Кем была выдвинута теория прямого наследования

Обновлено: 02.07.2024

Все началось с Мальтуса?

Тезис о наличии такой борьбы между представителями одного и того же вида (внутривидовая борьба), как и между особями разных видов (межвидовая борьба) был основным нововведением Дарвина. Он заявил, что эволюция происходит благодаря отбору особей, лучше приспособленных к внешней среде (естественный отбор). Если места под солнцем для всех рождающихся действительно не хватает, и слабые погибают в конкуренции с сильными, то стоит какому-нибудь организму случайно оказаться более приспособленным к окружающей среде, как ему будет легче выжить и дать большее по количеству потомство. Если улучшенный признак будет сохранен потомками счастливчика, то они начнут теснить менее приспособленных к такой среде сородичей, быстрее размножаться. Природа сделает маленький шажок вперед, а там, глядишь, появится еще более удачливый счастливчик с еще более совершенным строением. И так – миллионы лет, пока существует жизнь на Земле.

Неопубликованные рукописи

К 1842—1844 гг., за те десятилетия, которые протекли с момента опубликования Ламарком его труда об эволюции, в биологии накопилось много фактов, вполне укладывавшихся в русло эволюционных представлений. Идея укрепилась, а общество созрело для ее восприятия.

Автор проводил такую аналогию: металлические опилки образуют характерную картину разветвленного стебля растения вокруг одного конца электрического проводника или полюса магнита и картину, более похожую на корень растения, – вокруг другого. Поэтому нельзя исключить, что растения возникли именно такими, ибо в их формировании приняли участие электрические силы. Несмотря на такие поверхностные суждения, автор создал произведение, читавшееся с неослабевающим интересом.

Один из приятелей Дарвина, писатель и публицист Роберт Чемберс, прислал ему экземпляр нашумевшей книги, и Дарвин с интересом ее читал. Через шесть лет после выхода книги стало ясно, что ее автором и был тот самый Чемберс.

К 1844 г. относится одно письмо Дарвина, проливающее свет на то, что он сам именно в этом году начал придавать своим раздумьям об эволюции огромное значение, чего не было раньше. Он написал 5 июня 1844 г. длинное письмо своей жене Эмме 3 , в котором в выспренних выражениях излагал свою волю: в случае его внезапной смерти истратить 400 фунтов на доведение до завершенного вида только что законченной рукописи об эволюции (задание было детализировано – подобрать надлежащие примеры из отмеченных Дарвином книг, отредактировать текст и т. д.). С другой стороны, именно в январе того же года в письме к ботанику Джозефу Гукеру, сыну директора Королевского ботанического сада и зятю тогдашнего патриарха геологии Чарлза Лайеля, Дарвин сообщил, что размышляет над проблемой изменчивости видов.

Автограф Чарлза Дарвина – письмо немецкому ботанику доктору Эрнсту, всю жизнь прожившему в Южной Америке (4 апреля 1880 г.). Государственный Дарвиновский музей, Москва

Что Дарвин, правда, делал, так это часто напоминал своим высокопоставленным друзьям в письмах, что все свободное время употребляет на обдумывание проблемы эволюции. Некоторым адресатам Дарвина был известен его главный тезис в самых общих чертах: для всех рождающихся не хватает запасов пищи, воды и прочих средств существования, в живых сохраняются лишь те, у кого есть потенциал для выживания. Именно они и обеспечивают прогресс в живом мире.

Эдвард Блит и его идея естественного отбора

Сторонники Дарвина объясняли позже такую странную его неторопливость с изданием труда об эволюции тем, что он будто бы был абсолютно убежден в том, что эта идея никому в голову прийти не могла, почему и спешить с публикацией гипотезы резона не было, хотя друзья поторапливали Дарвина с печатанием этой работы. Это стало ясно из опубликованной уже после смерти Дарвина сохранившейся переписки (сын Фрэнсис сообщил, что его отец не раз тщательно просматривал всю свою корреспонденцию и избирательно сжигал часть писем).

Блит был на год моложе Дарвина, рос в бедной семье и из-за трудного финансового положения смог закончить только обычную школу. Чтобы обеспечить себя, он был вынужден пойти работать, а все свободное время проводил за чтением, усердно посещал лондонский Британский музей. В 1841 г. он получил место хранителя Музея Королевского Азиатского общества в Бенгалии и провел 22 года в Индии. Здесь им были выполнены первоклассные исследования природы Юго-Восточной Азии. В 1863 г. из-за резкого ухудшения здоровья он был вынужден вернуться в Англию, где скончался в 1873 г.

Задача отбора, по Блиту, – сохранение неизменности основных признаков вида. Он полагал, что всякие новые изменения органов (сейчас мы бы назвали их мутациями) не могут принести чего-либо прогрессивного уже существующим видам, хорошо приспособившимся за миллионы лет к внешней среде. Изменения будут только нарушать хорошо отлаженный механизм взаимодействия среды и организмов. Поэтому все новички, неминуемо испорченные возникшими в них расстройствами, будут отсекаться отбором, не выдержат конкуренции с хорошо приспособленными типичными формами и вымрут. Таким образом, Блит применил принцип отбора к дикой природе, хотя отбору была придана консервативная, а не созидательная роль 4 .

Дарвин не мог не знать работ Блита: он держал в руках номера журналов с его статьями и цитировал их. Он писал, и не раз, что внимательно и тщательно проследил за всеми публикациями, касающимися вопросов развития жизни на Земле, и особенно – за близкими ему по духу. Он цитировал к тому же многие другие работы Блита, воздавая должное заслугам своего коллеги, поэтому никак не мог пройти мимо его работ о естественном отборе. Однако он ни разу не сослался на ту статью, в которой Блит четко и ясно изложил идею о борьбе за существование и о естественном отборе.

Но и в этом утверждении дотошные историки нашли натяжку: хотя Дарвин и указал точную дату, когда он прочел книгу Мальтуса (октябрь 1838 г.), но ни в очерке 1842 г., ни в более объемистом труде 1844 г. он на Мальтуса, как на подтолкнувшего его к идее эволюции, ни разу не сослался, и в том месте, где он его упомянул, речь шла вовсе не об идее конкуренции.

Видимо, этим и объясняется загадочный факт нежелания Дарвина в течение почти 20 лет публиковать труд о происхождении видов.

Эволюционные взгляды Альфреда Уоллеса

Возможно, этот труд продолжал бы и дальше оставаться в сундуке Дарвина, если бы в один из дней не произошло событие, заставившее его срочно изменить позицию. В 1858 г. он получил по почте работу своего соотечественника – Альфреда Уоллеса, находившегося в этот момент вдали от Англии. В ней Уоллес излагал ту же идею о роли естественного отбора для прогрессивной эволюции.


Однако предположение Уоллеса, что Дарвин поможет популяризации его работы, было ошибкой и навсегда лишило его вполне законного приоритета в опубликовании принципа эволюции путем отбора организмов, наиболее приспособленных к условиям среды. Дарвин не только ничего не сделал для быстрой публикации работы Уоллеса, но и постарался принять все меры, чтобы утвердить свое первенство.

Спешное обнародование работы Дарвина

Дарвин на заседании не присутствовал. Выступавших было двое – Лайель и Гукер. Один из них с жаром, другой более сдержанно рассказали, что были свидетелями творческих мук Дарвина и удостоверили своим авторитетом факт его приоритета. Заседание кончилось в гробовой тишине. Никто никаких заявлений не сделал.

Один из раритетов Дарвиновского Государственного музея – единственный в России скелет дронта, нелетающей птицы, некогда обитавшей на о. Маврикий и вымершей в 1680—1690 гг. В гибели этого вида были повинны моряки, для которых беззащитные птицы стали источником провианта

Основная цель этих книг заключалась в том, чтобы проиллюстрировать примерами принцип лучшего выживания животных и растений, более приспособленных к данной среде. Дарвин в большей мере использовал примеры из области одомашнивания животных, выведения пород скота, декоративных птиц и рыб, селекции сортов растений.

Отношение Дарвина к Ламарку

Дарвин не уставал повторять, что его взгляды не имеют ничего общего с ламарковскими, и на протяжении жизни не переставал дурно отзываться о своем великом предшественнике. Возможно, сама мысль, что он – не первый и что за 50 лет до него те же мысли уже были высказаны французом, тяготила его.

Даже основные группы примеров, использованных Дарвином, совпадали с примерами Ламарка (породы собак, домашних птиц, садовые растения). Только Дарвин старался привести как можно больше примеров, пусть и однотипных, но создающих у читателя впечатление солидности, основательности; Ламарк же ограничивал себя одним-двумя примерами по каждому пункту.

В чем мысли Дарвина сильно отличались от мыслей Ламарка, так это в попытке объяснения причин эволюции. Ламарк искал их внутри организмов, в заложенной в них способности изменять устройство тела в зависимости от упражнения органов (и во второй половине XIX в. это положение Ламарка расценивалось как чрезвычайно важное, ибо подавляющее большинство ученых полагали, что живым существам имманентно присуще свойство самосовершенствования). Дарвин же первоначально исходил из того, что свойства организмов могли изменяться из-за случайных причин, а внешняя среда исполняла роль контролера, отсекающего менее приспособленные особи. Но поскольку Дарвин не понимал, что могло изменяться в организмах, что собой представляют наследственные структуры, эти его мысли были целиком и полностью гипотетическим философствованием.

Геммулы вместо генов

Чарлз Дарвин, 1868 г. Эта фотография – один из раритетов Государственного Дарвиновского музея – была привезена его основателем А. Ф. Котсом. Фото Дж. М. Кэмерон

Первые подходы к познанию законов наследственности, правда еще в достаточно аморфном виде, сложились в результате работ немецкого исследователя Йозефа Готлиба Кёльрёйтера (1733—1806), несколько лет работавшего в Петербурге, и ряда других европейских ученых. Кёльрёйтер в 1756—1760 гг. провел первые опыты по гибридизации и сформулировал понятия о наследуемости.

В 1852 г. другой француз, Шарль Нодэн (1815—1899), более внимательно изучил эти два типа признаков и, подобно Сажрэ, установил, что в комбинациях доминантных и рецессивных признаков последние перестают проявляться. Однако стоит скрестить между собой такие гибриды, как у части их потомков они снова проступают (позже Мендель назовет этот процесс расщеплением признаков). Эти работы доказывали важнейший факт – сохранение наследственных структур, несущих информацию о подавляемых (рецессивных) признаках даже в тех случаях, когда внешне эти признаки не проявлялись. Нодэн попытался открыть количественные закономерности сочетания доминантных и рецессивных признаков, но, взявшись следить сразу за большим их числом, запутался в результатах и не смог продвинуться вперед.

Дарвину были хорошо известны результаты работ этих ученых, но он не понял их значения, не оценил той великой пользы, какую несли ему открытия элементарных наследственных единиц, закономерностей их комбинирования и проявления у потомков. Следовало сделать еще один шаг – упростить задачу и анализировать количественное распределение признаков у организмов, различающихся одним или максимум двумя признаками, и тогда законы генетики были бы открыты.

Первый генетик – крестьянский сын Иоганн Мендель, ставший настоятелем августинского монастыря Святого Томаша в Брюнне

Этот рывок в науке совершил чешский естествоиспытатель, блестящий экспериментатор Иоганн Грегор Мендель, в 1865 г. опубликовавший гениальный труд, в котором изложил выводы экспериментов по выявлению законов наследственности. Схему своих опытов Мендель построил именно путем упрощения задачи, когда он решил скрупулезно следить за поведением в скрещиваниях сначала лишь одного наследуемого признака, а затем – двух. В результате он доказал, теперь уже окончательно, наличие элементарных единиц наследственности, четко описал правила доминирования, открыл количественные закономерности комбинирования единиц наследственности у гибридов и правила расщепления наследственных признаков.

Дарвин, следовательно, мог сам эти законы открыть (он продвинулся вперед в понимании важности выяснения законов наследования, к тому же прогресс науки в то время был столь ощутим, что сделанное Менделем было в принципе доступно любому задумывающемуся над проблемами наследования). Но Дарвин не был экспериментатором. Конечно, он мог просто прочесть опубликованный Менделем труд на немецком языке, однако этого тоже не произошло.

Иоганн Мендель провел свои знаменитые опыты по скрещиванию разных сортов гороха на маленьком участке в монастырском саду

Бесхвостую кошку нельзя получить упражнениями

В большинстве случаев при обсуждении гипотезы пангенезиса Дарвина принято говорить, что ее автор не ушел далеко от своего времени, а, дескать, Мендель опередил свое время на 35 лет (недаром его законы действительно переоткрыли 35 годами позже). Но можно сказать и по-другому: в понимании механизмов наследования признаков Дарвин не дорос до своего современника Менделя.

Но почему первые изменения не наследуются, а вторые возникают и наследуются? Что собой вообще представляют наследственные структуры и как они передаются потомкам, он себе не представлял. Назвав их геммулами, он ни на йоту не приблизился к пониманию их природы. Интуитивно он, возможно, догадывался, что, сколько ни отрубай хвосты кошкам, чтобы те, прыгая с комодов, не сбивали веджвудских статуэток, приплод от бесхвостых котов и кошек все равно будет с хвостами.


Дарвиновский музей: ПРОЙДИ ПУТЕМ ЭВОЛЮЦИИ

Loren C. Eisley. Charles Darwin, Edward Blyth, and the theory of natural selection // Proc. Amer. Philosoph. Soc. 1959. V. 103, N. 1. P. 94—115.

Уоллес А. Р. Дарвинизм. Изложение теории естественного подбора и некоторые ее приложения. Перевед с англ. проф. М. А. Мензбира. Библиотека для самообразования. М.: Изд. Сытина, 1898. Т. XV.

Fleeming Jenkin. Review of The Origin of Species // North British Review. 1867. V. 46. P. 277—318.

Редакция и автор благодарят сотрудников Государственного Дарвиновского музея Е. Ю. Баранову, И. П. Калачеву и к. б. н. А. С. Рубцова за помощь в подготовке иллюстративного материала (С. 89—91, 96—97)

1 См. НАУКА из первых рук, 2010. №3 (33). С. 88—103

2 НАУКА из первых рук, 2005. №3 (6). С. 106—119

4 Наиболее видные американские дарвинисты XX в. Э. Майр, С. Дарлингтон, С. Д. Гульд оспаривали позже мнение относительно заимствования Дарвиным идей Э. Блита, основываясь на том, что Блит рассуждал об отборе ухудшенных форм, а не о прогрессивной эволюции

: 29 Сен 2010 , Чарлз Дарвин - великий популяризатор эволюционной идеи , том 34, №4

Способность организма передавать свои признаки и особенности развития потомству описывает хромосомная теория наследственности. Основные положения концепции разработал в начале XX века американский генетик Томас Морган со своими учениками. Выводы были сделаны на основе анализов событий сцепленного наследования, кроссинговера, сопоставления генетических и цитологических карт.

Хромосомная теория

Открытие хромосом

Если кратко, хромосомная теория наследственности берет свое начало с первых описаний хромосом при делении соматических клеток, которые сделал польский ботаник Эдуард Страсбургер в 1875 году. Через год его описания подтвердил зоолог из Германии Отто Бючли. Хронология истории развития теории:

 Грегор Мендель

  1. 1866 год — Грегор Мендель на основании длительных экспериментов сформулировал правила передачи наследственных признаков.
  2. 1874 — Иван Чистяков исследовал расположение генетических элементов в клетках растений.
  3. 1875 — Оскар Гертвиг пришел к выводу, что ядро клетки является хранителем наследственной информации.
  4. 1875 — Эдуард Страсбургер сделал заключение, что митоз в клетках животных и растений происходит одинаково.
  5. 1883 — Эдуард Бенеден исследовал мейоз и доказал, что наследственность передается как от отца, так и от матери.
  6. 1902 — Теодор Бовери, а через год Уильям Сеттон выявили, что гены находятся в хромосомах.
  7. 1915 — Томас Морган изложил суть теории хромосомного наследования.

До этого момента, в 1884 году, Гертвиг и Страсбургер сделали выводы, что наследственные свойства сохраняются в клеточном ядре. Следующие исследования были перенесены на отдельные хромосомы, чему способствовали работы Эдуарда Бенедена.

Во время проведения экспериментов с аскаридой он обратил внимание, что при первом делении яйца хромосомы наполовину происходят из ядра сперматозоида и яйцеклетки. В результате было доказано, что половые клетки обладают вдвое меньшим количеством носителей наследственной информации, чем соматические.

Деятельность Моргана и его учеников

Деятельность Моргана

В 1909 году при проведении экспериментов американский ученый Т. Морган стал использовать плодовых дрозофил. Во время их разведения были получены многочисленные мутации, которые позволили обнаружить сцепленные с полом гены. Профессор биологии в своих лекциях описывал, что первая мутация мушек обуславливала у них белый цвет глаз.

Таким образом, ученый открыл закономерность передачи мутации, которая соответствует наследованию хромосом, определяющих половую принадлежность. Чуть позже он охарактеризовал еще 2 мутации и пришел к выводу, что гены располагаются линейно, а из-за кроссинговера происходит нарушение сцепленного наследования.

В 1913 году А. Стертевант, последователь Моргана, распределил 6 генов на карте в порядке, который соответствует частоте мутаций, наследующихся совместно. Другой ученик К. Бриджес сравнил варианты исключений при наследовании мутаций, связанных с полом.

Открытая им закономерность возникновения аномальных видов носителей информации вместо нормальных, позволила объяснить передачу наследственных признаков только от одного родителя. Теория наследственности человека, которую создал Т. Морган, была высоко оценена мировым сообществом ученых, и ему в 1933 году вручили Нобелевскую премию.

Теория наследственности

Основатель хромосомной теории наследственности Морган выдвинул предположение об ограничении законов, автором которых был Г. Мендель. Для проведения экспериментов генетик использовал муху из рода дрозофил, которая обладает четырьмя парами хромосом и четкими альтернативными признаками. На основе данных, полученных в результате исследований, ученый обобщил выводы:

Теория наследственности

  1. Имеющиеся в одной хромосоме гены передаются по наследству совокупно или сцеплено.
  2. Между собой они создают группы сцепления. Их количество соответствует одинарному набору хранителей наследственной информации у гомогаметных особей и на одну больше у гетерогаметных.
  3. Гомологичные носители наследственной информации между собой могут меняться участками, что приводит к образованию гамет с новыми комбинациями генов.
  4. Частота обмена (кроссинговера) зависит от расположения генов в одной хромосоме. Чем расстояние между ними больше, тем чаще происходит обмен.
  5. Чтобы стало понятно, как распределены гены в хромосомах и какова частота кроссинговера, создают генетические карты. В них показывается система распределения и расстояние между генами.

Эти выводы хромосомной теории Моргана и его школы стали важнейшим вкладом в современные представления о гене в биологии.

Стала более понятна его сущность как функциональной единицы наследственности, делимости и принципы взаимодействия с другими генами.


Обзор

Автор
Редактор

Обратите внимание!

Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science.

100 лет хромосомной теории наследственности (1915–2015)

Нажмите на изображение, чтобы увеличить (откроется в отдельном окне).

Генетическая роль хромосом

Сейчас сложно сказать, кто сделал первое описание хромосом. В 1842 году швейцарский ботаник К. Нэгели (C. Nägeli) опубликовал работу, в которой изобразил некие тельца, возникающие на месте ядра во время деления клетки при образовании пыльцы у лилии и традесканции. Возможно, это и были первые рисунки хромосом. Первое (1873 год) подробное описание митоза у плоского червя Mesostoma ehrenbergii принадлежит, как считают, немецкому зоологу А. Шнайдеру (F.A. Schneider). Он описал не просто отдельные стадии митоза, которые видели и до него, а всю последовательность сложных изменений ядра: возникновение на его месте нитевидных телец, их расхождение в противоположные стороны и формирование новых ядер в дочерних клетках. Другой тип деления — мейоз — впервые подробно описал Э. ван Бенеден (E. van Beneden, Бельгия) в 1883 году, наблюдая за образованием гамет у аскариды. Он обнаружил, что в мейозе число хромосом уменьшается вдвое, а при оплодотворении восстанавливается, и, несмотря на различие в размерах, мужская и женская гаметы привносят в зиготу равное число хромосом.

В 1902 году Т. Бовери (T. Boveri, Германия) и в 1902–1903 годах У. Сеттон (W. Sutton, США) независимо друг от друга выдвинули гипотезу о генетической роли хромосом. Т. Бовери обнаружил, что зародыш морского ежа может нормально развиваться только при наличии у него хотя бы одного, но полного набора хромосом. Также он установил, что разные хромосомы не идентичны друг другу по своему составу. У. Сеттон же изучал гаметогенез у саранчи и понял, что поведение хромосом в мейозе и при оплодотворении полностью объясняет закономерности расхождения менделевских факторов и образования их новых комбинаций.

Одним из важных свидетельств генетической функции хромосом было доказательство роли половых хромосом в определении пола. К. Бриджес в 1921–1925 годах сформулировал балансовую теорию определения пола у дрозофилы. Он показал, что пол зависит от баланса (соотношения) числа X-хромосом и наборов аутосом. При этом Y-хромосома в определении пола у дрозофилы (в отличие от человека) не участвует.

У Менделя разные признаки гороха наследовались независимо. То, что это правило выполняется далеко не всегда, показали опыты английских генетиков У. Бэтсона (W. Bateson), Э. Саундерс (E. Saunders) и Р. Пеннета (R. Punnett) с растениями душистого горошка. Результаты опытов были опубликованы в 1905–1906 годах. Позднее Т. Морган с сотрудниками в экспериментах с дрозофилой также показали, что множество пар признаков наследуется сцепленно. Их разъединение и появление новых комбинаций происходит лишь иногда в результате кроссинговера, то есть обмена участками между гомологичными хромосомами.

Цитологические доказательства кроссинговера были получены в 1931 году: К. Штерн (C. Stern, США) использовал для этого дрозофил, а Х. Крейгтон (H. Creighton, США) и Б. МакКлинток (B. McClintock, США) — кукурузу. Они показали, что гомологичные хромосомы во время мейоза действительно способны обмениваться своими участками. Необходимо отметить, что Барбара МакКлинток вообще сыграла выдающуюся роль в генетике и за одно из своих открытий — мобильных генетических элементов * (особых последовательностей ДНК, способных перемещаться по геному) — в 1983 году была награждена Нобелевской премией.

Еще одним вариантом обмена участками является сестринский хроматидный обмен (СХО). Если при кроссинговере обмениваются хроматиды разных хромосом, то в случае СХО обмениваются хроматиды внутри одной хромосомы. Впервые СХО увидел американский генетик Д. Тейлор (J. Taylor) в 1958 году.

С кроссинговером, хоть и неоднозначно, но связано формирование в профазе мейоза особой структуры из пары гомологичных хромосом — синаптонемного комплекса. Он был открыт в 1956 году независимо двумя американскими цитологами: М. Мозесом (M. Moses) у речного рака и Д. Фоцеттом (D. Fawcett) у мыши.

Многообразие хромосом

Если понимать под хромосомами любые носители наследственной информации, то они исключительно разнообразны по размеру, форме, внешнему виду, составу и числу. Хромосомы вирусов и бактерий могут быть кольцевыми и линейными. Хромосомы хлоропластов и митохондрий имеют кольцевую форму. Ядерные хромосомы эукариот имеют линейную форму, и именно они в виде телец X- и V-образной формы обычно приходят на ум при упоминании хромосом. Их называют митотическими или метафазными, поскольку такой вид они имеют во время деления — митоза (а метафаза — это одна из его стадий).

В 1912 году российский ботаник и цитолог С.Г. Навашин показал, что метафазные хромосомы обладают индивидуальным набором признаков, включающим размер, соотношение длин плеч, наличие спутников и перетяжек. Используя положение центромеры или соотношение длин плеч, С.Г. Навашин предложил классификацию митотических хромосом, которую используют и по сей день: метацентрики, субметацентрики, акроцентрики и телоцентрики.

Число хромосом у разных видов организмов может варьировать в самых широких пределах: от двух (у пары видов растений и одного из австралийских муравьев) до 1440 у папоротника Ophioglossum reticulatum и даже 1600 у морской радиолярии Aulacantha scolymantha. У человека число хромосом составляет 46, и оно было определено только в 1955 году, а опубликовано в 1956 цитогенетиком китайского происхождения Д. Чио (J. Tjio) в соавторстве со своим руководителем А. Леваном (A. Levan) в Швеции. Несколькими месяцами позже число подтвердили британцы Ч. Форд (C. Ford) и Д. Хамертон (J. Hamerton). Количество хромосом человека пытались определить еще с конца XIX века. В разных случаях получались разные значения: 18, 24, 47 или 48, — и только в 1955 году убедились, что хромосом у человека 46. В честь этого события на здании Института генетики Университета шведского города Лунда (где это событие и случилось) в 2003 году была открыта мемориальная доска с изображением той самой метафазной пластинки, по которой и были посчитаны хромосомы. Любопытно, что число хромосом шимпанзе (48) было выяснено на 15 лет раньше.

Общепринято, что число хромосом у каждого вида живых организмов постоянно, и в подавляющем большинстве случаев так и есть. Однако у некоторых животных и растений существуют так называемые сверхчисленные, или добавочные, хромосомы. Все хромосомы основного набора называют A-хромосомами. Они присутствуют всегда, и потеря или добавление хотя бы одной из них ведет к серьезным последствиям. Добавочные же хромосомы называют B-хромосомами, и их главные особенности — необязательность наличия и непостоянство числа. Впервые сверхчисленные хромосомы были найдены Э. Уилсоном (E. Wilson, США) в 1906 году у клопа Metapodius terminalis.

Совершенно особое место среди всех типов хромосом занимают политенные хромосомы, которые имеют вид длинных толстых шнуров с поперечными полосками. Их открыл французский эмбриолог Э. Бальбиани (E. Balbiani) в 1881 году в ядрах клеток слюнных желез личинок комара Chironomus plumosus. Политенные хромосомы сыграли выдающуюся роль в развитии генетики, цитогенетики и молекулярной биологии. С их помощью была показана линейность расположения генов и однозначно доказана генетическая роль хромосом. На политенных хромосомах дрозофил был впервые описан хромосомный полиморфизм диких популяций. Именно на политенных хромосомах были открыты гены белков теплового шока — компонентов системы, охраняющей клетки всех организмов от стрессорных воздействий. Политенные хромосомы сыграли ключевую роль в исследовании системы дозовой компенсации у дрозофилы.

Эволюция хромосом и геномов

В современных цитогенетических исследованиях важную роль играет дифференциальная окраска. Впервые способность хромосом окрашиваться дифференциально (то есть неодинаково по длине) продемонстрировали англичане С. Дарлингтон (C. Darlington) и Л. Ла Кур (L. La Cour) в 1938 году. Другой важный метод исследования — это гибридизация in situ, которая позволяет определить положение любого фрагмента ДНК на хромосоме. В основе метода лежит способность нуклеиновых кислот образовывать двуцепочечные молекулы, как ДНК—ДНК, так и РНК—ДНК. Придумали этот метод в 1969 году Д. Голл (J. Gall) и М. Пардью (M. Pardue) из США и Х. Джон (H. John), М. Бирнстил (M. Birnstiel) и К. Джонс (K. Jones) из Великобритании.

Комбинация этих методов дает возможность подробно исследовать эволюцию хромосом и геномов*, а неизменным спутником эволюционного процесса являются хромосомные перестройки. По мере эволюции вида в его хромосомах неизбежно возникают перестройки, которые меняют порядок генов по сравнению с предковым видом. Чем дальше виды уходят друг от друга, тем больше хромосомных перестроек их отличает, и тем больше меняется порядок генов. Известны разные типы перестроек: делеции (потеря), дупликации (удвоение) и транслокации (перемещение) участков хромосом, которые обнаружил К. Бриджес в 1916, 1919 и 1923 годах соответственно. Еще один тип — это инверсии (поворот участка хромосомы на 180°), описанные А. Стёртевантом в 1921 году. Кроме того, существует особый тип перестроек, называемый Робертсоновской транслокацией (или центрическим слиянием). Первым ее описал американец У. Робертсон (W. Robertson) в 1916 году, сравнивая хромосомные наборы близких видов саранчи. Суть этой перестройки сводится к слиянию двух акроцентрических хромосом в одну метацентрическую или субметацентрическую. Существует и обратный процесс — центрическое разделение. В этом случае мета- или субметацентрическая хромосома делится на две акроцентрических.

Положение хромосом в ядре

Состав хромосом. ДНК

Хромосомы представляют собой структуры, состоящие из сложного комплекса ДНК, РНК и белков. Такой комплекс называется хроматином.

ДНК как химическое вещество открыл и выделил в чистом виде молодой швейцарский исследователь Ф. Мишер (F. Miescher), работая в 1868–1869 годах в университете немецкого города Тюбингена. Он изучал химический состав лейкоцитов, источником которых служил гной с бинтов из местной хирургической клиники. Ф. Мишер разработал метод разделения ядер и цитоплазмы клеток и анализировал состав ядер. Помимо белков и липидов он обнаружил вещество, которое назвал нуклеином (от слова nucleus — ядро), а сейчас оно известно как ДНК. То, что именно ДНК является носителем наследственной информации, первыми установили в 1944 году американцы О. Эйвери (O. Avery), К. МакЛауд (C. MacLeod) и М. МакКарти (M. McCarty) в экспериментах по заражению мышей пневмококками.

Состав хромосом. Белки́

C-концевые части молекул гистонов плотно свернуты, а N-концевые не имеют определенной структуры и свободно расходятся в стороны. В 1963–1964 годах было обнаружено, что некоторые аминокислотные остатки в гистонах могут быть ковалентно модифицированы, то есть ацетилированы или метилированы. Сейчас список модификаций значительно расширился, к остаткам аминокислот могут быть присоединены как относительно простые группы — метильная, ацетильная, фосфатная, — так и сложные крупные молекулы: биотин, олигопептиды или цепочки ADP-рибозы. Модификации появляются в основном на N- и, в гораздо меньшей степени, на С-концевой частях молекул гистонов.

В 2007 году был начат проект modENCODE. В его реализации участвует множество лабораторий по всему миру, одной из задач которых является построение профилей распределения самых разных белков и модификаций гистонов на хромосомах дрозофилы и нематоды Caenorhabditis elegans.

Эпигенетика

По мере развития многоклеточного организма из зиготы происходит постепенная дифференцировка клеток из тотипотентных в плюрипотентные, затем в мультипотентные, унипотентные и наконец в полностью дифференцированные клетки, из которых ничего другого уже не получится. На каждом из этих этапов работают свои наборы генов, и после прохождения стадии эти гены инактивируются. С последовательностью ДНК генов ничего не происходит, меняется белковый состав хромосомы в данном участке и, как следствие, эпигенетическое состояние генов.

Пересадка ядер соматических клеток в ооцит — это не единственный способ перезапуска эпигенетической программы. В последнее десятилетие были достигнуты колоссальные успехи в перепрограммировании соматических ядер путем искусственной активации в них генов, характерных для эмбриональных стволовых клеток. В 2006 году японские исследователи К. Такахаши (K. Takahashi) и Ш. Яманака (S. Yamanaka) получили из фибробластов мыши клетки, хоть и не идентичные эмбриональным стволовым, но очень похожие на них по морфологии, набору экспрессирующихся генов, способности к делению и дифференцировке. Они назвали такие клетки индуцированными плюрипотентными стволовыми клетками (ИПСК; iPS cells)*. Перепрограммирование произошло в результате искусственного запуска всего четырех генов (Oct3/4, Sox2, c-Myc и Klf4), которые работают в нормальных стволовых клетках. В 2007 году та же японская группа под руководством Ш. Яманака и — независимо от нее — коллектив Д. Томсона (J. Thomson) в США получили iPS клетки уже из фибробластов человека. Японцы перепрограммировали их с помощью тех же генов, что и в случае мыши, а американцы активировали гены Oct4, Sox2, Nanog и Lin28. За открытие перепрограммирования клеток Д. Гёрдон и Ш. Яманака получили в 2012 году Нобелевскую премию.

Гетерохроматин

Важным свойством гетерохроматина является способность инактивировать помещенные в него эухроматиновые гены. Это явление называется эффектом положения мозаичного типа. Оно было обнаружено в 1930 году Г. Мёллером у дрозофилы. В результате хромосомной перестройки ген white попал в гетерохроматин. Этот ген отвечает за красный цвет глаз, а если он не работает, то глаза становятся белыми. У Г. Мёллера же получились мухи, глаза которых были ни красными, ни белыми, а пятнистыми, и у разных мух пятна были разной формы и размера. Это объясняется тем, что сам ген остается неповрежденным, а лишь случайным образом инактивируется в одних клетках глаза и работает в других.

Теломеры

Дозовая компенсация

У дрозофилы природа изобрела другой механизм, противоположный по сути механизму млекопитающих: единственная X-хромосома самцов гиперактивируется и работает как две X-хромосомы самок. То, что суммарная активность двух копий какого-либо гена из X-хромосомы у самок и одной копии у самцов дрозофилы одинакова, было обнаружено еще на заре развития генетики. Это сделали К. Штерн в 1929 году и Г. Мёллер в 1931 году, так что дрозофила — это первый организм, у которого нашли дозовую компенсацию.

Ну и наконец.

Пара слов об открытии, которое не связано напрямую с хромосомами, но его очень активно используют, в том числе и для исследования разных сторон жизни хромосом. В 2008 году О. Шимомура (O. Shimomura), М. Чалфи (M. Chalfie) и Р. Циен (R. Tsien) из США получили Нобелевскую премию за открытие, выделение и применение зеленого флуоресцирующего белка (GFP) медузы Aequorea victoria. С помощью молекулярных манипуляций можно соединить ген белка GFP с геном любого другого белка и получить химерный белок, который будет выполнять как свою исходную функцию, так и светиться зеленым цветом. Это дает возможность видеть, в каких клетках работает белок, в ядре или цитоплазме, в каких частях хромосом. Кроме зеленого (GFP) сейчас известны красный (RFP) и желтый (YFP) флуоресцирующие белки*.

Наследование приобретенных признаков

В прошлых статьях мы разобрали несколько мифов о теории эволюции и опровергли некоторые аргументы креационистов. Сегодня же мы обратимся к теме, которая на протяжении полутора веков вызывает нешуточные споры среди самих эволюционистов.

Речь у нас пойдет о наследовании приобретенных признаков. Вопрос обычно ставится так: если животное при жизни приобрело некое качество, то передаст ли оно его своим потомкам? Или это качество останется лишь индивидуальным достижением особи, а ее детям так ничего и не перепадет?

Последние полвека наука отвечала так: нет, приобретенные признаки не наследуются. В школах и вузах нам рассказывали, что эволюционные изменения происходят исключительно благодаря генетическим мутациям, а все альтернативные идеи — это ламаркизм, лысенковщина и мракобесие.

В этой статье мы с вами рассмотрим историю вопроса, а заодно узнаем, как на него отвечает современная наука.


Учение Ламарка

Как мы помним, первая эволюционная теория была разработана Жаном-Батистом Ламарком. Держалась она на двух китах:

2. Наследование приобретенных признаков (далее — просто НПП). Ламарк считал, что изменения, которые происходят с животным в течение жизни, передаются его потомкам.



Что же заставляет животных меняться? Ламарк утверждал, что все эволюционные преобразования происходят под воздействием окружающий среды. Если животное, например, поселилось в воде, оно отрастит плавники и жабры. А если оно обосновалось в лесу, то научится лазить по деревьям или маскироваться среди ветвей и листьев.

И это не сильно бы противоречило современной теории эволюции, если бы не одно но. Дело в том, что Ламарк ничего не говорил о естественном отборе. По его словам, животные меняются благодаря тренировке того или иного органа.

Если животное по какой-то причине перестанет ходить в качалку не будет тренировать свои органы, те постепенно атрофируются. Именно это произошло с крыльями страусов, пингвинов и прочих нелетающих птиц.

Ни о какой ДНК и ни о каких генах Ламарк, естественно, не знал. На дворе стояло начало XIX века, и эти теории казались ученому чем-то вполне логичным и очевидным. И, возможно, именно так они выглядят до сих пор, поскольку идеи НПП оказались на редкость жизнеспособными.

А как считал Дарвин?

В наше время многие уверены, что Чарльз Дарвин полностью отрицал учение Ламарка, включая НПП. Вызвано это тем, что в школах и вузах сегодня преподают синтетическую теорию эволюции, однако связывают ее с именем Дарвина.

На самом деле первоначальный дарвинизм не был столь близок к современной науке. Расхождение у Дарвина с Ламарком было в основном по первому пункту — о стремлении жизни к совершенству. Всю эту метафизику Дарвин поменял на естественный отбор и оказался абсолютно прав.


Пангенез был очень похож на генетику, которую вывернули наизнанку. По словам Дарвина, в каждой живой клетке содержатся мельчайшие частицы — геммулы, которые накапливают информацию об изменениях, происходящих в организме. Эти частицы разносятся вместе с кровью по всему телу и постепенно проникают в половые клетки. Таким нехитрым способом хранящаяся в них информация передается следующему поколению.

В отличие от самой теории эволюции, эта идея Дарвина не оказала никакого влияния на науку. О геммулах вскоре почти забыли, поскольку они противоречили последующим открытиям.

Порог Вейсмана и неодарвинизм


В 1860-х годах немецкий зоолог Август Вейсман пересмотрел теорию Дарвина и положил начало неодарвинизму. Это учение с некоторыми поправками и дополнениями вполне успешно дожило до наших дней. Главным же нововведением Вейсмана как раз и стало отрицание НПП.

Ученый пришел к этому не сразу. Первоначально он разделял взгляды Ламарка и Дарвина на наследственность. Но в отличие от них, он решил не ограничиваться умозрительными рассуждениями, а проверил все с помощью опытов.

В одном из экспериментов ученый на протяжении нескольких поколений отрубал крысам хвосты. Он ждал, что рано или поздно у них начнут рождаться бесхвостые крысята. Этого, естественно, не произошло (в этом месте автор хотел пошутить про иудеев, но передумал).

В другом эксперименте Вейсман пересаживал яичники от белых мышей к черным. В результате все черные особи (которые сумели после такого выжить) внезапно начали производить на свет белое потомство.

Соматические клетки не могут передавать информацию половым клеткам.

Почему так происходит? Ответ на этот вопрос дала в XX веке молекулярная биология. Оказалось, что информация в организме может передаваться только от ДНК к белкам, но никак не наоборот.

Сам процесс передачи информации проходит в два этапа:

1. Транскрипция. Информация переписывается из ДНК на молекулу РНК.
2. Трансляция. На основе информации из РНК создаются белки, от которых и зависит строение организма.

Схематически все это можно обозначить так:


Впрочем, позже выяснилось, что у этой последовательности бывают исключения. Оказалось, что некоторые вирусы умеют переписывать информацию со своей РНК в ДНК хозяина. Именно по такому принципу работает печально известный ВИЧ — вирус СПИДа.

С учетом этого, схему можно переписать так:


Сведений о передаче информации от белков к РНК или ДНК до сих пор нет.

Лысенковщина и ее последствия

Барьер Вейсмана был подтвержден молекулярной биологией и надолго превратился в догму. А любые попытки заявить о возможности НПП вызывали у научного сообщества раздражение и неприязнь. Почему? Дело в том, что в развитие эволюционной теории вмешалась политика.

И тут нам придется затронуть такую непростую тему, как деятельность академика Трофима Денисовича Лысенко, который долгие годы фактически возглавлял советскую биологическую науку.


К сожалению, создать объективную картину того, что происходило в то время, у нас не получится. Проблема в том, что все разговоры о Лысенко велись и ведутся исключительно через призму политики и идеологии.

Первоначально Лысенко всячески восхваляли и превозносили. Затем академика начали демонизировать, сделав его символом воинствующего невежества (обычно критика Лысенко соседствует с критикой сталинского СССР). И даже сегодня все попытки разобраться в его деятельности ничем хорошим не заканчиваются. Современные авторы или опять скатываются в бездумное восхваление, с замалчиванием ошибок, или в такую же бездумную демонизацию.

Так или иначе, но Лысенко и его соратники последовательно отстаивали принцип НПП. Они отрицали хромосомную теорию наследственности, законы Менделя и даже пользу молекулярной биологии для сельского хозяйства. Вот некоторые высказывания Лысенко:

В ответ на Ваше отношение ещё раз заявляю, что никаких идей и методов молекулярной генетики в своих работах мы не применяли и не намерены их применять. Я хотел бы посоветовать всем биологам, селекционерам, а также студентам Советского Союза не воспринимать эти идеи и методы, так как они только тормозят познание сущности живого, то есть развитие теоретической биологии.

— Лысенко Т.Д. Из письма Н.П. Дубинину (1974).

Именно этому и посвящены главные работы Лысенко: о яровизации и о стадийном развитии растений.

(Примечание: Забегая вперед, замечу, что сегодня некоторые публицисты пытаются преподносить теории Лысенко как опередившие свое время. Дескать, талантливый ученый предвосхитил открытия в области эпигенетики и использовал метилирование ДНК еще до того, как до этого дошла молекулярная биология. Так это или нет — вопрос очень спорный).


По поводу НПП между советскими агробиологами, которых возглавлял Лысенко, и советскими генетиками-неодарвинистами долгие годы шел нешуточный спор.

Какими экспериментами ученые подтверждали свою правоту? Если какие-то эксперименты и проводились, то о них мало что известно. Дискуссии в основном ограничивались теорией и велись примерно на таком уровне:

Как мы помним, в противостоянии генетиков и агробиологов победили последние (и к науке это опять же никого отношения не имело). В результате идеи Лысенко безраздельно царили в СССР долгие годы, а когда маятник качнулся в другую сторону, все они были преданы анафеме.

Эти события нанесли серьезный ущерб не только советской науке, но и западной. Проблема НПП отныне перешла в область идеологии, и любые разговоры о ней еще долго вызывали у генетиков стойкое отвращение.

Что говорит современная наука?

Например, в эту картину совсем не вписывался вирусный перенос генетической информации. Оказалось, что вирусы, покидая клетку-хозяина, могут захватывать из нее кусочки ДНК и переносить их в другие клетки.

Эпигенетическое наследование

Вскоре ученым стало понятно, что врожденные признаки организма зависят не только от ДНК. Вот только несколько примеров:

— Мыши-полевки в период похолодания рождаются с более густой шерстью. Эти изменения не затрагивают строение ДНК и зависят от концентрации мелатонина в организме матери.

— В 1998 году швейцарский ученый Ренато Паро обнаружил аналогичный эффект у дрозофил. Он проводил опыты с мушками, у которых в результате мутации глаза стали желтого цвета. Когда же ученый повысил температуру среды, на свет снова начали появляться особи с нормальными глазами. И этот признак передавался в течение еще четырех поколений.

— Нечто похожее можно наблюдать и у людей. Оказалось, что предрасположенность взрослого человека к диабету 2-го типа зависит от месяца его рождения. При этом сама болезнь часто проявляется только в возрасте 50-60 лет.

Чтобы объяснить все эти явления, ученые выдвинули интересную гипотезу. Они предположили, что таким способом организм родителей помогает детям быстро приспособиться к изменениям окружающей среды.

Например, если организм матери не получает достаточного количества питательных веществ, то у ее детей будет проявляться склонность к ожирению. Ведь с точки зрения природы, это качество поможет им выжить в голодные годы.

Самое интересное, что эти изменения вообще не затрагивают структуру ДНК, но при этом часто передаются по наследству. Изучением таких изменений занимается эпигенетика — одно из самых молодых и перспективных направлений биологии.


Рисунок метилирования передается по наследству. Например, дети, родившиеся во время последнего сильного голода в Голландии (1944-1945 годы), оказались склонны к ожирению и диабету.


Их дети, в свою очередь, тоже унаследовали все эти заболевания. А те, кто родились в 1943 или в 1946 году подобных отклонений не имели, поэтому и дети у них рождались здоровыми.

Кроме метилирования ДНК, есть и другие механизмы эпигенетического наследования: инактивация X-хромосомы, РНК-интерференция и ремоделирование хроматина. При этом эпигенетика в наши дни еще только набирает обороты. В ее развитие ученые видят залог будущей победы над старением и онкологическими заболеваниями.

Иммунная система

Наша иммунная система — одно из самых удивительных изобретений эволюции. Ученые долго ломали голову, как лимфоциты умудряются создавать столько разнообразных антител. Ведь в организме человека их может быть до одного миллиона, и чтобы их произвести нам понадобилось бы почти два миллиона генов.

Но у людей их всего около 30 тысяч. Как же так?

Оказалось, что антитела не запрограммированы заранее, а создаются по мере необходимости из специальных генов-заготовок. Когда наш организм сталкивается с неизвестным возбудителем заболеваний, заготовки начинают интенсивно мутировать. Рано или поздно из них получается необходимое антитело, которое и побеждает врага.


Но это еще не все. Недавно группа австралийских биологов выдвинула интересную версию, что эти иммунные изменения способны передаваться по наследству. Судя по некоторым данным, лимфоциты умеют создавать подобия вирусов, которые несут в себе информацию о строении антитела.

Несмотря на все эти открытия, барьер Вейсмана по-прежнему работает для большинства случаев. И именно генетические мутации являются главной движущей силой эволюции.

Однако даже сам Вейсман не пытался представить свое открытие как аксиому. Он справедливо полагал, что будущие исследования и эксперименты помогут нам гораздо лучше понять, как происходит наследование.

Познание нельзя сводить к догмам. Любые догмы, не подкрепленные надежной экспериментальной базой, способны серьезно затормозить развитие науки.

Тем более что эволюция — это явление сложное и многогранное. И за миллионы лет природа сумела создать множество удивительных механизмов, которые помогают организмам выживать и приспосабливаться к окружающей среде.

Читайте также: