Кем были открыты законы наследования признаков какие гены называются аллельными

Обновлено: 02.07.2024

Г. Мендель разработал методику прове­дения опытов над растительными гибри­дами. Суть этой методики сводилась к следующему. Во-первых, для проведения опытов Г. Мендель удачно выбрал объект исследования — садовый горох, растение

самоопыляемое, с коротким периодом со­зревания, что очень удобно для анализа потомства.

Во-вторых, Г. Мендель использовал чистые линии садового гороха, представ­ляющие собой различные сорта, отличаю­щиеся каким-либо признаком и не смеши­вающиеся в природных условиях.

В-третьих, экспериментатор выбирал для наблюдения не множество, а лишь од­ну пару признаков гороха. В одних случа­ях он выяснял наследование окраски го­рошин (желтой или зеленой), в других — их формы (гладкой или морщинистой) и т. д.

В-четвертых, для получения большой выборки для анализа результатов опытов Мендель скрещивал одновременно не од­ну пару растений, а несколько родитель­ских пар.

В-пятых, Г. Мендель вел подсчет потом­ства, которое появлялось в результате каждого скрещивания. Эта математиче­ская обработка результатов опытов позво­лила ему выявить закономерности насле­дования признаков.

Вопрос 2. Почему для опытов Г. Менделя был удачным выбор гороха?

Горох садовый — растение, не требую­щее каких-то особых условий выращивания, с коротким периодом созревания, по­зволяющим собирать урожай несколько раз в году. У гороха множество сортов, от­личающихся друг от друга хорошо замет­ными признаками. Кроме того, это расте­ние самоопыляемое, что очень важно для проведения опытов по скрещиванию. Экс­периментатор может удалить тычинки у цветка одного растения, а опылить его пыльцой совершенно другого экземпляра.

Вопрос 3. Какие гены называются аллель­ными?

Гены, отвечающие за проявление одно­го и того же признака (например, окраски семян) и расположенные в одном и том же локусе (участке) гомологичных хромосом, называют аллельными.

Вопрос 4. Чем гомозиготный организм отли­чается от гетерозиготного?

Гомозиготные организмы содержат в го­мологичных хромосомах два одинаковых аллельных гена. У гетерозиготных орга­низмов аллельные гены различны, напри­мер, один определяет появление желтой окраски семян, а другой — зеленой.

Вопрос 5. В чем суть гибридологического ме­тода?

Гибридологический метод, предложен­ный Грегором Менделем, предусматрива­ет скрещивание родительских пар, отличающихся между собой рядом признаков, и последующий учет соотношений комби­наций этих признаков у потомков.

Вопрос 6. Сформулируйте закон чистоты га­мет.

Закон чистоты гамет можно сфор­мулировать следующим образом: при об­разовании половых клеток (гамет) в каж­дую из них попадает один ген из пары аллельных генов, так как лишь одна хро­мосома из пары гомологичных хромосом в процессе мейоза попадает в гамету.

Во времена Г. Менделя не были откры­ты процессы деления клеток, хромосомы и гены, однако гениальность чешского экспериментатора заключалась в том, что гипотезу чистоты гамет он сформулиро­вал на основе анализа своих опытов. Гены Мендель называл элементами наслед­ственности. Он утверждал, что в каж­дой соматической клетке этих элементов по два (говоря современным научным языком, два аллельных гена), а в половую клетку попадает лишь один наследствен­ный элемент из пары.

Вопрос 7. Что такое моногибридное скрещивание?

Моногибридным называют скрещива­ние родительских пар, отличающихся между собой лишь по одному признаку (окраске цветка, форме семян и т. д.).

Вопрос 8. Какой признак называется доми­нантным; рецессивным?

Доминантным называют такой при­знак из пары, который у гибридов подав­ляет проявление другого.

Рецессивный признак — это признак, подавляемый доминантным.

Одну пару признаков обозначают какой-либо буквой алфавита: доминант­ный — прописной (А), а рецессивный — строчной (а).

Вопрос 9. В чем суть правила единообразия гибридов первого поколения? Проиллюстрируйте свой ответ схемой.

Гибриды первого поколения, получен­ные от двух чистых линий (гомозиготных организмов, отличающихся между собой одной парой признаков), оказываются единообразными и имеют признак одного из родителей. Так, гибриды первого по­коления от скрещивания гороха с желты­ми и зелеными семенами имели желтые семена.

А — желтый цвет семян, а — зеленый цвет семян.

Вопрос 10. Сформулируйте правило расщеп­ления. Нарисуйте схему скрещивания гибридов первого поколения.

При скрещивании между собой гибри­дов первого поколения (двух гетерозигот­ных организмов) в потомстве наблюдается расщепление по вариантам анализируе­мого признака в отношении 3:1. То есть во втором поколении, помимо растений с желтыми семенами (доминантный при­знак), появляются экземпляры с зеле­ными семенами (рецессивный признак), их количество составляет 1/4 от общего числа потомков.

Аллельные гены - это гены, которые занимают одинаковое положение в локусах гомологичных хромосом и отвечают за развитие одного и того же признака.

Какие свойства есть у аллельных генов

Если рассмотреть генотип любого живого организма, то можно обнаружить, что он состоит из большого числа различных генов. Все вместе они образуют органическую совокупность и, являясь одним целым, выполняют общие функции.

Г. Менделем, которого считают основателем генетики, описана лишь одна возможность взаимодействия аллельных генов: когда одна полностью доминирует над другой. Аллель, которая подавляется, называют рецессивной.

Менделя считают отцом генетики как науки еще и потому, что он сформулировал все возможные закономерности наследования признаков. Сделал он это с помощью генетического метода, который и сегодня является наиболее перспективным. В основе метода лежит скрещивание организмов с определенными признаками и анализ проявлений этих признаков у потомства.

В этом месте нужно уточнить, что гены не всегда могут проявляться в виде признаков: при одинаковом генотипе у организмов могут быть фенотипические различия. Это объясняется тем, что на фенотип оказывает влияние то, как взаимодействуют генотип и окружающая среда.

Кроме того, фенотипическое проявление генов обусловлено не только одной парой генов: как минимум потому, что оно является результатом взаимодействия генотипической системы в целом.

Аллельное генотипическое взаимодействие — контакты белков и ферментов, а не генов.

Если принять и понять этот принцип, то можно избежать ошибок, проводя генетические исследования взаимодействия аллельных генов.

У методов Менделя есть определенные преимущества:

  • обеспечение точного количественного учета проявления признаков. В качестве доказательства сам ученый приводил математические расчеты, что уже тогда позволило назвать такую работу синтезом биологии и математики;
  • обращение внимания на каждый признак в отдельности. Исследуя аллельный ген, и сегодня придерживаются этого пункта;
  • использование чистых линий растений. Случайные растения не рассматривались.

Чистая линия — это совокупность организмов, которые при длительном, на протяжении нескольких поколений, скрещивании друг с другом проявляют одинаковые признаки (расщепление отсутствует).

Ученый сформулировал 3 закона наследственности:

  1. Первый закон — правило единообразия.
  2. Второй закон — закон расщепления признаков.
  3. Третий закон — закон о независимости наследования признаков.

Эти законы позволяют описывать различные закономерности изменчивости и наследственности. Принципы, лежащие в основе этих законов, применяются в биологии и сегодня.

Способы взаимодействия аллельных генов

Согласно основам генетики, есть 2 варианта генотипического взаимодействия:

  1. Взаимодействие аллельных генов.
  2. Неаллельное взаимодействие.

Исходя из этого, все живые организмы обладают парными аллельными генами. Внутри организма гены взаимодействуют 3 различными способами:

  • кодоминирование;
  • сверхдоминирование;
  • полное и неполное доминирование.

Кодоминирование

В случае такого взаимодействия аллельные гены проявляют свое действие независимо друг от друга.

Для варианта кодоминирования аллельных генов пример — это система групп крови ABO. Здесь гены A и B функционируют независимо.

Сверхдоминирование

В этой ситуации качество фенотипический проявлений доминантного гена увеличивается только тогда, когда он тесно связан с рецессивным.

В случае если в одной аллели находится два доминантных гена, то, как правило, их действие и проявление сильно хуже, чем в предыдущем варианте с одним доминантным и одним рецессивным геном.

Полное и неполное доминирование

При полном перекрытии доминантным геном рецессивного говорят о полном доминировании.

Неполное доминирование — вариант взаимодействия генов, когда рецессивный ген не подавляется полностью и может оказывать влияние (хотя бы минимальное) на фенотипическое проявление признака. В таком случае фенотипическое проявление признака является промежуточным — между родительскими формами.

Пример неполного доминирования — наследование окраски венчика цветка ночной красавицы. Здесь родительские формы имеют белый и красный цвета, а промежуточным будет розовый.

Множественный аллелизм

При множественном аллелизме формы взаимодействия генов могут быть различными. Даже несмотря на то, что они отвечают за один и тот же признак. Дело в том, что проявляют они этот признак по-разному и при помощи различных способов (описанных выше).

Самый простой пример — окраска шерсти кролика. Здесь могут быть следующие варианты: белая, гималайская, шиншилловая, черная и коричневая. И это при том, что есть целая серия разных аллелей генов, ответственных за окрас. И таких примеров в биологии достаточно.

Несмотря на всю парадоксальность множественного аллелизма, в половую клетку живого существа проникает только одна пара гомологичных аллелей, и какая именно — вопрос случая. Так обеспечивается изменчивость каждого отдельного вида, играющая важнейшую роль в эволюции.

Благодаря изучению аллельных генов, становятся понятными закономерности наследования признаков. А еще это помогает исключить негативные последствия изменения наследственного набора организма.

Гипермаркет знаний>>Биология>>Биология 9 класс>> Закономерности наследования признаков, установленные Г. Менделем

Закономерности наследования признаков, установленные Г. Менделем.

1. У каких организмов только одна кольцевая хромосома?
2. Что такое гибрид?


Генетика — наука, изучающая закономерности наследственности и изменчивости живых организмов.

Наследственность — это свойство всех живых организмов передавать свои признаки и свойства из поколения в поколение.

Изменчивость — свойство всех живых организмов приобретать в процессе индивидуального развития новые признаки. Элементарные единицы наследственности — гены — представляют собой участки ДНК хромосом.


Гибридологический метод.

Основой замечательной работы Г. Менделя был так называемый гибридологический метод. Суть этого метода заключается в скрещивании (гибридизации) организмов, отличающихся друг от друга какими-либо признаками, и в последующем анализе характера наследования этих признаков у потомства. Гибридологический метод до сих пор лежит в основе исследований всех генетиков.

Ставя опыты, Мендель придерживался нескольких правил.

Во-первых, работая с садовым горохом, он использовал лля скрещивания растения, которые относились к различным сортам. Так, например, у одного сорта горошины всегда были желтые, а у другого — всегда зеленые. Так как горох самоопыляемое растение, то в природных условиях эти сорта не смешиваются. Такие сорта называют чистыми линиями.

Во-вторых, чтобы получить больше материала для анализа законов наследственности, Мендель работал не с одной, а с несколькими родительскими парами гороха.

В-третьих, Мендель намеренно упростил задачу, наблюдая за наследованием не всех признаков гороха сразу, а только одной их пары. Для своих опытов он изначально выбрал пвет семян гороха — горошин. В тех случаях, когда родительские организмы различаются лишь по одному признаку например, только по цвету семян или только по форме семян), скрещивание называют моногибридным.

В-четвертых, имея математическое образование, Мендель применил для обработки данных количественные методы: он не просто замечал, каков цвет семян гороха у потомства, но и точно подсчитывал, сколько таких семян появилось.

Надо добавить, что Мендель очень удачно выбрал для опытов горох. Горох легко выращивать, в условиях Чехии он размножается несколько раз в год, сорта гороха отличаются пруг от друга рядом хорошо заметных признаков, и, наконец, з природе горох самоопыляем, но в эксперименте это самоопыление легко предотвратить, и экспериментатор может опылять растение пыльцой с другого растения, т. е. перекрестно.

Если пользоваться терминами, появившимися через много лет после работ Менделя, то можно сказать, что клетки растений гороха одного сорта содержат по два гена только желтой окраски, а гены растений другого сорта — по два гена только зеленой окраски. Гены, ответственные за развитие одного признака (например, цвета семян), получили название аллелъных генов. Если организм содержит два одинаковых аллельных гена (например, оба гена зеленого цвета :емян или, наоборот, оба гена желтизны семян), то такие организмы называют гомозиготными. Если же аллельные гены различны (т. е. один из них определяет желтую, а другой — зеленую окраску семян), то такие организмы называют гетерозиготными. Чистые линии образованы гомозиготными растениями, поэтому при самоопылении они всегда воспроизводят один вариант проявления признака. В опытах Менделя это был один из двух возможных цветов семян гороха — или всегда желтый, или всегда зеленый.

(Не будем забывать, что в те годы, когда Мендель ставил свои эксперименты, о генах, хромосомах, митозе и мейозе не было известно ничего!)

Единообразие гибридов первого поколения. Искусственно скрещивая растения гороха с желтыми горошинами с растениями, имеющими зеленые горошины (т. е. проводя моногибридное скрещивание), Мендель убедился, что все семена потомков-гибридов будут желтого цвета. Такое же явление он наблюдал в опыте при скрещивании растений с гладкими и морщинистыми семенами - все гибридные растения имели гладкие семена.

Проявляющийся у гибридов признак (желтизну семян или гладкость семян) Мендель назвал доминантным, а подавляемый признак (т. е. зеленый цвет семян или морщинистость семян) — рецессивным. Доминантный признак принято обозначать большой буквой (А, В, С), а рецессивный — маленькой (а, в, с).

На основании этих данных Мендель сформулировал правило единообразия гибридов первого поколения: при скрещивании двух гомозиготных организмов, отличающихся друг от друга одним признаком, все гибриды первого поколения будут иметь признак одного из родителей, и поколение по данному признаку будет единообразным.
Из семян, полученных в первом поколении, Мендель вырастил растения гороха и снова скрестил их между собой. У растений второго поколения большинство горошин были желтого цвета, но встречались и зеленые горошины. Всего от нескольких скрещиваемых пар растений Мендель получил 6022 желтых и 2001 зеленых горошин. Легко сосчитать, чтс 3/4 гибридных семян имели желтую окраску и ¼ зеленую. Явление, при котором скрещивание приводит к образованию потомства частично с доминантными, частично с рецессивными признаками, получило название расщепления.

Опыты с другими признаками подтвердили эти результаты, и Мендель сформулировал правило расщепления: при скрещивании двух потомков (гибридов) первого поколения между собой во втором поколении наблюдается расщепление и снова появляются особи с рецессивными признаками; эти особи составляют одну четвертую часть от всего числа потомков второго поколения.

Как же объяснить закономерности генетики с позиций современной науки?

Цитологические основы закономерностей наследования при моногибридном скрещивании. Изобразим моногибридное скрещивание в виде схемы. Символ 0 обозначает женскую особь, символ 0 мужскую, х — скрещивание, Р — родительское поколение, F1— первое поколение потомков, F2— второе поколение потомков, А — ген, отвечающий за доминантный желтый цвет, а — ген, отвечающий за рецессивный зеленый цвет семян гороха (рис. 50).

Из рисунка видно, что в каждой гамете родительских особей будет по одному гену (вспомните мейоз): в одном случае А, в другом — а. Таким образом, в первом поколении все соматические клетки будут гетерозиготными — Аа. В свою счередь, гибриды первого поколения с равной вероятностью могут образовывать гаметы А или а.

Случайные комбинации этих гамет при половом процессе могут дать следующие варианты: АА, Аа, аА, аа. Первые три растения, содержащие ген А, по правилу доминирования будут иметь желтые горошины, а четвертое — рецессивная гомозигота аа —- будет иметь зеленые горошины.

Скрещивание

Гибридологический метод. Чистые линии. Моногибридные скрещивания. Аллельные гены. Гомозиготные и гетерозиготные организмы. Доминантные и рецессивные признаки. Расщепление. Закон чистоты гамет.

1. Каких правил придерживался Г. Мендель при проведении своих опытов?
2. Почему для опытов Г. Менделя был удачным выбор гороха?
3. Какие гены называются аллельными?
4. Чем гомозиготный организм отличается от гетерозиготного?
5. В чем суть гибридологического метода?
6. Сформулируйте закон чистоты гамет.
7. Что такое моногибридное скрещивание?
8. Какой признак называется доминантным? рецессивным?
9. В чем суть правила единообразия гибридов первого поколения? Проиллюстрируйте своё ответ схемой.
10. Сформулируйте правило расщепления. Нарисуйте схему скрещивания гибридов первого поколения.

Онлайн библиотека с учениками и книгами, плани-конспекти уроков с Биологии 9 класса, книги и учебники согласно календарного плана планирование Биологии 9 класса


Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.

Цели урока: сформировать представление о генетике – науке, изучающей наследственность и изменчивость организмов, познакомить с основными понятиями науки.

Задачи:

  • образовательная: изучить основные исторические моменты в истории генетики как науки, показать многообразие методов, используемых генетикой; изучить основные понятия генетики;
  • развивающая: формировать умения и навыки по использованию генетической терминологии и символов для объяснения закономерностей наследования признаков;
  • воспитательная: продолжить способствовать формированию культуры умственного труда через овладение навыками общения в процессе беседы, диалога.

Обеспечение занятия: компьютер, мультимедийный проектор.

Тип урока: изучение нового материала.

Метод проведения: комбинированный урок

  • иметь представление об истории становления науки, об основных направлениях в изучении наследственности;
  • знать основные генетические понятия и генетические законы:
  • уметь применять генетические законы и терминологию при решении генетических задач.

Ход урока

I. Организационный момент.

II. Объяснение нового материала.

Раздел биологии, изучающий такие важные свойства организма, как сохранение и передача наследственной информации из поколения в поколение, а также возможность изменяться под действием окружающей среды – это генетика. Молодая наука имеет свою долгую историю, и не всегда ее открытия были понятны и восприняты в обществе.

Сегодня на уроке мы поговорим с вами об истории генетики, об ученых, внесших свой вклад в ее развитие. Мы определим место этой науки в современном мире и выясним, какое значение имеют генетические знания для человечества в целом.

Четких представлений о закономерностях наследования и наследственности вплоть до конца XIX века не было за одним существенным исключением. Этим исключением была замечательная работа Г. Менделя, установившего в опытах по гибридизации сортов гороха важнейшие законы наследования признаков, которые впоследствии легли в основу генетики.

В своих опытах он использовал горох. Причем, для опытов выбирались растения, относящиеся к чистым линиям – родственные организмы, у которых в ряду поколений проявляются одни и те же признаки.

А почему горох, а не другое растение?

  1. Горох – это самоопыляемое растение.
  2. Цветки гороха защищены от проникновения чужой пыльцы.
  3. Гибриды вполне плодовиты и поэтому можно следить за ходом наследования признаков в ряду поколений.

Для опытов Мендель избрал несколько четко различающихся признаков:

  1. форма семян;
  2. окраска семян;
  3. окраска и форма бобов;
  4. окраска цветков;
  5. расположение цветков;
  6. длина стебля.

Суть предложенного Менделем метода заключалась в следующем: он скрещивал растения, различные по одной паре признаков, а затем производил анализ результатов каждого скрещивания. Метод Менделя получил название гибридологического или метода скрещивания.

Ген – это участок молекулы ДНК (или хромосомы), определяющий возможность развития отдельного элементарного признака, или синтез одной белковой молекулы.

Каждый ген располагается в определенном участке хромосомы – локусе.

В гаплоидном наборе хромосом только один ген, ответственный за развитие данного признака. В диплоидном наборе хромосом (соматические клетки) содержаться две гомологичные хромосомы и соответственно два гена, определяющие развитие признака. Эти гены расположены в одинаковых локусах гомологичных хромосом и называются аллельными генами.

Аллельные гены – это пара генов, определяющая альтернативные признаки организма. Аллельные гены располагаются в одинаковых участках (локусах) гомологичных хромосом.

Альтернативные признаки – взаимоисключающие или контрастные признаки. Часто один из альтернативных признаков является доминантным, а другой рецессивным.

Для генов приняты буквенные обозначения. Если два аллельных гена полностью соответствуют по структуре, т.е. имеют одинаковую последовательность нуклеотидов, их можно обозначить так: АА или аа.

Доминантный признак (АА) – это признак проявляющийся у гибридов первого поколения при скрещивании чистых линий.

Рецессивный признак (аа) – передается по наследству при скрещивании, но не проявляется у гибридов первого поколения.

Половые клетки несут какой-либо один признак. При слиянии половых клеток образуется зигота. В соответствии от того какие аллели одного и того же гена она содержит, различают гомозиготу и гетерозиготу.

Гомозигота – это клетка или организм содержащие одинаковые аллели одного и того же гена. Гомозигота – это организм, образующий один сорт гамет, в потомстве не наблюдается расщепления, имеют одинаковые гены.

Гетерозигота – это клетка или организм, содержащие разные аллели одного и того же гена. Это организм образующий 2 сорта гамет.

Совокупность всех генов одного организма называют генотипом. Генотип это не только сумма генов. Возможность и форма проявления гена зависит от среды. В понятие среды входит не только внешние условия, но и присутствие других генов. Гены взаимодействуют друг с другом и могут повлиять на проявление действия соседних генов.

Совокупность всех признаков организма, формирующихся при взаимодействии организма с средой – фенотип. Сюда относят не только внешние признаки (цвет глаз, рост), но и биохимические (структура белка, активность фермента), гистологические (форма и размер клеток, строение тканей и органов), анатомические (строение тела и взаимное расположение органов).

Законы Менделя.

Моногибридным скрещиванием называют скрещивание двух организмов, отличающихся друг от друга по одной паре альтернативных признаков. Следовательно, при таком скрещивании прослеживается закономерности наследования только двух вариантов признака, развитие которых обусловлено парой аллельных генов. Например, признак – цвет семян, альтернативные варианты – желтый или зеленый. Все остальные признаки, свойственные данным организмам во внимание не принимаются.

Первый закон Менделя (закон единообразия гибридов первого поколения). У всех особей данного поколения признак проявляется одинаково. Сформулировать этот закон можно следующим образом: при скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающимся друг от друга по одной паре альтернативных признаков, все первое поколение гибридов (F1) окажется единообразным и будет нести признак одного из родителей.

Результаты скрещивания растений гороха, различающиеся по окраске семян (желтые и зеленые):

Р.: АА (желтые) × аа (зеленые)

Единообразие гибридов первого поколения.

Второй закон Менделя (закон расщепления).

Расщепление – это распределение доминантных и рецессивных признаков среди потомков в определенном соотношении.

Если потомков первого поколения – гетерозиготных особей, одинаковых по изучаемому признаку, скрестить между собой, то во втором поколении признаки обоих родителей проявляются в определенном числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только проявляется во втором гибридном поколении (F1).

F1. : Аа (желтые семена) × Аа (желтые семена)

F2.: АА; Аа; Аа; аа (1:2:1)

Ph.: 3 желтые семена : 1 зеленые семена (3:1)

Таким образом второй закон Менделя можно сформулировать следующим образом: при скрещивании потомков первого поколения между собой, во втором поколении наблюдается расщепление: по генотипу 1:2:1; по фенотипу 3:1.

Это означает, что среди потомков 25% организмов будут обладать доминантным признаком и являться гомозиготой, 50% потомков, также с доминантным фенотипом, окажутся гетерозиготой, а остальные 25% особей, несущих рецессивный признак, будут гомозиготны по рецессивному признаку.

Расщепление признаков в потомстве при скрещивании гетерозиготных особей Мендель объяснил тем, что гаметы с генетической точки зрения чисты, т.е. несут только один ген из аллельной пары.

При образовании половых клеток в каждую гамету попадает только один ген из аллельной пары.

В процессе развития гамет у гибрида гомологичные хромосомы во время первого мейотического деления попадают в разные клетки. Образуется два сорта гамет по данной аллельной паре. Цитологической основой расщепления признаков у потомства при моногибридном скрещивании является расхождение гомологичных хромосом и образование гаплоидных половых клеток в мейозе.

Для дигибридного скрещивания Мендель взял гомозиготные растения гороха, различающиеся по двум генам: окраске семян (желтые и зеленые) и форме семян (гладкие и морщинистые). При таком скрещивании признаки определяются различными парами генов: одна аллель отвечает за цвет семян, другая за форму семян. Желтая окраска горошин (А) доминирует над зеленой (а), а гладкая форма (В) над морщинистой (b).

При образовании гамет у гибрида первого поколения из каждой пары аллельных генов в гамету попадает только один.

Поскольку в организме образуется много половых клеток, у гибрида F1 возникает четыре сорта гамет в одинаковом количестве: АВ; аВ; Аb; ab. Во время оплодотворения каждая из гамет одного организма случайно встречается с любой из гамет другого организма. Все возможные сочетания мужских и женских гамет можно легко установить с помощью решетки Пеннета.

Р.: ААВВ (желтый гладкий) × ааbb (зеленый морщинистый)

F1.: АаВb (желтый гладкий) × АаВb

g.: АВ; аВ; Аb; ab АВ; аВ; Аb; ab

AB Ab aB ab
АВ AABB
желтый гладкий
AABb
желтый гладкий
AaBB
желтый гладкий
AaBb
желтый гладкий
Аb AABb
желтый гладкий
AAbb
Желтый морщинистый
AaBb
желтый гладкий
Aabb
желтый морщинистый
aB AaBB
желтый гладкий
AaBb
желтый гладкий
aaBB
зеленый гладкий
aaBb
зеленый гладкий
ab AaBb
желтый гладкий
Aabb
желтый морщинистый
aaBb
зеленый гладкий
aabb
зеленый морщинистый

9 (жг) : 3 (жм) : 3 (зг) : 1 (зм)

Из приведенной выше решетки Пеннета видно, что при этом скрещивании возникают 9 видов генотипов: AABB, AABb, AaBB, AaBb, AAbb, Aabb, aaBB, aaBb, aabb, т.к. в 16 сочетаниях есть повторения. Эти 9 генотипов проявляются в виде 4 фенотипов: желтые – гладкие; желтые – морщинистые; зеленые – гладкие; зеленые – морщинистые.

Теперь модно сформулировать III закон Менделя: при скрещивании двух гомозиготных особей, отличающимся друг от друга по двум парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

III. Закрепление изученного материала

IV. Домашнее задание

У человека глухонемота наследуется как рецессивный признак, а подагра – доминантный признак. Определите вероятность рождения глухонемого ребенка с предрасположенностью к подагре, у глухонемой матери, но не страдающей подагрой, и у мужчины с нормальным слухом и речью, болеющего подагрой.

Читайте также: