Каким путем можно обеспечить пайку соединений с некапиллярными увеличенными зазорами

Обновлено: 30.06.2024

Пайка необходима для плотного соединения двух деталей. Процесс происходит с помощью припоя – скрепляющего элементы оловом, свинцом и прочими расплавленными составами.

Особенности

Пайка припоем представляет собой следующее действия: расплавленный металл наносится на поверхность другого (твердого) металла. Детали, которые подвергаются спаиванию, погружаются в слой припоя и застывают вместе с ним, приобретая неподвижное соединение.

Этот процесс должен иметь две важные составляющие: крепость шва и его проводимость. Оба фактора добавляют друг друга, чем плотнее шов, тем выше проводимость материала. Кстати, припой также создает сопротивление, что следует учитывать и стараться делать соединение как можно тоньше.

Для того чтобы произвести пайку, необходимы некоторые условия.

  1. Тщательное очищение места спаивания. Даже тончайшая загрязняющая оксидная пленка не позволит совершить безупречное соединение.
  2. Температура, при которой плавится припой, должна быть ниже, чем у рабочих деталей.

Способы

Классификация методов проведения пайки неоднозначная, попробуем разобраться по порядку.

По способу очищения от оксидов

К данному разделу относится флюсовая и бесфлюсовая пайка.

  • Флюсовая. Происходит с участием флюса, который может образовывать и собственный припой за счет компонентов во время плавления. При высоких температурных показателях окиси удаляются.
  • Бесфлюсовая. Флюс не применяется, удаление окисных образований происходит в вакуумной среде либо в газовой оболочке. Есть еще способ разрушения окисной пленки без применения флюсов – процесс происходит за счет работы ультразвука в припое, но для этого нужен особый паяльник.

По типам скопления припоя в зазоре

В этом разделе рассматривается три вида пайки.

  • Припоем. Используется уже готовый металлический припой или с дополнением тугоплавких наполнителей (композиционный).
  • Контактнореактивная. Припой образуется путем контакта соединяемых материалов (может участвовать и промежуточный металл).
  • Реактивно-флюсовая. В этом случае припой образует контакт металла с флюсом.

По виду наполнения зазора припоем

Используется два вида – капиллярный и некапиллярный.

  • Капиллярный. Металл растворяется в припое, концентрируется в зазоре и сохраняется там благодаря капиллярным силам.
  • Некапиллярный. Который наполняет зазор любым другим способом: с участием силы тяжести; электромагнитных; магнитных полей.

По температуре и последующей кристаллизации спаечного шва

В данном разделе можно выделить два способа пайки.

  • Кристаллизация происходит с помощью охлаждения. Используя этот способ, припой нагревают на 60-90 градусов выше температуры, необходимой для его плавления. Происходит относительно скоростное охлаждение без диффузии металлов.
  • Диффузная пайка. Здесь работает изотермическая длительная выдержка, которая в результате кристаллизации дает более твердый однородный уровень шва.

По температуре пайки

Что касается температурного режима, то точкой отсчета можно считать 450 градусов – если ниже этого параметра, пайка считается низкотемпературной, в остальных случаях ее называют высокотемпературной. Известно много способов пайки, зависящих от способов нагрева: плазменная, газопламенной волной, паяльниками, в печах, с помощью погружения в ванну, индукционным методом.

По давлению, оказываемому на обрабатываемые детали

В этом случае либо давление есть, либо его нет.

  • Пайка с помощью пресса. Давление применяют для обеспечения четкого положения между предметом пайки и зазором, для этого используются специальные зажимы.
  • Без давления. Прессование при низкотемпературном режиме можно не делать.



По синхронности и ступенчатости паяных соединений

В этом разделе можно отметить два способа.

  • Одновременная пайка. Когда за один нагрев производится несколько паяных соединений в узле.
  • Ступенчатая. Каждое соединение требует отдельного нагрева и выполняется после завершения предыдущего.

Выбор припоя

При выборе припоя любой марки учитываются следующие факторы:

  • виды металлов деталей, которые предстоит спаивать;
  • каким способом будет происходить пайка;
  • в каком температурном режиме;
  • размеры и характеристики соединяемых элементов;
  • механическая прочность.

Сплавы разделяют на две основные группы: тугоплавкие и мягкие. Переходная граница между ними составляет + 450 градусов. Твердые сплавы дают более прочный и надежный шов, зато легкоплавкие составы незаменимы в работе с радиоэлектроникой.



Легкоплавкие (мягкие)

Из этой группы самыми распространенными припоями являются оловянно-свинцовый с обозначением ПОС. В маркировке после обозначения буквами идет цифра, которая говорит о присутствии олова в смеси (процентное соотношение), к примеру, ПОС-60 означает, что олова 60%. Такой вид сварки необходим в производстве и ремонте электронных устройств.

Существуют и другие виды мягкой пайки.

  • Пос-10. Состав имеет большое соотношение свинца, который является токсичным. Но такой припой все же используют в радиоприборах и реле.
  • ПОС-30. Соединяют листы железа и цинка, кабельные изделия.
  • ПОС-40. Применяют для спаивания цинка, а также, меди и латуни.
  • ПОС-61. Поддерживает щадящую низкую температуру плавления (18о градусов), что необходимо для некоторых привередливых радиодеталей и печатных плат.
  • ПОС-90. Припой содержит 90% олова и только 10% вредного свинца. Такой состав используют для спаивания посуды и оборудования для медицинских учреждений.
  • ПОССу. Подобная маркировка говорит о том, что в состав припоя, кроме олова и свинца, входит 2% сурьмы. Это необходимо для спаивания кабельных изделий и электрического оборудования.

Сегодня применяются жидкие припои и бессвинцового содержания.

Тугоплавкие (твердые)

Именно твердые припои гарантируют прочное соединение деталей. Но не каждое устройство их выдержит, так как нагревать состав приходится до 500 градусов. Разделяют две высокотемпературные группы: смеси серебра и меди.

  • Припой из меди. Имеет медное соединение с цинком, довольно хрупок, применяется для ремонта деталей, не испытывающих большие нагрузки, вибрации, ударных потрясений.
  • Серебряный припой. Относится к универсальным видам, так как может паять все, но стоит дорого, экономия в таком случае обоснована. Серебряным припоем пользуются в ортопедической стоматологии, в ювелирных мастерских. Маркировки состава серебра отмечаются буквенными обозначениями – ПСр.



Низкотемпературные

Такие виды припоя необходимы элементам спайки, нуждающимся в щадящем температурном режиме. Они бывают следующих видов.

  • ПОСК 50-18. Этот продукт состоит наполовину из олова, на 20% из кадмия, 30% из свинца. Кадмий усиливает токсичность свинца, но он же и придает большую устойчивость к коррозии. Температура плавления не превышает 145 градусов. Используют для спаивания более капризных компонентов.
  • ПОСВ-50 (РОЗЕ). Этот сплав содержит еще низкую температуру плавления – 90 градусов. В нем половина свинца и олова (1: 1) и половина висмута. Используют в ювелирном деле, в электромеханике, при спаивании печатных плат.
  • Сплав ВУДА. Составляет температуру плавления всего 68 градусов. Висмут занимает половину сплава, 25% – свинец, остальное – олово и кадмий. Соотношение выдает токсичный сплав. Применяют в микросхемах, в самолетостроении, в стоматологии.

Существуют и другие виды припоев – магниевые, золотые, никелевые, из бронзы и прочие, рассказать обо всех в рамках одной статьи невозможно, но главные направления мы рассмотрели.

Оборудование

Чтобы совершить пайку в бытовых условиях, особого дорогого оборудования не потребуется. Достаточно подготовить несложные приборы и инструменты.

Паяльник

Они бывают двух типов: работающие от сети и от паяльной станции.

  • Сетевому виду требуется напряжение 220 В. Это более мощное устройство, оно подходит для пайки крупных деталей. Нагревается основательно и качественно, но для работы с мелкими элементами его не применяют, так как прибор тяжеловат, и рукоять находится далеко от жала.
  • От паяльной станции работают маломощные паяльники (максимум 40 Вт) с термоконтролем для поддержания стабильного процесса. Таким видом паяльника производят спаивание мелких элементов или деталей, чувствительных к высоким температурам.



Существуют разные формы жала: скошенное под углом, в виде шила, конусом, лопаткой. Выбирать следует такую модель, которая бы обеспечила максимальное соприкосновение жала с соединительной площадью деталей. Правильный выбор поспособствует мощному, но кратковременному нагреву.

Все виды жала делают из меди, но одни из них покрывают защитным слоем никеля или хрома, а другие нет. Покрытые модели более долговечны, хотя и требуют определенного ухода. Жала без покрытия стоят дешевле, но одноразовые очень быстро приходят в негодность.



Термоусадочная трубка

Ее еще называют гильзой. Такая муфта с припоем обеспечивает быстрое соединение проводов, защищает электрический контакт от попадания жидкости. Монтаж происходит следующим образом: гильзу надевают на один соединительный конец, провода смыкают, муфту надвигают на соединение, она нагревается термофеном. Происходит термоусадка оболочки с клеевой основой и соединение проводов, защищенных от влаги герметическим склеиванием.



Подставка под паяльник

Паяльник может нагреваться до температуры 350 градусов. Во время работы его необходимо куда-то помещать. Позаботиться об этом следует заранее, подготовить жароустойчивую подставку.

Припой

Для соединения деталей понадобится припой. Необходимо определиться с видом состава и приобрести его заранее.

Флюсы

Флюсы необходимы для снятия окисной пленки, то есть для полного очищения деталей перед пайкой. Они позволяют олову беспрепятственно растекаться по месту спаивания, защищают от коррозии. Флюсы определяются 2 видами.

  • Активные, изготовленные на базе кислот, подходят любой пайке. Сразу после работы их необходимо смывать, иначе они могут вызвать замыкание или стать причиной коррозии металла.
  • Флюсы на базе канифоли подходят для спаивания цветных металлов и плохо реагируют на сталь. Канифоль также необходимо смывать после спаивания деталей.

Технология

Когда оборудование и материалы собраны, можно приступать к технике пайки в домашних условиях.

Подготовка

Паяльник, подставка, флюс, припой – все оборудование и материалы должны находиться в поле быстрого реагирования. Необходимо проверить жало, соответствует ли площади спаивания. Для массивных деталей лучше выбирать закругленную модель с косой заточкой, а для мелких элементов – коническую, заостренную.

При нагревании в первый раз проводят лужение медного жала. Для этого деревянной палочкой растирают жидкий припой по поверхности наконечника. Во время первого контакта жалу паяльника необходимо иметь тончайший слой припоя, тогда пайка пройдет качественно, и наконечник останется невредимым.

Процесс

Сначала разогревают паяльник и обрабатывают флюсом детали. Затем небольшое количество припоя наносят на место пайки и проходят по стыку. Если процесс прошел правильно, цвет шва будет блестящим. Пережжённая пайка проявит матовый оттенок и будет отличаться нестабильностью и хрупкостью.

В следующем видео расказывается о том, как паять твердым припоем.

поверхности образца. Время до начала подъема температуры образца зависит от температуры галогенидной ванны. Процесс экзотермической реакции развивается весьма быстро (рис. 19).

На торце скрутки проводов, начиная с некоторой температуры, при достаточной выдержке и подъеме температуры до температуры автономного расплавления алюминия, процесс может происходить бурно, с оплавлением металла и выбросом галогенида из ванны, по-видимому, под действием газообразных продуктов реакции.

В процессе экзотермического нагрева алюминиевых образцов температура расплава галогенида по сравнению с его исходной температурой изменяется мало.

При погружении проводов в расплав галогенидов при температуре выше температуры начала самопроизвольного экзотермического нагрева образца характерно развитие интенсивной эрозии паяемого металла, прежде всего по выступам деталей, в результате чего, например, пруток прямоугольного или квадратного сечения очень быстро приобретает соответственно овальное или круглое сечение, что ограничивает применение способа пайки нагревом в расплавах галогенидов деталями с формой тел вращения. Во флюсах, содержащих галогениды металлов в ограниченных количествах, экзотермический эффект должен быть выражен слабее.

При пайке с ограниченным объемом флюса или с флюсом, содержащим кроме галогенидов металлов, восстанавливаемых в контакте с паяемым металлом, также и соли металлов, не восстанавливаемых в этих условиях, эффект экзотермического нагрева проявляется намного слабее. Реактивно-флюсовая пайка получила наибольшее распространение для алюминия, а в последнее время также для меди, медных сплавов и сталей в связи с повышенной активностью реактивных флюсов.

4. КОМПОЗИЦИОННАЯ ПАЙКА

При пайке изделий, собранных с некапиллярными или неравномерными зазорами, для удержания жидкой фазы припоя в зазоре и управления растеканием его по поверхности используют композиционные припои, состоящие из наполнителя и легкоплавкой составляющей (композиционная пайка). Температура плавления наполнителя должна быть выше температуры пайки. Наполнитель композиционного припоя может быть в виде порошка, гранул и волокон.


При другой разновидности композиционной пайки — пайки армированными припоями — в качестве нерасплавляемой части припоя применяют армирующие материалы — спеченную губку, сетки и др.

Важнейшая роль наполнителя при такой пайке, получившей название композиционной, состоит в образовании из его частиц системы капилляров, направляющих растекание и затекание жидкой фазы. Кроме того, наполнитель может насыщать жидкую фазу при пайке основой паяемого материала и, таким образом, снижать ее эрозионную активность, очищать застойную атмосферу зазора от кислорода и улучшать смачиваемость поверхности соединяемых деталей, упрочнять паяный шов.

Перед пайкой наполнитель и легкоплавкая составляющая композиционного припоя могут сочетаться различным образом, в зависимости от конструкционных и масштабных факторов соединений и изделия, возможности приложения давления на соединяемые детали при пайке, смачивающей способности жидкой фазы припоя при выбранном способе удаления оксидной пленки при пайке и др.

При композиционной пайке в отличие от пайки полностью расплавляемым припоем формирование шва происходит в условиях сильно развитых межфазных поверхностей на границе жидкой и твердой фаз. Формирование плавного галтельного участка происходит не самопроизвольно, как при капиллярной пайке готовым припоем, а при растекании выжимаемой под давлением легкоплавкой части припоя. Состав галтельного участка при этом отличается от состава паяного шва, заполняющего зазор.

Вследствие растворно-осадительного механизма химическая эрозия паяемого металла, независимо от эрозионной активности жидкой фазы, незначительна, особенно в случае, если наполнитель и паяемый металл имеют одинаковую металлическую основу. Это позволяет паять тонколистовые конструкции композиционным припоем с потенциально высокой эрозионной способностью его легкоплавкой составляющей.


Некоторые используемые варианты размещения наполнителя и легкоплавкой составляющей при композиционной пайке приведены на рис. 20.

При варианте а затекание композиционного припоя, укладываемого у зазора, возможно лишь при содержании в нем 1 2 3 4 5 6 7 8

Автор: Администрация

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Пайка - это процесс получения неразъемного соединения материалов в твердом состоянии при нагреве ниже температуры их плавления путем смачивания, растекания и заполнения зазора между ними расплавленным припоем с последующей кристаллизацией жидкой фазы и образованием спая.

Преимущества пайки как технологического процесса и преимущества паяных соединений обусловлены главным образом возможностью формирования паяного шва ниже температуры плавления соединяемых материалов. Такое формирование шва происходит в результате контактного плавления паяемого металла в жидком припое, внесенном извне (пайка готовым припоем), либо восстановленным из солей флюса (реактивно-флюсовая пайка), либо образовавшемся при контактно-реактивном плавлении паяемых металлов, контактирующих прослоек или паяемых металлов с прослойками (контактно-реактивная пайка). В отличие от автономного плавления (одностадийного процесса, протекающего в объеме при температуре, равной или выше температуры солидус соединяемых материалов), контактное плавление того же материала протекает при контактном равновесии по поверхности контакта с твердым, жидким, газообразным телом, иными по составу. Это многостадийный процесс, протекающий по разным механизмам; жидкая фаза при контактном плавлении твердого тела образуется ниже его температуры солидус.

Пайка обеспечивает получение бездефектных, прочных и работоспособных в условиях длительной эксплуатации, паяных соединений, если учтены физико-химические, конструктивные, технологические и эксплуатационные факторы.

Возможность образования спая между паяемым металлом и припоем характеризуется паяемостью, т.е. способностью паяемого металла вступать в физико-химическое взаимодействие с расплавленным припоем и образовывать паяное соединение. Практически пайкой можно соединить все металлы, металлы с неметаллами и неметаллы между собой. Необходимо только обеспечить такую активацию их поверхности, при которой стало бы возможным установление между атомами соединяемых материалов и припоя прочных химических связей.

Для образования спая необходимым и достаточным является смачивание поверхности основного металла расплавом припоя, что определяется возможностью образования между ними химических связей. Смачивание принципиально возможно в любом сочетании основной металл - припой при обеспечении соответствующих температур, высокой чистоты поверхности или достаточной термической или другого вида активации. Смачивание характеризует принципиальную возможность пайки конкретного основного металла конкретным припоем. При физической возможности образования спая (физической паяемости) уже в какой-то мере гарантирована паяемость с технологической точки зрения при обеспечении соответствующих условий проведения процесса пайки.

Паяемость того или иного материала нельзя рассматривать как способность его подвергаться пайке различными припоями. Можно рассматривать только конкретную пару, и в конкретных условиях пайки. Важным моментом в оценке паяемости, как физической, так и технической, является правильный выбор температуры пайки, которая нередко является решающим фактором не только для обеспечения смачивания припоем поверхности металла, но и дополнительным важным резервом повышения свойств паяных соединений. При оценке паяемости нужно учитывать температурный интервал активности флюсов.

Паяльный флюс - это активное химическое вещество, предназначенное для очистки и защиты поверхности паяемого металла и припоя, в первую очередь, от окисных пленок. Однако флюсы не удаляют посторонние вещества органического и неорганического происхождения (лак, краску). Механизм флюсования флюсами, самофлюсующими припоями, контролируемыми газовыми средами, в вакууме, физико-механическими средствами может выражаться:

1. В химическом взаимодействии между основными компонентами флюса и окисной пленкой, образующиеся при этом соединения растворяются во флюсе, либо выделяются в газообразном состоянии;
2. В химическом взаимодействии между активными компонентами флюса и основным металлом, в результате происходит постепенный отрыв окисной пленки от поверхности металла и переход ее во флюс;
3. В растворении окисной пленки во флюсе;
4. В разрушении окисной пленки продуктами флюсования;
5. В растворении основного металла и припоя в расплаве флюса.

Окисные флюсы взаимодействуют преимущественно с окисной пленкой. Основой флюсования галоидными флюсами является реакция с основным металлом. Для повышения активности оксидных флюсов вводят фториды и фторборы, в результате одновременно с химическим взаимодействием между окислами происходит растворение окисной пленки во фторидах.

К активным газовым средам относятся газообразные флюсы, которые работают самостоятельно или как добавка в нейтральные или восстановительные газовые среды для повышения их активности. При пайке металлов в активных газовых средах удаление окисной пленки с поверхности основного металла и припоя происходит в результате восстановления окислов активными компонентами сред или химического взаимодействия с газообразными флюсами, продуктами которого является летучие вещества или легкоплавкие шлаки, к восстановительным средам относятся водород и газообразные смеси, содержащие водород и окись углерода в качестве восстановителей окислов металлов.

В качестве нейтральных газовых сред используют азот, гелий и аргон, роль газовой среды сводится к защите металлов от окисления. Как газовая среда вакуум защищает металлы от окисления и способствует удалению с их поверхности окисной пленки. При пайке в вакууме, в результате разрежения, парциальное давление кислорода становится ничтожно малым и, следовательно, уменьшается возможность окисления металлов. При высокотемпературной пайке в вакууме создаются условия для диссоциации окислов некоторых металлов.

По условиям заполнения зазора способы пайки разделяются на капиллярные и некапиллярные.

Капиллярная пайка по методу образования спая разделяется на пайку готовым припоем, контактно-реактивную, диффузионную и реактивно-флюсовую. При капиллярной пайке расплавленный припой заполняет зазор между паяемыми деталями и удерживается в нем под действием капиллярных сил. Капиллярная пайка, при которой используется готовый припой и затвердевание шва происходит при охлаждении, называется пайкой готовым припоем. Контактно-реактивной называется капиллярная пайка, при которой припой образуется в результате контактно-реактивного плавления соединяемых материалов, промежуточных покрытий или прокладок с образованием эвтектики или твердого раствора. При контактно-реактивной пайке нет необходимости в предварительном изготовлении припоя. Количество жидкой фазы можно регулировать изменением времени контакта, толщиной покрытия или прослойки, т.к. процесс контактного плавления прекращается после расходования одного из контактирующих материалов.

Диффузионной называется капиллярная пайка, при которой затвердевание шва происходит выше температуры солидус припоя без охлаждения из жидкого состояния. Припой, применяемый при диффузионной пайке, может быть полностью или частично расплавленным, может образовываться при контактно-реактивном плавлении соединяемых металлов с одной или несколькими прослойками других металлов, нанесенных гальваническими способами, напылением или уложенных в зазор между соединяемыми деталями, или в результате контактного твердо-газового плавления. Цель диффузионной пайки - проведение процесса кристаллизации таким образом, чтобы обеспечить наиболее равновесную структуру соединения, повысить температуру распайки соединений.

При реактивно-флюсовой пайке припой образуется в результате восстановления металла из флюса или диссоциации одного из его компонентов. В состав флюсов при реактивно-флюсовой пайке входят легковосстанавливаемые соединения. Образующиеся в результате реакции восстановления металлы в расплавленном состоянии служат элементами припоев, а летучие компоненты реакции создают защитную среду и способствуют отделению окисной пленки от поверхности металла.

Некапиллярная пайка разделяется на пайку-сварку и сварку-пайку. Пайко-сварка относится к процессам исправления дефектов в чугунных, алюминиевых и др. деталях, выравнивания поверхности, устранения вмятин, т.е. заливку расплавленным припоем с использованием технических возможностей низко- и высокотемпературной пайки. Обычно используется для изделий из чугуна и выполняется припоями из латуни с добавлением кремния, марганца, аммония. Сварко-пайка применяется при соединении разнородных металлов за счет расплавления более легкоплавкого металла и смачивания им поверхности более тугоплавкого металла. Необходимая температура подогрева поверхности тугоплавкого металла достигается за счет регулирования величины смещения электрода от оси шва к более тугоплавкому металлу. При подготовке изделий к пайке, при необходимости, на паяемую поверхность наносят металлические покрытия. Технологические покрытия (медь, никель, серебро) наносят на поверхность труднопаяемых металлов, либо металлов, поверхность которых при пайке интенсивно растворяется в припое, что вызывает ухудшение смачивания и капиллярного течения припоя в зазоре, хрупкость в соединениях, по месту нанесения припоя появляется эрозия, подрезы основного металла. Назначение покрытия - предотвращение нежелательного растворения основного металла в припое и улучшение смачивания; в процессе пайки покрытие должно полностью растворяться в расплавленном припое.

При капиллярной пайке используются нахлесточные, стыковые, косостыковые, тавровые, угловые, соприкасающиеся соединения. Нахлесточные соединения наиболее распространены, т.к. изменяя длину нахлестки, можно изменять характеристики прочности изделия. Нахлесточные паяные соединения обладают некоторыми преимуществами перед нахлесточными сварными, передача усилий в которых происходит по периметру элемента. В сварных конструкциях любые швы являются источником концентрации напряжений в переходной зоне от основного металла к шву, и при неблагоприятных очертаниях шва концентрация достигает значительных величин. Сопоставление механических свойств паяных и сварных соединений позволяет сделать следующие выводы:

1. Применение пайки наиболее эффективно в тонкостенных конструкциях, толщиной не более 10 мм;
2. Производительность технологического процесса пайки оказывается часто более высокой;
3. Паяные соединения вызывают, как правило, меньшие остаточные деформации;
4. Паяные конструкции в большинстве случаев имеют меньшую концентрацию напряжений по сравнению со сварными.

Прочность паяных соединений определяется также влиянием дефектов, которые могут образовываться при несоблюдении оптимальных условий и режима пайки. Типичные дефекты, которые снижают прочность паяных соединений - поры, раковины, трещины, флюсовые и шлаковые включения, непропаи.

Все дефекты сплошности в паяных соединениях разделяются на дефекты, связанные с заполнением жидким припоем капиллярных зазоров, и дефекты, возникающие при охлаждении и затвердевании паяных швов. Возникновение первой группы дефектов определяется особенностями движения расплавов припоев в капиллярном зазоре (поры, непропаи). Другая группа дефектов появляется из-за уменьшения растворимости газов в металле при переходе из жидкого состояния в твердое (газо-усадочная пористость). К этой группе относится также пористость кристаллизационного и диффузионного происхождения.

Трещины в паяных швах могут возникнуть под действием напряжений и деформаций металла изделий или шва в процессе охлаждения. Холодные трещины возникают в зоне спаев при образовании прослоек хрупких интерметалидов. Горячие трещины образуются в процессе кристаллизации; если в процессе кристаллизации скорость охлаждения высока и возникающие при этом напряжения велики, а деформационная способность металла шва мала, то возникают кристаллизационные трещины. Полигонизационные трещины в металле шва возникают уже при температурах ниже температуры солидус после затвердевания сплава по так называемым полигонизационным границам, которые образуются при выстраивании дислокации в металле в ряды и образовании сетки дислокации под действием внутренних напряжений. Неметаллические включения типа флюсовых или шлаковых могут возникать в результате недостаточно тщательной подготовки поверхности изделия к пайке или при нарушении режима пайки. При слишком длительном нагреве под пайку флюс реагирует с основным металлом с образованием твердых остатков, которые плохо вытесняются из зазора припоем.

Читайте также: