Как зависит ускорение приобретаемое телом от массы этого тела

Обновлено: 02.07.2024


1. Что является причиной изменения скорости тела?

Причиной изменения скорости тела является действие на это тело других тел.

2. Что является причиной ускоренного движения тела?

Причиной возникновения ускоренного движения тела является действие на это тело других тел, т.е. действия силы.

Когда на тело действует сразу несколько сил, то оно движется с ускорением, если равнодействующая этих сил не равна нулю.

3. Что такое сила? В чем измеряется сила?

В физике действие одного тела на другое, действие, которое вызывает ускорение, называют силой.
Сила - векторная величина и измеряется в ньютонах (1Н).

В СИ за единицу силы 1Н принимается сила, сообщающая телу массой 1 кг ускорение 1 м/с 2 в направлении действия силы.

1 Н = 1 кг • 1 м/с 2 = 1 кг • м/с 2 .


4. Как на примерах показать, что чем больше приложенная к телу сила, тем больше сообщаемое этой силой ускорение?

Чем больше будет равнодействующая приложенных к телу сил, тем большее ускорение получит при этом тело.

Например:
- чем сильнее футболист бьёт ногой по лежащему на поле мячу, тем большее ускорение приобретает при этом мяч и тем большую скорость он успевает набрать за те доли секунды, пока взаимодействует с ногой футболиста.
О приобретённой мячом скорости можно судить по тому, насколько далеко он отлетает после удара.


5. Как на опытах показать взаимосвязь массы, силы и ускорения?



а) Ускорения, получаемые телами, зависят от массы этих тел.
Есть два одинаковых воздушных шарика.
В один из них вложим маленькую бусинку такого веса, чтобы шарик вместе с бусинкой мог взлететь.
Наполним оба шарика гелием до одного и того же объёма.
Расположим шарики на одной и той же высоте (ближе к полу) и отпустим.
Шарик с бусинкой достигнет потолка позже.
Значит, под действием одной и той же равнодействующей силы, равной разности действующих на шарики архимедовой силы и силы сопротивления воздуха, шарик без груза получил большее ускорение, т.к. одно и то же расстояние (до потолка) он прошёл за меньший промежуток времени.
Значит, его скорость росла быстрее, и ускорение его движения больше.




б) К легкоподвижной тележке с укреплёнными на ней маленькой капельницей и двумя одинаковыми лёгкими вентиляторами привязана нить, перекинутая через блок.
К другому концу нити прикреплён груз, компенсирущий силу трения, действующую на тележку.
Общая масса тележки известна.
Вдоль траектории движения тележки расположена бумажная лента.
Откроем кран и включим вентиляторы.

Винты взаимодействуют с воздухом и толкают тележку с постоянной силой к краю стола.
На бумажной ленте остаются следы капель, падающих через равные промежутки времени.

В конце дорожки вентиляторы выключают.
Расстояния между соседними метками от падавших капель будут относиться как ряд нечётных последовательных чисел (1 : 3 : 5 : 7 : 9. ).
Значит, под действием постоянной силы тележка двигалась равноускоренно.

Зная расстояние между крайними каплями на ленте (модуль вектора перемещения) и время движения тележки, рассчитаем модуль ускорения.

Так как s = at 2 /2

тогда ускорение: a = 2s/t 2

Удвоим массу всей тележки, поставив на нее гирю, такой же добавочной гирей компенсируем силу трения.
Повторим опыт.
Масса системы стала вдвое больше, а ускорение уменьшилось в 2 раза.
Значит, ускорения, сообщаемые телам одной и той же постоянной силой (действие вентиляторов), обратно пропорциональны массам этих тел.

Установим взаимосвязь между ускорением и силой, сообщающей телу это ускорение.
Для этого снимем добавленные гири.
Включим только один вентилятор, в результате чего на тележку будет действовать в 2 раза меньшая сила.
В результате опыта, при уменьшении силы в 2 раза ускорение тоже уменьшается в 2 раза.
Значит, ускорение, с которым движется тело постоянной массы, прямо пропорционально приложенной к этому телу силе, в результате которой возникает ускорение.

Количественная взаимосвязь между массой тела, ускорением и приложенных к телу силой называется вторым законом Ньютона.


6. Как сформулировать второй закон Ньютона? Какой математической формулой он выражается?

Второй закон Ньютона:
Ускорение тела прямо пропорционально равнодействующей сил, приложенных к телу, и обратно пропорционально его массе.

Во втором законе Ньютона под телом подразумевается материальная точка, движение которой рассматривается в инерциальной системе отсчёта.

Формула второго закона Ньютона в векторном виде:


На тело может действовать одновременно несколько сил.
Сила, равная геометрической сумме всех приложенных к телу (точке) сил, называется равнодействующей или результирующей силой.
В формуле второго закона Ньютона под силой надо понимать результирующую (иначе равнодействующую) силу.

Для решения задач используют формулу второго закона Ньютона в скалярном виде:

a = F : m

где
ах и Fx - проекции векторов ускорения и силы на ось X,
а и F - модули этих векторов.


7. Что можно сказать о направлении вектора ускорения и вектора равнодействующей приложенных к телу сил?

Вектор ускорения совпадает по направлению с вектором равнодействующей приложенных к телу сил.


На этом уроке мы познакомимся с принципом суперпозиции сил. Вспомним, что такое масса и мерой каких свойств тела она является. Сформулируем второй закон Ньютона и выясним, каковы условия его применимости. Узнаем, как равнодействующая сила связана с ускорением тела.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности




Конспект урока "Второй закон Ньютона"

В большинстве случаев тело взаимодействует не с одним телом, а с несколькими телами одновреме́нно. К примеру, на машину действует сила тяжести со стороны Земли, сила реакции опоры со стороны дороги на колёса, силы сопротивления движению и, конечно же, сила тяги двигателя. Поэтому в механике важную роль играют понятия результирующая сила и равнодействующая сила.

Результирующая двух или нескольких сил — это сила, равная их векторной сумме.

А равнодействующей двух или нескольких сил называется сила, которая оказывает такое же действие, как эти силы совместно. Иначе говоря, равнодействующая может полностью заменить исходные силы.


Если посмотреть на эти два определения, то кажется, что они довольно-таки похожи. То есть результирующая и равнодействующая силы — это одна и та же сила. Но так ли это? Пусть у нас с вами есть брусок, к концам которого приложены две одинаковые по модулю, но разные по направлению силы. Очевидно, что под действием этих двух сил брусок начнёт вращаться.


Но ведь их результирующая равна нулю. А сила, которая равна нулю, не может вызвать вращение тела. Следовательно, в этом примере результирующая сила не является равнодействующей, так как она не заменяет действия данных сил. Это надо учитывать при решении задач, несмотря на то, что мы с вами чаще всего будем рассматривать задачи, в которых тело можно принять за материальную точку. В этом случае допускается считать, что силы приложены к телу в одной точке.

Мы уже с вами знаем, что в результате действия силы тела приобретают ускорение. Поэтому логично предположить, что между этими величинами должна существовать какая-то количественная взаимосвязь. Установим её. Для этого рассмотрим поступательное движение металлического бруска, так как только при поступательном движении ускорение всех точек тела одинаково и мы можем говорить об ускорении тела в целом. Чтобы свести к минимуму действие силы трения, положим брусок на тележку с лёгкими колёсами. Пусть на тележку со стороны нити, к концу которой прикреплён груз, действует внешняя сила, модуль которой мы можем измерять при помощи динамометра.


Если отпустить груз, то тележка придёт в движение. Если предположить, что ускорение во время движения было постоянным, то, измерив время движения тележки и путь, пройденный ею за это время, мы по формулам кинематики сможем легко определить её ускорение.

Повторим опыт ещё пару раз, увеличив внешнюю силу в два и три раза путём увеличения массы груза, подвешенного на нити.


Не трудно заметить, что увеличение модуля внешней силы в несколько раз приводит к увеличению модуля ускорения тележки во столько же раз. Значит, отношение модуля силы к модулю ускорения тела является постоянной величиной, не зависящей от силы. Эту величину мы с вами будем называть массой тела.

На прошлом уроке мы с вами говорили о том, что масса является количественной мерой инертности тел. То есть, чем больше масса тела, тем оно более инертно и тем медленнее меняется его скорость под действием постоянной силы. Следовательно, модули ускорений, приобретаемых телами под действием одинаковых сил, обратно пропорциональны массам этих тел.

Полученные нами закономерности можно выразить одной формулой:


Мы уже вспоминали о том, что единицей силы в СИ является ньютон. Один ньютон — эта сила, которая сообщает телу массой 1 кг ускорение 1 м/с 2 .

Поэтому в СИ коэффициент k = 1.

Таким образом, ускорение, приобретаемое телом под действием приложенных к нему сил, прямо пропорционально равнодействующей силе, обратно пропорционально массе тела и направлено в сторону равнодействующей силы.

Это утверждение является основным законом динамики — вторым законом Ньютона.

Формула, выражающая математическую запись этого закона, подчёркивает, что сила является причиной, а ускорение — следствием. Поэтому её часто называют уравнением движения тела.

Второй закон Ньютона — это фундаментальный закон природы, которому с удивительной точностью подчиняются движения макроскопических тел: от маленьких снежинок до огромных космических объектов.

Обратим ваше внимание на то, что второй закон Ньютона выполняется только для материальных точек, движущихся в инерциальных системах отсчёта.

Теперь давайте мы с вами более подробно поговорим о массе. Что нам о ней известно на данный момент?

Во-первых, это то, что масса является количественной мерой инертности тел.

А во-вторых, мы знаем, что единицей массы в СИ является килограмм, эталон которого выполнен из сплава платины и иридия.

Имея на руках эталон килограмма, мы с вами можем определить массу любого тела, например, с помощью рычажных весов. Ведь очевидно, что если какое-либо тело, располагающееся на одной чашке весов, уравновешивает эталон, то его масса равна одному килограмму. Теперь мы можем измерять тело массой два килограмма и так далее.


Если мы разделим эталон на две равные части, то получим два тела по 500 грамм каждое, которые тоже можно использовать для измерения. А разделив пополам одно из таких тел, мы получим ещё меньшие массы и так далее.

В рассмотренном примере измерение массы основано на том, что на тела действует сила притяжения Земли. Поэтому измеряемую таким способом массу называют гравитационной массой.

Измерить массу тела также можно на основе явления инерции. Мы уже с вами знаем, что ускорение прямо пропорционально силе, действующей на тело, и обратно пропорционально его массе. Тогда, если на любых два тела действуют одинаковые силы, то отношение их масс равно обратному отношению ускорений:


Из формулы видно, что если есть тело известной массы, то, измерив ускорения этого тела и тела с неизвестной массой, движущихся под действием одинаковых сил, легко найти неизвестную массу:


Определяемая таким способом масса называется инертной массой.

Многочисленные опыты показали, что гравитационная масса равна массе инертной.

Также в классической механике Ньютона считают, что:

· масса тела не зависит от скорости его движения;

· масса тела равна сумме масс всех частиц (или материальных точек), из которых оно состоит;

· и для данной системы тел выполняется закон сохранения массы: при любых процессах, происходящих в системе тел, её масса остаётся неизменной.

Для закрепления материала решим с вами небольшую задачу. Тело массой 50 кг тянут по горизонтальному участку пути, прикладывая силу под углом 60 о к горизонту. Модуль прикладываемой силы равен 200 Н), а модуль силы трения скольжения — 100 Н. Определите модуль ускорения тела.

Динамика — раздел механики, изучающий причины движения тел и способы определения их ускорения. В нем движение тел описывается с учетом их взаимодействия.

Большой вклад в развитие динамики внес английский ученый Исаак Ньютон. Он первым смог выделить законы движения, которым подчиняются все макроскопические тела. Эти законы называют законами Ньютона, законами механики, законами динамики или законами движения тел.

Внимание! Законы Ньютона нельзя применять к произвольным телам. Они применимы только к точке, обладающей массой — к материальной точке.

Основное утверждение механики

Для описания движения тела можно взять любую систему отсчета. Обычно для этого используется система отсчета, связанная с Землей. Если какое-то тело меняет свою скорость, рядом с ним всегда можно обнаружить другое тело, которое на него действует. Так, если поднять камень и отпустить, он не останется висеть в воздухе, а упадет вниз. Следовательно, на него что-то подействовало. В данном случае сама Земля притянула камень к себе. Отсюда следует основное утверждение механики:

Основное утверждение механики

Изменение скорости (ускорение) тела всегда вызывается воздействием на него других тел.

Согласно утверждению, если на тело не действуют никакие силы, его ускорение будет нулевым, и оно будет либо покоиться, либо двигаться равномерно и прямолинейно (с постоянной скоростью).

Но в нашем мире мы не всегда это наблюдаем. И этому есть объяснение. Если тело покоится, оно действительно не меняет свою скорость. Так, мяч лежит на траве до тех пор, пока его не пнут. После того, как его пнут, он начинает катиться, но затем останавливается. Пока мяч катится, к нему больше не прикасаются. Казалось бы, согласно основному утверждению механики, мяч должен катиться вечно. Но этого не происходит, потому что на мяч действует сила трения, возникающая между его поверхностью и травой.

Основное утверждение механики можно проиллюстрировать в открытом космосе в месте, где сила притяжения космических тел пренебрежимо мала. Если в космосе придать телу скорость и отпустить, оно будет двигаться с такой скоростью по прямой линии до тех пор, пока на него не подействуют другие силы. Ярким примером служат межгалактические звезды, или звезды-изгои. Гравитационно они не связаны ни с одной из галактик, а потому движутся с постоянной скоростью. Так, звезда HE 0437-5439 удаляется от нашей галактики с постоянной скоростью 723 км/с.

Свободное тело — тело, на которое не действуют другие тела. Свободное тело либо покоится, либо движется прямолинейно и равномерно.

Первый закон Ньютона

Исаак Ньютон, изучая движение тел, заметил, что относительно одних систем отсчета свободные тела сохраняют свою скорость, а относительно других — нет. Он разделил их на две большие группы: инерциальные системы отсчета и неинерциальные. В этом кроется первый закон динамики.

Первый закон Ньютона

Существуют такие системы отсчета, называемые инерциальными, относительно которых тела движутся равномерно и прямолинейно или находятся в состоянии покоя, если на них не действуют другие тела или их действие компенсировано.

Примером инерциальной системы отсчета служит система отсчета, связанная с Землей (геоцентрическая). Другой пример — гелиоцентрическая система отсчета (связанная с Солнцем).

Неинерциальная система отсчета — система отсчета, в которой тела могут менять свою скорость при отсутствии на них действия других тел.


Примером неинерциальной системы отсчета служит автобус. Когда он движется равномерно и прямолинейно, стоящие внутри пассажиры находятся относительно него в состоянии покоя. Но когда автобус останавливается, пассажиры падают вперед, т. е. меняют свою скорость, хотя на них не действуют другие тела.

Второй закон Ньютона

В примере с автобусом видно, что пассажиры стараются сохранить свою скорость относительно Земли — инерциальной системы отсчета. Такое явление называется инерцией.

Инерция — явление, при котором тело сохраняет состояние покоя или равномерного прямолинейного движения.

Инертность — физическое свойство, заключающееся в том, что любое тело оказывает сопротивление изменению его скорости (как по модулю, так и по направлению).

Не все тела одинаково инертны. Вы можете взять мячик и придать ему большое ускорение. Но вы не можете придать такое же ускорение гире, хотя она обладает похожим размером. Но мячик и гиря различаются между собой массой.

Масса — скалярная физическая величина, являющаяся мерой инертности тела. Чем больше масса, тем больше инертность тела.

Масса обозначается буквой m. Единица измерения массы — кг. Прибор для измерения массы — весы.

Чтобы придать одинаковую скорость двум телам с разной инертностью, к телу с большей инертностью придется приложить больше силы. Попробуйте сдвинуть с места стол, а затем — шкаф. Сдвинуть с места стол будет проще.

Если же приложить две одинаковые силы к телам с разной инертностью, будет видно, что тело с меньшей инертностью получает большее ускорение. Если приставить к пружине теннисный шарик, а затем сжать ее и резко отпустить, шарик улетит далеко. Если вместо теннисного шарика взять железный, он лишь откатится на некоторое расстояние.

Описанные выше примеры показывают, что между силой, прикладываемой к телу, и ускорением, которое оно получает в результате прикладывания этой силы, и массой этого тела есть взаимосвязь. Она раскрывается во втором законе Ньютона.

Второй закон Ньютона

Сила, действующая на тело, равна произведению массы этого тела на ускорение, которое сообщает эта сила.

где F — сила, которую прикладывают к телу, a — ускорение, которое сообщает эта сила, m — масса тела

Сила — количественная мера действия тел друг на друга, в результате которого тела получают ускорения.

Сила — векторная физическая величина. Обозначается F . Единица измерения — Н (Ньютон). Прибор для измерения силы — динамометр.

Пример №1. Определить, с какой силой действует Земля на яблоко, если, упав с ветки, оно получило ускорение 9,8 м/с 2 . Масса яблока равна 200 г.

Сначала переведем массу яблока в кг. 200 г = 0,2 кг. Теперь найдем силу, действующую на яблоко со стороны Земли, по второму закону Ньютона:

F = ma = 0,2 ∙ 9,8 = 1,96 (Н)

Равнодействующая сила

Иногда на тело действуют несколько сил. Тогда при описании его движения вводится понятие равнодействующей силы.

Равнодействующая сила — векторная сумма всех сил, действующих на тело одновременно.

В этом случае второй закон Ньютона формулируется так:

Второй закон Ньютона через равнодействующие силы

Если на тело действует несколько сил, но их равнодействующая R будет равна произведению массы на ускорение этого тела.

Правила сложения сил и их проекций

Сложение двух сил, направленных вдоль одной прямой в одну сторону

Сложение двух сил, направленных вдоль одной прямой во взаимно противоположных направлениях

Сложение двух сил, перпендикулярных друг к другу

Сложение двух сил, расположенных под углом α друг к другу

Сложение трех сил

Сложение проекций сил

Проекция на ось OY:

Третий закон Ньютона

Когда одно тело действует на другое, начинается взаимодействие этих тел. Это значит, если тело А действует на тело В и сообщает ему ускорение, то и тело В действует на тело А, тоже придавая ему ускорение. К примеру, если сжать пружину руками, то руки будут чувствовать сопротивление, оказываемое силой упругости пружины. Если же, находясь в лодке, начать тянуть за веревку вторую лодку, то обе лодки будут двигаться навстречу друг другу. То есть, вы, находясь в своей лодке, тоже будете двигаться навстречу второй лодке.


Иногда на тело действует сразу несколько сил, но тело продолжает покоиться. В этом случае говорят, что силы друг друга компенсируют, то есть их равнодействующая равна нулю.

Две силы независимо от их природы считаются равными по модулю и противоположно направленными, если их одновременное действие на тело не меняет его скорости.


Примером такого явления служит ситуация, когда при перетягивании каната его никто не может перетянуть в свою сторону. Если взять два каната и присоединить между ними два динамометра, а затем начать игру в перетягивание, выяснится, что показания динамометра всегда будут одинаковыми. Это значит, что независимо от масс и придаваемых ускорений два взаимодействующих тела оказывают друг на друга равные по модулю силы. В этом заключается смысл третьего закона Ньютона.

Силы, с которыми тела действуют друг на друга, равны по модулям и направлены по одной прямой в противоположные стороны.

Используя второй закон Ньютона, третий закон механики можно переписать иначе:


Отношение модулей ускорений a 1 и a 2 взаимодействующих друг с другом тел определяется обратным отношением их масс и совершенно не зависит от характера действующих между ними сил.

Пример №2. Определить ускорение, с которым движется Земля к падающему на нее яблоку. Масса яблока равна 0,2 кг. Ускорение свободного падения принять равной за 10 м/с 2 . Массу Земли принять равно 6∙10 24 кг.

Согласно третьему закону Ньютона модули сил, с которыми взаимодействуют Земли и яблоко, равны. Поэтому:

Пусть тело 1 будет яблоко, а тело 2 — Земля. Тогда a1 будет равно g. Отсюда ускорение, с которым движется Земля к падающему на нее яблоку, равна:



Скорость тела массой 5 кг, движущегося вдоль оси Ох в инерциальной системе отсчёта, изменяется со временем в соответствии с графиком (см. рисунок). Равнодействующая приложенных к телу сил в момент времени t=2,5 с равна…

Читайте также: