких углеводородов представляют собой слишком длинные цепи. Если расщепить крупные молекулы, содержащие до 18 углеродных атомов, получаются низкокипящие продукты типа бензина.

Основным способом переработки нефтяных фракций являются различные виды крекинга. Впервые (1871–1878) крекинг нефти был осуществлен в лабораторном и полупромышленном масштабе сотрудником Петербургского технологического института А.А. Летним. Первый патент на установку для крекинга заявлен Шуховым в 1891 г. В промышленности крекинг получил распространение с 1920-х гг.

Крекинг – это термическое разложение углеводородов и других составных частей нефти. Чем выше температура, тем больше скорость крекинга и больше выход газов и ароматических углеводородов.

Крекинг нефтяных фракций кроме жидких продуктов дает первостепенно важное сырье – газы, содержащие непредельные углеводороды (олефины).

Различают следующие основные виды крекинга:

жидкофазный (20–60 атм, 430–550 °С), дает непредельный и насыщенный бензины, выход бензина порядка 50%, газов 10%;

парофазный (обычное или пониженное давление, 600 °С), дает непредельно-ароматический бензин, выход меньше, чем при жидкофазном крекинге, образуется большое количество газов;

пиролиз нефти – разложение органических веществ без доступа воздуха при высокой температуре (обычное или пониженное давление, 650–700 °С), дает смесь ароматических углеводородов (пиробензол), выход порядка 15%, более половины сырья превращается в газы;

деструктивное гидрирование (давление водорода 200–250 атм, 300–400 °С в присутствии катализаторов – железа, никеля, вольфрама и др.), дает предельный бензин с выходом до 90%;

каталитический крекинг (300–500 °С в присутствии катализаторов – AlCl 3 , алюмосиликатов, МоS 3 , Сr 2 О 3 и др.), дает газообразные продукты и высокосортный бензин с преобладанием ароматических и предельных углеводородов изостроения.

каталитический риформинг – превращение низкосортных бензинов в высокосортные высокооктановые бензины или ароматические углеводороды.

Каталитический риформинг является одним из важнейших процессов современной нефтепереработки и преследует две основные цели:

  • Производство высокоооктановых компонентов бензина
  • Получение легких ароматических углеводородов (в основном бензолов, толуолов и ксилолов)

Кроме этого, при каталитическом риформинге также образуется весьма полезный водородсодержащий газ, который используется для гидроочистки, гидрокрекинга и других гидрогенизационных процессов.

Предпосылки развития процесса

Предпосылки разработки и совершенствования процесса каталитического риформинга обусловлены следующими причинами:

  • Погоня за повышением октанового числа бензинов, начавшаяся еще в 50-е года прошлого столетия
  • Тенденция отказа от использования экологически вредных добавок, повышающих ОЧ (таких как тетраэтилсвинец)
  • Рост спроса на ароматические углеводороды

Сырье

Основным сырьем каталитического риформинга являются следующие продукты первичной и вторичной переработки нефти:

  • Прямогонная нафта (лигроиновая фракция) - основное сырье
  • Дистилляты вторичного происхождения (бензины термического крекинга, гидрокрекинга и коксования)

Ниже приведено типичное изменение состава лигроиновой фракции в процессе каталитического риформинга:

Химизм процесса

В процессе каталитического крекинга происходит несколько типов химических реакций.

Одни из них полезные:

  1. Парафины → изопрафины (реакция изомеризации)
  2. Парафины → нафтены (реакция циклизации)
  3. Нафтены → ароматика (реакция дегидрирования)
  1. Парафины и нафтены → углеводородные газы (крекинг)
  2. Нафтены и ароматические углеводороды → углеводородные газы (деалкилирование)

Катализатор

В качестве катализатора в процессе каталитического риформинга используется платина (Pt), которую равномерно распределяют на матрице из оксида алюминия (Al2O3), промотированном хлором (иногда фтором), для усиления и регулирования кислотной функции. Платина катализирует процессы гидрирования-дегидрирования, а галоидированный оксид алюминия - реакции изомеризации, циклизации и крекинга.

Технологический процесс

Непосредственно процессу риформинга предшествует предварительная гидроочистка сырья. Она необходима для удаления примесей соединений серы, азота, кислорода, хлора и др., пагубно действующих на катализатор.

Наиболее распространенным способом приведения поступающего сырья в контакт с катализатором является процесс с неподвижным слоем катализатора, при котором углеводороды просачиваются сквозь слой катализатора, находящийся в реакторе.

Стандартная установка риформинга состоит из трех последовательно соединенных реакторов. Условия в этих реакторах несколько различаются, для наиболее эфективного протекания всех типов реакций. Давления в реакторах - 14 - 35 атм, температура - 480 - 520 °С. Варьируется также время время проведения реакции в каждом реакторе.

Сжатое и нагретое в специальной печи сырье в смеси с рециркулирующим водородсодержащим газом подается в первый реактор, просачивается сквозь слой катализатора и направляется опять же через печь во второй реактор.

Аналогичная процедура повторяется для второго и третьего реактора. Далее продукт попадает в холодильник, и большая его часть сжижается. При этом отделяется богатый водородом газ, который частично направляется на рециркуляцию, а частично - на установку газофракционирования. Постоянное высокое содержание водорода необходимо для того, чтобы атомы углерода не осаждались на катализаторе, а реагировали с водородом с образованием углеводородных газов.

После этого продукт попадает на колонну стабилизации (по сути дебутанизатор), где нижняя фракция, риформат (иногда называемый "катализат"), отделяется от углеводородных газов до бутана, которые в свою очередь также направляются на установку газофракционирования насыщенных газов.

При производстве ароматических углеводородов, в установку каталитического риформинга входит также блок экстракции ароматических углеводородов и блок четкой ректификации для фракционирования ароматического экстракта.

Регенерация катализатора

Естественно, что со временем активность катализатора снижается, что в свою очередь негативно сказывается на октановом числе образующегося риформата и его выходе.

Регенерацию катализатора проводят с помощью подачи горячего воздуха, который реагирует с углеродом, осаждающегося на поверхности катализатора, и превращает его в CO и CO2.

Однако, со временем, под действием высоких температур, поры катализатора разрушаются. Поэтому через определенные промежутки времени реактор все же необходимо останавливать для замены катализатора.

В зависимости от способа проведения регенерации катализатора у становки каталитического риформинга подразделяются на три типа:

Процесс риформинга сильно эндртермичен и протекает с поглощением теплоты от 380 до 1200 кДж / кг в зависимости от фракционного состава. Так, при платформинге фракции 60 - 85 С поглощается 1200 кДж / кг сырья, а фракции 60 - 120 С - 380 кДж / кг сырья. [1]

Процесс риформинга протекает в присутствии алюмоплатиновых катализаторов АП-56 или АП-54 при 480 - 520 С, 2 0 МПа ( 20 кгс / см), объемной скорости подачи сырья 1 - 2 0ч 1 и кратности циркуляции газа 1300 - 1500 м3 / м3 сырья. [3]

Процессы риформинга и предварительной гидроочистки осуществляются на катализаторах. Селективность, избирательность катализаторов риформинга характеризуют соотношением скоростей реакций ароматизации и изомеризации по отношению к реакциям крекирования и, как правило, оценивают по соотношению скорости ароматизации, и крекинга н-гептана. В жестких условиях, т.е. при низком давлении и малой объемной скорости, достигается наиболее благоприятная селективность катализатора, увеличивается выход ароматических углеводородов и высокооктанового бензина. [4]

Процесс риформинга эндотермичен и требует ступенчатого подогрева. Обычно на установке три реактора с промежуточным подогревом в печи. [6]

Процесс риформинга на платиновом катализаторе осуществляется при температурах 480 - 525 С и при циркуляции водо-родсодержащего газа. [7]

Процессы риформинга , осуществляемые на платиновых катализаторах, могут быть разбиты на три группы. [8]

Процесс риформинга на платиновом катализаторе экономически значительно выгоднее аналогичных процессов нефтяной промышленности благодаря высокой селективности и стабильности платинового катализатора, обеспечивающих высокий выход целевых продуктов, длительные реакционные циклы и простоту технологического оформления, а также благодаря получению в качестве побочного продукта значительных количеств водорода, который используется для гидроочистки нефтяного сырья и в химической промышленности. [9]

Процесс риформинга проводится на платиновом катализаторе при температурах, близких к 500 С, давлении 15 - 50 am и при рециркуляции образующегося в самом процессе водородсодержащего газа. [10]

Процесс риформинга в целом эндотермичен; суммарный перепад температуры в реакторах составляет от 50 - 70 С на установках, работающих под давлением 2 5 - 3 5 МПа, до 160 - 200 С на установках, работающих под давлением 0 8 - 1 МПа. Перепад температуры в первой ступени, где в основном протекают реакции дегидрирования нафтенов, составляет 50 - 70 % суммарного перепада. В последней ступени риформинга вследствие развития реакций гидрокрекинга температурный перепад минимален а в некоторых случаях, на установках высокого давления или при переработке сырья со значительным содержанием легких фракций, температура на выходе из реактора может на 2 - 10 СС превышать температуру на входе. [11]

Процесс риформинга с ПРК характеризуется простой технологической схемой, небольшими капиталовложениями и эксплуатационными затратами и относительно легкой управляемостью. В связи с этим целесообразно строительство установок риформинга небольшой мощности, причем совершенствование технологии и применение современных катализаторов позволяют повысить выход стабильного риформата и водорода, а также увеличить время межрегенерационного цикла эксплуатации установок. В настоящее время суммарная мощность риформинга с ПРК составляет более 60 % от общей производительности всех модификаций каталитического риформинга. [12]

Процесс риформинга Сйнклера-Бекера разработан в мае 1953 г. Первая промышленная установка мощностью 480 м3 / сутки сырья была построена в сентябре 1954 г. на нефтеперерабатывающем заводе в Огайо. Установка была рассчитана на возможность ее эксплуатации при самых разнообразных условиях, что обеспечивало экономичность процесса при работе с сырьем разных качеств. [13]

Процесс риформинга термического газа обыкновенно происходит в генераторах водяного газа, где ноток нефтезаводского газа, смешанного с паром, направляется через горячий кокс. Таким образом, образуется синий водяной газ вместе с нефтезаводским газом крекинга. [14]

Процессом риформинга в СССР получают около половины всего бензина, производимого в стране. Этот бензин является базовым компонентом высокооктанового бензина АИ-93 и АИ-98. Исключительно велика роль риформинга в получении сырья для промышленности синтетических каучуков и химических волокон. Бензол и параксилол являются основным сырьем в производстве капрона, найлона, лавсана. [15]


2.9 Каталитический риформинг

Каталитический риформинг бензинов является важнейшим процессом современной нефтепереработки и нефтехимии. Представляет собой процесс превращения низкооктанового прямогонного бензина атмосферной перегонки с помощью селективного катализатора и в присутствии водорода в высокооктановый бензин или в компоненты для компаундирования авиабензина; ароматические углеводороды - сырье для нефтехимического синтеза; водородосодержащий газ -технический водород, используемый в гидрогенизационных процессах нефтепереработки. Установки каталитического риформинга имеются практически на всех отечественных и зарубежных нефтеперерабатывающих заводах.

В промышленности в настоящее время используют два варианта риформинга. Первый вариант (топливный) - производство высокооктанового компонента бензина, второй вариант (нефтехимический) - получение ароматических углеводородов. Оба варианта имеют практически одинаковую технологическую схему и отличаются только мощностью, размерами аппаратов, фракционным составом сырья и параметрами ведения технологического процесса. Для нефтехимического варианта технологии дополнительно устанавливается блок экстракции и ректификации, необходимый для покомпонентного разделения ароматических углеводородов или их узких фракций. Основными показателями, определяющими качество и пригодность сырья для процесса риформинга, являются углеводородный и фракционный составы. Для каталитического риформинга применяют в основном прямогонные бензиновые фракции. Риформинг бензиновых фракций вторичного происхождения (например, термического крекинга, коксования, пиролиза) возможен только в смеси с прямогонным сырьем после предварительной глубокой гидроочистки. Фракционный состав сырья каталитического риформинга определяется целевым назначением процесса. Если целью каталитического риформинга является получение катализатов для производства высокооктановых бензинов, оптимальным сырьем для этого служат фракции, выкипающие в пределах 85- 180 °С. При производстве высокооктановых бензинов, особенно с октановым числом 95 - 100, каталитическому риформингу подвергается сырье утяжеленного фракционного состава с температурой начала кипения 105 °С. Сырьем процесса риформинга для получения бензола и толуола служит узкая бензиновая фракция, выкипающая в пределах 85 - 105 °С. Для получения суммарных ксилолов используют узкую фракцию, выкипающую в температурных пределах 105-127 °С.

Основные технологические параметры, в значительной степени определяющие процесс каталитического риформинга и характеристики получаемых продуктов: температура, давление, объемная скорость подачи сырья,


2.9.2. Установка каталитического риформинга с движущимся слоем катализатора

В процессе платформинга фирмы UOP (США) с движущимся слоем катализатора, циркулирующим между реактором и регенератором, три реактора расположены друг над другом и выполнены в виде одного колонного аппарата разного диаметра по высоте. Катализатор из первого (верхнего) реактора перемещается во второй, а из второго в третий. Из нижнего реактора катализатор транспортируется в регенератор. На рисунке 2.30 приведена технологическая схема установки риформинга с движущимся слоем катализатора компании UOP, которая получила название CCR-риформинг (continuous catalytic reforming). Она наиболее экономична в случае, когда рабочее давление снижается с одновременным повышением глубины превращения сырья.


Рисунок 2.30 - Технологическая схема установки риформинга с движущимся слоем катализатора (CCR-риформинг):
1.2.3 -реакторы; 4-регенератор; 5, 6 - сепараторы высокого и низкого давления;
7 -стабилизационная колонна; 8 -многосекционная печь; 9, 10, 11, 12 -насосы;
13, 14 - теплообменники; 15, 16 - холодильники; 17 - сепаратор; 18—печь;
19, 20 - компрессоры; 21 - аппарат воздушного охлаждения;
I - сырье (бензин 85-180 °С); II - катализатор на регенерацию;
III - регенерированный катализатор;IV - газосырьевая смесь; V - газопродуктовая смесь; VI - циркулирующий водородсодержащий газ; VII - избыточный водородсодержащий газ; VIII - сухой газ; IX- головная фракция стабилизации;
X - стабильный риформат

Риформинг с движущимся слоем катализатора обеспечивает постоянно высокие выход бензина и значение октанового числа (до 105), а также максимальный выход водорода при малой жесткости процесса.

2.9.3 Установка каталитического риформинга с движущимся слоем катализатора и регенерацией с одноуровневым расположением реакторов

В процессе риформинга с движущимся слоем катализатора Французского института нефти реакторы расположены обычным образом, один возле другого, и связаны между собой пневмотранспортными линиями и дооборудованы четвертым реактором и регенератором (дуалформинг) (Рисунок 2.31).


Рисунок 2.31 - Принципиальная технологическая схема процесса дуалформинг 1 -действующие реакторы; 2 - действующие печи, 3 - новый реактор; 4 - регенератор;
5 - сырьевой насос; 6 - новая печь; 7 - новый теплообменник сырье/продукт; 8 -
рециркуляционный компрессор; 9 - воздушный холодильник; 10-сепаратор.
I -сырье; II - водородсодержащий газ; III - нестабилизированный катализат

Отрегенерированный и восстановленный катализатор периодически загружается в реактор первой ступени и затем последовательно проходит все реакторы. Транспорт между реакторами осуществляется ВСГ. Из последнего реактора катализатор поступает в бункер-накопитель, где отделяется от пневмоагента. Из бункера-накопителя катализатор периодически ссыпают в регенератор, где в неподвижном или в псевдокипящем слое проводится окислительная регенерация и иные операции по подготовке катализатора к работе в цикле реакции. Единовременно регенерируется * 5% общей загрузки катализатора.

2.9.4 Установки каталитического риформинга для получения ароматических углеводородов

Прямогонные бензиновые фракции 62 - 105°С являются сырьем для получения бензола и толуола, а бензиновые фракции 105 - 140 °С - для ксилолов и этилбензола. Процесс проводится на установках как с неподвижным слоем катализатора, так и с движущимся, но в более жестком режиме. Поскольку ароматизация углеводородов С6 - С7 происходит труднее, чем тяжелой части сырья, ужесточение режима достигается снижением давления и повышением температуры до 540 °С. Кроме того, имеется дополнительный реактор для гидрирования присутствующих в катализате непредельных углеводородов. Гидрирование проходит на алюмоплатиновом катализаторе, содержащем 0,1 % платины. После стабилизации риформат поступает на блок экстракции и ректификации. В качестве растворителей применяют ди- и триэтиленгликоли, сульфолан, диметилсульфид, N-метилпирроллидон. Наиболее эффективными являются ди-, три- и тетраэтиленгликоли.


Материальный баланс установки экстракции (в % на катализат риформинга) приведен ниже:


Возросшая потребность в полимерных материалах требует увеличения объема производства индивидуальных ароматических углеводородов. Для этого на нефтеперерабатывающих заводах создаются специальные производства аренов. В их состав входят следующие секции:

а) секция риформинга бензиновой фракции 85-140 °С;

б) секция экстракции бензола и толуола;

в) секция деалкилирования толуола с получением бензола 85 - 90 % чистоты; деалкилирование проходит при температуре 666 - 755°С, давлении 3 МПа, степень превращения сырья 93 %:

г) секция получения бензола и ксилолов путем реакции трансалкилирования; процесс протекает в среде циркулирующего водорода на платиновом катализаторе при температуре 500 °С, давлении 3 МПа;

е) изомеризация смеси этилбензола и м-ксилола с получением о- и п-ксилолов на платиновом катализаторе в среде цирклирующего водородсодержащего газа с получением о- и п-ксилолов при температуре 400 - 445 °С и давлении 1,4 - 2,4 МПа;

ж) фракционирование аренов.

Обобщенный материальный баланс всех секций комплекса производства ароматических углеводородов, % (мае.) представлен ниже:


Продукцией установок каталитического риформинга являются катализат (риформат, его иногда называют риформинг-бензин), водородсодержащий и углеводородный газы. На установках, предназначенных для производства ароматических углеводородов, из катализата экстракцией выделяют бензол, толуол,

ксилолы. Неароматическая часть катализата риформинга, выделенная в процессе экстракции, называется рафинатом и представляет собой смесь парафиновых углеводородов нормального и изостроения с низким октановым числом.

Водородсодержащий газ - ценный продукт риформинга и важнейший источник водорода на НПЗ. Но целевым продуктом является риформат. В риформате содержится большое количество ароматических углеводородов (до 65%), которые обеспечивают высокое октановое число (97-103 по исследовательскому методу). Бензол имеет октановое число 108 по моторному методу и 113 по исследовательскому методу. Фракции риформата различаются октановым числом. Риформат используют как компонент высокооктанового бензина или для получения бензола, толкола, ксилолов экстракцией.


Таблица 2 22 -Характеристика процессов риформинга


Специфическими источниками загрязнения атмосферы являются неорганизованные выбросы, испарение углеводородов при хранении и транспортировке нефтепродуктов, а также организованные выбросы, выделяющиеся при сжигании различных видов топлив и газов в трубчатых печах, на факельных установках, и отходящие газы регенерации.


Cинтез-газ является смесью водорода и оксида углерода и широко используется в химической промышленности для получения базовых продуктов – аммиака, метанола, уксусной кислоты и др. Кроме того, он применяется в качестве экологически чистого источника тепловой энергии.

Сегодня существуют три основных метода производства синтез-газа. 1. Газификация угля. Данный процесс основан на взаимодействии каменного угля с водяным паром и протекает по формуле

Приведенная реакция является эндотермической, и равновесие при температуре 900…1000°С сдвигается вправо. Разработаны различные технологические процессы, использующие парокислородное дутье, благодаря которому наряду с упомянутой реакцией параллельно протекает экзотермический процесс сгорания угля, который обеспечивает необходимый тепловой баланс. 2. Конверсия метана – взаимодействие водяного пара и метана при повышенных значениях температуры и давлении в присутствии никелевых катализаторов (Ni–Al2O3):

CH4 + H2O → CO + 3H2.

Вместо метана можно использовать любое сырье, содержащее углеводороды. 3. Парциальное окисление углеводородов. Данный процесс, происходящий при температурах выше 1300°С, заключается в термическом окислении углеводородов:

CnH2n +2 + 1/2nO2 → nCO + (n + 1)H2.

Настоящее исследование посвящено усовершенствованию промышленного способа получения синтез-газа, обогащенного водородом и монооксидом углерода, путем каталитического риформинга углеводородсодержащего сырья в трубчатых реакторах с использованием катализаторов определенной конструктивной формы с целью внедрения на крупнотоннажных производствах аммиака, метанола, уксусной кислоты и водорода.

При осуществлении указанного процесса реализуются следующие эндои экзотермические реакции:

Как видно, по сравнению с известным методом наблюдается снижение содержания метана в вырабатываемом синтез-газе, что указывает на повышение активности катализатора.

Согласно выполненным кинетическим и теплофизическим расчетам, установка в печи риформинга реакционных труб с уменьшенным внутренним диаметром (101 мм) позволит снизить температуру конвертированного газа и содержание остаточного метана, существенно повысить производительность установки по синтезгазу (табл. 2).

Параметры работы печи риформинга с реакционными трубами разного диаметра

Производительность, т/сутки 1950…2000 1750…1800 1440 1440 (база)
Внутренний диаметр трубы, мм 101 101 102 89
Температура конвертированного газа, °С:
в центре трубы 718,5 721,1 732,1 732,9
у стенки 743,5 745,8 755,6 752,4
Линейная скорость, м/с:
в центре трубы 2,233 2,084 1,996 2,536
у стенки 2,288 2,126 2,002 2,549
Содержание метана в сухом газе на выходе из трубы, мол. % 13,2557 12,1942 11,7262 12,6346
Соотношение пар : газ на выходе из реакционной трубы 0,8831 0,8533 0,8009 0.8260

Выводы

Использование предлагаемого технического решения позволяет улучшить теплоперенос через стенку труб в печи риформинга и как результат снизить разность температур между их наружной поверхностью и выходящим синтез-газом. Одновременно с этим удается уменьшить перепад давления по катализаторному слою, сократить расход топливного газа на проведение конверсии, увеличить выработку синтез-газа на агрегатах аммиака.

Читайте также: