Как согласовать дельту 80м с кабелем 50ом

Обновлено: 02.07.2024

Современная приемо-передающая транзисторная техника, как правило, имеет широкополосные тракты, входные и выходные сопротивления которых составляют 50 или 75 Ом. Поэтому для реализации заявленных параметров такой аппаратуры требуется обеспечить активную нагрузку сопротивлением 50 или 75 Ом как для приемной, так и для передающей частей. Акцентирую внимание на том, что для приемного тракта также требуется согласованная нагрузка!

Например, при отклонении от номинальных нагрузочных сопротивлений, в полосовых фильтрах приемника появляются дополнительные провалы в АЧХ, падает чувствительность, УВЧ из-за отсутствия оптимальной нагрузки изменяет свои параметры, иногда вплоть до "подвозбуда". Расстроенные "полосовики" влияют на работу первого смесителя, может произойти разбаланс плеч и, соответственно, появятся дополнительные паразитные каналы приема и "пораженки".

Конечно, в приемнике это никак ни на ощупь, ни на цвет или вкус без приборов не заметить. По-видимому, из-за этого некоторые коротковолновики "с пеной у рта" отстаивают преимущества старых РПУ типа Р-250, "Крот" и им подобных перед современной техникой. Старая техника чаще всего комплектуется подстраиваемой (или перестраиваемой) входной цепью, с помощью которой можно согласовать РПУ с проволокой-антенной с "КСВ=1 почти на всех диапазонах".

Если радиолюбитель действительно хочет проверить качество согласования цепи "вход трансивера - антенна", ему достаточно собрать примитивнейшее согласующее устройство (СУ), например, П-контур, состоящий из двух КПЕ с максимальной емкостью не менее 1000 пФ (если предполагается проверка и на НЧ-диапазонах) и катушки с изменяемой индуктивностью. Включив это СУ между трансивером и антенной, изменением емкости КПЕ и индуктивности катушки добиваются наилучшего приема. Если при этом номиналы всех элементов СУ будут стремиться к нулю (к минимальным значениям) - можете смело выбросить СУ и со спокойной совестью работать в эфире и дальше, по крайней мере, слушать диапазоны.

Для тракта передатчика отсутствие оптимальной нагрузки может окончиться более печально. Рано или поздно ВЧ-мощность, отраженная от рассогласованной нагрузки, находит слабое место в тракте трансивера и "выжигает" его, точнее, такой перегрузки не выдерживает какой-нибудь из элементов. Конечно, можно и ШПУ изготовить абсолютно надежным (например, с транзисторов снимать не более 20% мощности), но тогда по стоимости он будет, сопоставим с узлами дорогой импортной техники.

Например, 100-ваттный ШПУ, производимый в США в виде набора для трансивера К2, стоит 359 USD, а тюнер для него — 239 USD. И зарубежные радиолюбители идут на такие затраты, дабы получить "всего-то какое-то согласование", о котором, как показывает опыт автора этой статьи, не задумываются многие наши пользователи транзисторной техники. Мысли о согласовании трансивера с нагрузкой в головах таких горе радиолюбителей начинают возникать только после случившейся аварии в аппаратуре.

Ничего не поделаешь - таковы сегодняшние реалии. Экзамены при получении лицензий и повышении категории любительской радиостанции зачастую проводятся формально. В лучшем случае у претендента на лицензию проверяется знание телеграфной азбуки. Хотя в современных условиях, на мой взгляд, целесообразно больший акцент делать на проверку технической грамотности - поменьше было бы "групповух для работы на даль" и "рассусоливаний" по поводу преимуществ UW3DI перед "всякими Айкомами и Кенвудами".

Автора статьи радует тот факт, что все реже и реже на диапазонах слышны разговоры о проблемах при работе в эфире с транзисторными усилителями мощности (например, появления TVI или низкой надежности выходных транзисторов). Компетентно заявляю, что если транзисторный усилитель правильно спроектирован и грамотно изготовлен, а при эксплуатации постоянно не превышаются максимальные режимы работы радиоэлементов, то он практически "вечен", теоретически, в нем ничего сломаться не может.

Обращаю внимание на то, что если постоянно не превышаются максимально допустимые параметры транзисторов, они никогда не выходят из строя. Кратковременную перегрузку, особенно транзисторы, предназначенные для линейного усиления в КВ-диапазоне, выдерживают достаточно легко. Изготовители мощных ВЧ-транзисторов проверяют надежность произведенного продукта таким способом - берется резонансный ВЧ-усилитель, и после того как на выходе устанавливаются оптимальный режим и номинальная мощность, вместо нагрузки подключают испытательное устройство. Элементы настройки позволяют менять активную и реактивную составляющие нагрузки.

Если в оптимальном режиме нагрузка связана с испытуемым транзистором через линию с волновым сопротивлением 75 Ом, то обычно в рассматриваемом устройстве отрезок линии замыкается резистором сопротивлением 2,5 или 2250 Ом. При этом КСВ будет равен 30:1. Такое значение КСВ не позволяет получить условия от полного обрыва до полного короткого замыкания нагрузки, но реально обеспечиваемый диапазон изменений достаточно близок к этим условиям.

Завод-изготовитель гарантирует исправность транзисторов, предназначенных для линейного усиления КВ-сигнала, при рассогласовании нагрузки 30:1 в течение не менее 1 с при номинальной мощности. Этого времени вполне достаточно для срабатывания защит от перегрузки. Работа усилителя мощности при таких значениях КСВ не имеет смысла, т.к. эффективность практически "нулевая", т.е. речь, конечно, идет об аварийных ситуациях.

Для решения проблемы согласования приемо-передающей аппаратуры с антенно-фидерными устройствами существует довольно дешевый и простой способ - применение дополнительного внешнего согласующего устройства. Хотелось бы акцентировать внимание счастливых пользователей "буржуинской" техники, не имеющей антенных тюнеров (да и самодеятельных конструкторов тоже), на этом очень важном вопросе.

Вся промышленная приемо-передающая аппаратура (и ламповая в том числе) комплектуется не только фильтрующими, но и, дополнительно, согласующими блоками. Возьмите, к примеру, ламповые радиостанции Р-140, Р-118, Р-130 - у них согласующие устройства занимают не менее четверти объема станции. А транзисторная широкополосная передающая техника вся, без исключения, комплектуется такими согласователями.

Изготовители идут даже на увеличение себестоимости этой техники - комплектуют автоматическими СУ (тюнерами). Но эта автоматика предназначена для того, чтобы обезопасить радиоаппаратуру от бестолкового пользователя, который смутно себе представляет, что и зачем он должен крутить в СУ. Предполагается, что радиолюбитель с позывным обязан иметь минимальное представление о процессах, происходящих в антенно-фидерном устройстве его радиостанции.

В зависимости от того, какие антенны применяются на любительской радиостанции, можно использовать то или иное согласующее устройство. Заявление некоторых коротковолновиков о том, что они применяют антенну, КСВ которой почти единица на всех диапазонах, поэтому СУ не требуется, показывает отсутствие минимальных знаний по этой теме. "Физику" здесь еще никому не удалось обмануть - никакая качественная резонансная антенна не будет иметь одинаковое сопротивление ни внутри всего диапазона, ни тем более на разных диапазонах.

Рис.1.

Что и происходит чаще всего - устанавливается или "инвертед-V" на 80 и 40 м, или рамка с периметром 80 м, а в худшем случае бельевая веревка используется в качестве "антенны". Особенно "талантливые" изобретают универсальные штыри и "морковки", которые, по безапелляционным заверениям авторов, "работают на всех диапазонах практически без настройки!"

Настраивается такое сооружение в лучшем случае на одном-двух диапазонах, и все — вперед, "зовем - отвечают, что еще больше нужно?" Печально, что для увеличения "эффективности работы" таких антенн все поиски приводят к "радиоудлинителям" типа выходного блока от Р-140 или Р-118. Достаточно послушать любителей "работать в группе на даль" ночью на 160 и 80-метровых диапазонах, а в последнее время такое можно уже встретить на 40 и 20 м.

Если антенна имеет КСВ = 1 на всех диапазонах (или хотя бы на нескольких) - это не антенна, а активное сопротивление, или тот прибор, которым измеряется КСВ, "показывает" окружающую температуру (которая в комнате обычно постоянна).

Не знаю - удалось или нет мне убедить читателя в том, что применять СУ требуется обязательно, но, тем не менее, перейду к описанию конкретных схем таких устройств. Их выбор зависит от применяемых на радиостанции антенн. Если входные сопротивления излучающих систем не опускаются ниже 50 Ом, можно обойтись примитивным согласующим устройством Г-образного типа - рис.1, т.к. оно работает только в сторону повышения сопротивления. Для того чтобы это же устройство "понижало" сопротивление, его необходимо включить наоборот, т.е. поменять местами вход и выход. Рис2.

Автоматические антенные тюнеры почти всех импортных трансиверов выполнены по схеме, показанной на рис.2. Антенные тюнеры в виде отдельных устройств фирмы изготавливают чаще по другой схеме (рис.3). Описание этой схемы можно найти, например, в [1, с.237]. Во всех фирменных СУ, изготовленных по этой схеме, имеется дополнительная бескаркасная катушка L2, намотанная проводом диаметром 1,2. 1,5 мм на оправке диаметром 25 мм. Число витков - 3, длина намотки - 38 мм.

С помощью двух последних схем можно обеспечить КСВ = 1 практически на любой кусок провода. Однако не забывайте - КСВ = 1 говорит о том, что передатчик имеет оптимальную нагрузку, но это ни в коей мере не означает высокую эффективность работы антенны. С помощью СУ, схема которого приведена на рис.2, можно согласовать щуп от тестера в качестве антенны с КСВ = 1, но, кроме ближайших соседей, эффективность работы такой "антенны" никто не оценит. В качестве СУ можно использовать и обычный П-контур - рис.4. Достоинство такого решения - не требуется изолировать КПЕ от общего провода, недостаток - при большой выходной мощности трудно найти переменные конденсаторы с требуемым зазором.


При применении на станции более или менее настроенных антенн и в том случае, когда не предполагается работа на 160 м индуктивность катушки СУ может не превышать 10. 20 мкГн. Очень важно, чтобы имелась возможность получения малых индуктивностей до 1 . 3 мкГн.

Шаровые вариометры для этих целей обычно не подходят, т.к. индуктивность перестраивается в меньших пределах, чем у катушек с "бегунком". В фирменных антенных тюнерах применяются катушки с "бегунком", у которых первые витки намотаны с увеличенным шагом - это сделано для получения малых индуктивностей с максимальной добротностью и минимальной межвитковой связью.

Достаточно качественное согласование можно получить, применяя в СУ "вариометр бедного радиолюбителя". Это две последовательно включенные катушки с переключением отводов (рис.5). Катушки — бескаркасные, и содержат по 35 витков провода диаметром 0,9. 1,2 мм (в зависимости от предполагаемой мощности), намотанного на оправке 020 мм.

После намотки катушки сворачивают в кольцо и отводами припаивают на выводы обычных керамических переключателей на 11 положений. Отводы у одной катушки следует сделать от четных витков, у другой - от нечетных, например - от 1,3,5,7,9,11, 15,19, 23, 27-го витков и от 2,4, 6, 8,10, 14,18,22,28,30-го витков. Включив две такие катушки последовательно, можно переключателями подобрать требуемое количество витков тем более, что для СУ не особенно важна точность подбора индуктивности. С главной задачей - получением малых индуктивностей - "вариометр бедного радиолюбителя" справляется успешно.


Чтобы этот самодельный тюнер по своим возможностям квазиплавной настройки приближался к "буржуинским" антенным тюнерам, например, АТ-130 от ICOM или АТ-50 от Kenwood, придется вместо одного галетного переключателя ввести закорачивание отводов катушки "релюшками", каждая из которых будет включаться отдельным тумблером. Семи "релюшек", коммутирующих семь отводов, будет достаточно, чтобы смоделировать "ручной АТ-50".

Зазоры между пластинами в КПЕ должны выдерживать предполагаемое напряжение. Если применяются низкоомные нагрузки, при выходной мощности до 200. 300 Вт можно обойтись КПЕ от старых типов РПУ. Если высокоомные - придется подобрать КПЕ с требуемыми зазорами (от промышленных радиостанций).

Подход при выборе КПЕ очень прост - 1 мм зазора между пластинами выдерживает напряжение 1000 В. Предполагаемое напряжение можно найти по формуле U = ЦP/R , где:
Р - мощность,
R - сопротивление нагрузки.

На радиостанции обязательно должен быть установлен переключатель, при помощи которого трансивер отключается от антенны в случае грозы (или в выключенном состоянии), т.к. более 50% случаев выхода из строя транзисторов связаны с наводкой статического электричества. Переключатель можно смонтировать или в антенном коммутаторе, или в СУ.

Любая из схем согласующих устройств трансформирует комплексное сопротивление любого куска провода в 50. 75 Ом, однако КПД такого куска провода как антенны будет низким при высоком КПД передатчика, так как он нагружен на необходимую нагрузку. Поэтому если уж использовать в качестве антенны провод произвольной длины, желательно, чтобы он имел предельно возможную длину.

Для любого согласующего устройства необходимо хорошее заземление, от этого зависит эффективность работы тюнера. Для работы с симметричными линиями передачи применяют по выходу согласующего устройства симметрирующий трансформатор 1:4, выполненный на ферритовом кольце, или применяют такие схемы согласующих устройств, которые исключают применение ферромагнитных материалов. Последние более предпочтительны и устойчивы в плане TVI. Фильтр нижних частот, который может быть использован для подавления гармоник передатчика, должен быть установлен между КСВ-метром и входом согласующего устройства.

Вопрос согласования фидера и антенны интересует многих радиолюбителей.

Возникает он, например, при необходимости подключения к антенне симметричной двухпроводной фидерной линии вместо коаксиального кабеля или, наоборот, при замене открытой линии на коаксиальную.

Однако, фидер не всегда можно напрямую подключить к антенне, минуя согласующее устройство. Возникает вопрос выполнения компенсированного перехода (или согласующего устройства) от антенной системы к фидерной линии, который является одним из основных при конструировании антенн. Направлен он главным образом на уменьшение потерь в фидере путём обеспечения в нём режима, близкого к, режиму бегущей волны. Основная фидерная линия, как правило, самая протяжённая. Поэтому именно её желательно максимально лучше согласовать с нагрузкой.

Почему возникает необходимость в согласующих устройствах и какие условия нужно соблюсти при изготовлении сложных антенн с несколькими парами точек питания?

В фидере с заданным волновым сопротивлением не всякая нагрузка создаёт режим, — близкий к режиму бегущей волны. И наоборот, чтобы получить оптимальное согласование данной нагрузки с фидером, потребуется фидер определенного волнового сопротивления.

Казалось бы, что, пользуясь графиком рис. 1, для многих случаев практически встречающихся нагрузок, можно подобрать фидер необходимого волнового сопротивления и обеспечить в нем приемлемый КБВ.

Однако при этом упускается из вида входное (выходное) сопротивление той аппаратуры (телевизора, приёмника, передатчика, прим. трансивера), к которой фидер подключен своим вторым концом. В отношении же этого сопротивления также полностью сохраняется требование по обеспечению согласования с линией передачи. Как правило, значение входного (выходного) сопротивления аппаратуры стараются получить близкими к значению волнового сопротивления серийных кабелей.

Это обстоятельство вынуждает принимать специальные меры по согласованию антенны с фидером, волновое сопротивление которого выбирается применительно к входному (выходному) сопротивлению радиоаппарата.

В системе питания сложных антенн с несколькими парами точек питания возникают дополнительные затруднения, связанные с тем, что на проводах каждой антенны-элемента, входящей в решётку, необходимо обеспечить равенство токов по фазе и амплитуде.

Последнее достигается благодаря распределительным фидерам, которые подключаются параллельно к основному, например, так, как показано на рис.2,а и 2,б. Сами распределительные фидеры уже непосредственно нагружены на антенны.

Следует отметить, что электрические длины и волновые сопротивления распределительных фидеров, включенных симметрично в схему питания, должны быть соответственно равными.

Параллельное включение распределительных фидеров приводит в итоге к уменьшению сопротивлений и появляется необходимость в их восстановлении. Чем больше антенн-элементов, тем больше распределительных фидеров и ощутимее уменьшение сопротивлений.

Питание по схеме рис. 2, в выгодно отличается от двух предыдущих, так как в точках 1-1 подключения основного фидера восстанавливается значение входного сопротивления, имеющееся на входе каждого отдельно взятого распределительного фидера. Действительно, распределительные фидеры 2, 3, 4 и 5 включены попарно параллельно, а сами пары в точках 1-1 подключаются к основному фидеру последовательно. При этом фазы напряжения, подводимые к точкам 1-1, сдвинуты относительно друг друга на 180°.

Для правильной фазировки антенн нужно искусственно учесть этот фазовый сдвиг, переполюсовав в точках питания антенн 2, 3 по отношению к антеннам 4, 5. Одним из путей решения вопросов согласования является применение в качестве распределительных фидеров отрезков линий с волновым сопротивлением wрасп.фид. большим, , чем волновое сопротивление основного фидера wосн.фид..

Например, в схеме рис. 2,а удобно применить линии с wрасп.фид.=300 ом при wосн.фид.=75 ом так как, будучи включенными параллельно, эти линии обеспечат в основном питающем фидере такое же значение КБВ, которое имеет место в каждом из распределительных фидеров.

Для сохранения аналогичного режима (рис. 2,б) необходимо, чтобы отрезки линий 0-3, 0-4, 0′-2 и 0′-5 имели wрасп.фид.=300 ом, а отрезки от точек 0 и 0′ до основного фидера — соответственно по 150 ом при wосн.фид.=75 ом.

Как в первом, так и во втором случаях следует так подобрать антенны-элементы, чтобы их входное сопротивление в рабочем диапазоне частот обеспечивало в распределительных фидерах приемлемый КБВ.

Для согласования используют также и трансформаторы сопротивлений, в частности последовательно включенные отрезки линий. Места их включения в схемы питания показаны на рис. 2 жирными линиями.

Кандидат технических наук К.П. Харченко

РАДИО N 10, 1966 г. с.27.

Настройка и согласование антенно-фидерных устройств

Здесь сделана попытка в краткой форме сделать обзор простых способов согласования и измерений в АФС (антенно-фидерных системах) в виде путеводителя по книгам:

а также приведены некоторые практические советы. Итак…

Почему нельзя серьёзно относиться к наладке вновь созданных антенно-фидерных устройств с помощью КСВ-метра? КСВ-метр показывает отношение (Uпрям+Uотр) к (Uпрям-Uотр) или другими словами: во сколько раз отличается импеданс антенно-фидерного тракта от волнового сопротивления прибора (выход передатчика, например). По показаниям КСВ-метра нельзя понять, что значит КСВ = 3 при сопротивлении выходного каскада 50 Ом.

Волновое сопротивление антенно-фидерного тракта в этом случае может быть чисто активным (на частоте резонанса ) и может быть равным 150 Ом или 17 Ом (и то, и другое — равновероятно!). Не на частоте резонанса сопротивление будет содержать активную и реактивную (ёмкостную или индуктивную ) в самых различных соотношениях и тогда совершенно непонятно, что надо делать — то ли компенсировать реактивность, то ли согласовывать волновое сопротивление. Для точного согласования АФУ необходимо знать:

a) реальную резонансную частоту антенны;

б) сопротивление антенны;

в) волновое сопротивление фидера;

г) выходное сопротивление приёмо-передатчика.

Целью согласования антенны является задача выполнения двух условий подключения антенны к приёмо-передатчику:

  • добиться отсутствия реактивной составляющей в сопротивлении антенны на используемой частоте;
  • добиться равенства волнового сопротивления антенны и приёмо-передающей аппаратуры.

Если эти условия выполняются в месте запитки антенны (точка соединения антенны с фидером), то фидер работает в режиме бегущей волны. Если выполнить условия согласования в месте соединения фидера с приёмо-передатчиком, а сопротивление антенны отличается от волнового сопротивления фидера, то фидер работает в режиме стоячей волны.

Однако работа фидера в режиме стоячей волны может повлечь за собой искажение диаграммы направленности в направленных антеннах (за счёт вредного излучения фидера) и в некоторых случаях может привести к помехам окружающей приёмопередающей аппаратуре. Кроме того, если антенна используется на приём, то на оплётку фидера будут приниматься нежелательные излучения (например помехи от вашего настольного компьютера). Поэтому предпочтительнее использовать питание антенны по фидеру в режиме бегущей волны. До того как поделиться практическим опытом согласования антенн, несколько слов об основных способах измерений.

1. ИЗМЕРЕНИЕ РЕЗОНАНСНОЙ ЧАСТОТЫ АНТЕННЫ

1.1. Наиболее простой способ измерения резонансной частоты антенны — с помощью гетеродинного индикатора резонанса (ГИР). Однако в многоэлементных антенных системах измерения ГИРом бывает выполнить сложно или совсем невозможно из-за взаимного влияния элементов антенны, каждый из которых может иметь свою собственную резонансную частоту.

1.2. Способ измерения с помощью измерительной антенны и контрольного приёмника. К измеряемой антенне подключается генератор, на расстоянии 10-20l от измеряемой антенны устанавливается контрольный приёмник с антенной, которая на этих частотах не имеет резонансов (например короче l/10). Генератор перестраивается в выбранном участке диапазона, с помощью S-метра контрольного приёмника измеряют напряжённость поля и строят зависимость напряжённости поля от частоты. Максимум соответствует частоте резонанса. Этот способ особенно применим для многоэлементных антенн. В этом случае измерительный приёмник необходимо располагать в главном лепестке диаграммы направленности измеряемой антенны. Вариант этого способа измерения — применение в качестве генератора, передатчика мощностью в несколько Ватт и простого измерителя напряженности поля.

Однако надо учесть, что при измерениях вы будете создавать помехи окружающим. Практический совет при измерениях в диапазоне 144-430 мГц — при измерениях, не держите в руках измеритель напряжённости поля, чтобы ослабить влияние тела на показания прибора. Закрепите прибор над полом на высоте 1-2 метра на диэлектрической подставке (например дерево, стул) и снимайте показания, находясь на расстоянии 2-4 метра, не попадая в зону между прибором и измеряемой антенной.

1.4. Очень удобно определять резонансную частоту вибраторов с помощью измерителя АЧХ. Подключив выход измерителя АЧХ и детекторную головку к антенне, определяют частоты , на которых видны провалы в АЧХ. На этих частотах антенна резонирует и происходит отбор энергии с выхода прибора, что хорошо видно на экране прибора. Для измерений подходят практически любые измерители АЧХ (Х1-47, Х1-50, Х1-42, СК4-59).

Вариант измерений — с помощью анализатора спектра (СК4-60) в режиме с длительным послесвечением и внешнего генератора. В качестве внешнего генератора можно использовать генератор гармоник: на HF — с шагом 10 кГц, на 144 мГц — с шагом 100 кГц, на 430 мГц — с шагом 1 мГц. На частотах до 160 мГц наиболее равномерный спектр с высокой интенсивностью гармоник даёт схема генератора гармоник на интегральной схеме 155ИЕ1. В диапазоне 430 мГц достаточный уровень гармоник можно получить в схеме с накопительным диодом 2А609Б (схема калибратора 50 мГц из СК4-60).

2. ИЗМЕРЕНИЕ СОПРОТИВЛЕНИЯ В АНТЕННО-ФИДЕРНЫХ УСТРОЙСТВАХ.

2.1. Самый простой (ещё и доступный по цене) серийно выпускаемый прибор, для измерений активного сопротивления и фазы сигнала (а значит и реактивной составляющей) — это измерительный мост. Существует несколько модификаций этих приборов для использования с 50 и 75-омным трактом и на различные диапазоны частот до 1000 мГц — это измерительные мосты Р2-33…Р2-35.

2.2 В радиолюбительской практике чаще используют более простой вариант измерительного моста, предназначенного для измерений полного сопротивления (антенноскоп). Конструкция его, в отличие от мостов Р2-33… очень проста и легко повторяется в домашних условиях.

2.3 Полезно помнить некоторые замечания, касающиеся сопротивлений в АФС.

2.3.1. Длинная линия с волновым сопротивлением Zтр и с электрической длиной l/4, 3 х l/4 и т.д. трансформирует сопротивление , которое можно рассчитать из формулы

В частном случае, если один конец l/4 отрезка разомкнуть, то бесконечное сопротивление на этом конце отрезка трансформируется в ноль на противоположном конце (короткое замыкание) и такие устрой- ства используют для трансформации больших сопротивлений в малые.

Внимание! Эти виды трансформаторов эффективно работают только в узком частотном диапазоне, ограниченном долями процентов от рабочей частоты. Длинная линия с электрической длиной кратной l/2 вне зависимости от волнового сопротивления этой линии трансформирует входное сопротивление в выходное с отношением 1:1 и их используют для передачи сопротивлений на необходимое расстояние без трансформации сопротивлений, либо для переворачивания фазы на 180°. В отличие от l/4 линий, линии l/2 обладают большей широкополосностью.

2.3.2. Если антенна короче, чем вам необходимо, то на вашей частоте сопротивление антенны имеет реактивную составляющую ёмкостного характера. В случае, когда антенна длиннее, на вашей частоте антенна имеет реактивность индуктивного характера. Разумеется на вашей частоте нежелательную реактивность можно компенсировать введением дополнительной реактивности противоположного знака. Например, если антенна длиннее, чем это необходимо, индуктивную составляющую можно компенсировать включением последовательно с питанием антенны ёмкости. Значение необходимого конденсатора можно рассчитать для нужной частоты, зная значение индуктивной составляющей, либо подобрать экспериментально, как это описано в пункте 5.

2.3.3. Введение дополнительных пассивных элементов обычно понижает входное сопротивление антенны (например для квадрата: со 110-120 Ом до 45-75 Ом).

2.3.4. Ниже приведены теоретические значения наиболее часто встречающихся вибраторов (вибраторы находятся в свободном от окружающих предметов пространстве), антенн и фидеров:

  • полуволновой вибратор с запиткой в пучности тока (в середине) — 70 Ом, при расстройке на +-2% реактивное сопротивление iX изменяется практически линейно от -25 до +25 с нулем на частоте резонанса;
  • полуволновой вибратор с запиткой с помощью Т-образной схемы согласования -120 Ом;
  • петлевой вибратор с одинаковыми диаметрами всех проводников- 240..280 Ом, при расстройке +-1% реактивного сопротивления нет, но при расстройках более 2% реактивное сопротивление iX резко возрастает до +- 50 и более;
  • петлевой вибратор с различными диаметрами проводников до 840 Ом;
  • двойной петлевой вибратор с одинаковыми диаметрами всех проводников — 540…630 Ом;
  • двойной петлевой вибратор с различными диаметрами проводников — до 1500 Ом;
  • четвертьволновый вертикальный вибратор с противовесами под углом 135° по отношению к вибратору — 50 Ом;
  • четвертьволновый вертикальный вибратор с противовесами под углом 90° по отношению к вибратору — 30 Ом;
  • вибратор в виде квадрата длиной l — 110..120 Ом;
  • вибратор в виде квадрата длиной 2l (два витка) — 280 Ом;
  • вибратор в виде треугольника (дельта) — 120…130 Ом;
  • Inverded-V с углом раскрыва 90° — 45 Ом;
  • Inverted-V с углом раскрыва 130° — 65 Ом;
  • волновой канал, оптимизированный на максимальное усиление — 5…20 Ом;
  • волновой канал, оптимизированный на наилучшее согласование — 50 Ом;
  • двухпроводная линия — 200..320;
  • две параллельные коаксиальные линии Z=75 Ом — 37.5 Ом;
  • то же, четвертьволновый трансформатор Zвх=50 Ом — Zвых=28 Ом;
  • то же, четвертьволновый трансформатор Zвх=75 Ом — Zвых=19 Ом;
  • две параллельные коаксиальные линии Z=50 Ом — 25 Ом;
  • то же, четвертьволновый трансформатор Zвх=50 Ом — Zвых=12.5 Ом;
  • то же, четвертьволновый трансформатор Zвх=75 Ом — Zвых=8.4 Ом
  • трансформатор из трех параллельных линий Z=50 Ом Zвх=50 — Zвых=5.6 Ом;
  • то же Z=50 Ом Zвх=75 — Zвых=3.7 Ом;

3. ИЗМЕРЕНИЕ СТЕПЕНИ СОГЛАСОВАНИЯ

Эти измерения желательно делать уже после согласования, описанного в п. 5 для оценки качества согласования.

3.1. Приборы для определения степени согласования открытых двухпроводных линий с антенной:

3.1.1. Обычная неоновая лампочка или ГИР. При перемещении лампочки вдоль линии передачи, яркость свечения лампочки не должна изменяться (режим бегущей волны). Вариант измерений — прибор, состоящий из петли связи, детектора и стрелочного индикатора.

3.1.2. Двухламповый индикатор. Настройкой добиваются, чтобы лампочка подключенная к плечу, близкому к антенне, не светилась, а в противоположном плече свечение было максимально. При малых уровнях мощностей можно использовать детектор и стрелочный индикатор вместо лампочки.

3.2. Приборы для определения степени согласования в коаксиальных трактах:

3.2.1. Измерительная линия — прибор, который применим для измерения степени согласования в коаксиальных и волноводных линиях начиная с УКВ и заканчивая сантиметровым диапазоном волн. Конструкция его несложная — жесткий коаксиальный кабель (волновод) с продольной щелью во внешнем проводнике, вдоль которой перемещается измерительная головка с измерительным зондом, опущенным в щель. Перемещая измерительную головку вдоль тракта, определяют максимумы и минимумы показаний, по соотношению которых судят о степени согласования (режим бегущей волны — показания не изменяются по всей длине измерительной линии).

3.2.2. Измерительный мост. Позволяет измерять КСВ в линиях передачи до 100 Ом на HF и VHF при подводимой мощности около сотен милливатт. Очень простая в изготовлении конструкция, не содержит моточных улов, конструктивных узлов, критичных к точности изготовления.

3.2.3. КСВ-метры на основе рефлектометров. Описано множество конструкций этих приборов. Позволяют следить за состоянием АФC в процессе работы в эфире. 3.2.4. КСВ-метры на основе измерителей АЧХ. Очень удобные для изучения качества согласования на любых частотах, вплоть до 40 гГц. Принцип измерений — измерительный комплект приборов состоит из измерителя АЧХ и направленного ответвителя, соединенных в следующую схему:

https://forumupload.ru/uploads/000e/73/7c/21/t228841.jpg

Поскольку это не частный сектор, надо начинать с безопасности для окружающих. Значит для полотна для вас надо биметалл. Однозначно. 4мм. Периметр большой , антенна тяжёлая. изоляторы керамика орехи большие. Растягивать треугольник лучше тросиком 5-7мм. БЕЗ ! изоляции. Лучше найти времён СССР. На Авито или на QRZ не проблема. Кабель я бы применил РК50-7-11 или Рк50-9-11 . Для прочности.
Ну и сделать расчёт в MMANA. Посмотреть какое будет R. И принять решение какое применить СУ. Так как там точно не будет R=50 ом.

Для примера фото. троса пропитаны маслом ТЭП-15 или любым трансмиссионным.

Отредактировано Евгений (2020-06-07 06:39:36)

RN7T ex UA6GV, RA6FOA

сделать расчёт в MMANA. Посмотреть какое будет R. И принять решение какое применить СУ.

первый этап подготовки выглядит так:



нужно ли дополнительно что-то согласовывать? Чем/как?

нужно ли дополнительно что-то согласовывать? Чем/как?

57 Ом импданс антенны. КСВ= 57/50 = 1,14, что вполне достаточно.
Если все же требуется согласование, то пользуйтесь Сервис и установки - СУ на LC.
Там вводите частоту, слева 50 кабель, справа ваш импеданс из расчета и получите картинку СУ.

из расчета и получите картинку СУ.

изменить импеданс и КСВ до 1 можно изменяя "углы" дельты.
на первом фото она вписана в координаты соответствующие существующим зданиям.
оставил пока так, до момента принятия решения - надо ли делать её многодиапазонной?
все зависит от затрат. нет не так,от многих факторов.

изменить импеданс и КСВ до 1 можно изменяя "углы" дельты.

Можно конечно, но так не делают обычно. Просто вешают антенну и измеряют импеданс по месту и уже под этот импеданс делают СУ.

надо ли делать её многодиапазонной?

Раньше очень многие использовали такое решение в 70-80 годах. Такая рамка на 160 очень хорошо работает на 80, 40. Выше уже плохо.

рамка на 160 очень хорошо работает на 80, 40.

настроить длиной кабеля питания у трансивера?

Это слишком суровый метод
Настраивать антенну изменением длины кабеля? Это вообще не способ.
Подсунуть "обманку" трансиверу, чтоб видел заветные 50 ом? Есть способы проще.

https://forumupload.ru/uploads/000e/73/7c/424/t904543.jpg

почему обманку? трансформатор.
проще вариант длиной кабеля, сложнее типа так:

проще вариант длиной кабеля, сложнее типа так:

Вариант "длиной кабеля согласовать антенну" - это костыль. Попытка согласовать хреновый излучатель, меняя параметры линии связи.
То, что на картинке - это не игра с длиной кабеля.
Длина намотки трансформаторных систем это одно, а длина подводящей линии - иное.

https://forumupload.ru/uploads/000e/73/7c/53/t379929.jpg

Хотите "ленивый" вариант?
Подбирайте длину кабеля или вобще возьмите"удобную"компромиссную длину и имейте реальное сопротивление излучателя "на столе", где спокойно его согласуете.
Вот для облегчениязадачи:

Отредактировано DON (2020-06-08 10:11:18)

Полволны для 160м - 52,11
В других столбцах ищете наиболее близкие значения.
Берете среднее - около 54 метров.
И наслаждаетесь.
Компромисс, естественно.
Запорный дроссель у полотна и у трансивера очень желателен.
СУ трансивера может и не вытащить нормальное согласование, тогда придется делать отдельное СУ.

Можно и без повторителя. И без кабеля.
Симмметричная линия, симметричный тюнер (никаких колец и прочих трансов - честный симм. тюнер) - и пофиг КСВ. Потери в линии намного меньше, чем в кабеле.

Симмметричная линия, симметричный тюнер (никаких колец и прочих трансов - честный симм. тюнер) - и пофиг КСВ. Потери в линии намного меньше, чем в кабеле.

С воздушкой, не страшен КСВ даже 1000. Потери ничтожные.

Симмметричная линия, симметричный тюнер

и это ленивая? хочется простую и . вечную.

Берете среднее - около 54 метров.

возможно ли обойтись 14м. или 28м.?
Может быть полотно привести к 75ом?

Может быть полотно привести к 75ом?

А смысл? Если импеданс 57 Ом, то зачем приводить к 75, если все трансиверы имеют 50 Ом?

А смысл? Если импеданс 57 Ом, то зачем приводить к 75

говорят при 75ом широкополоснее.
длиной кабеля согласовать на 40м.
для тюнера трансивера почти одинаково 57 или 78.

Длиной кабеля я не рекомендую согласовывать. Обычно делают так - выбирают полволны(повторитель) для 1,8 Мс. На 3,6 этот кабель уже получается волновой повторитель, а на 7 Мс получится 4 волны повторитель.
Между трансивером и кабелем ставят СУ.

Ленивая - это с повторителем.
Про согласование длиной кабеля - это к спецам на 80м Зато потом КСВ будет меньше единицы
По их, спецов, утверждениям

Вариант с симм. линией - полноценный вариант согласования, с малыми потерями, малым (очень малым) излучением фидера (линии), меньше риск помех бытовой РЭА.
Плюсов очень много.

Вариант с симм. линией - полноценный вариант согласования

как её выполнить на стандартной панельной 9-этажке?

как её выполнить на стандартной панельной 9-этажке?

А это тут причем?
Так же, как и на кирпичной пятиэтажке.

Вообще тема потихоньку начинает напрягать: поиск использовать не пробовали?
Например "как ввести симметричную линию через окно".
Или надо за Вас рассчитать антенну и питание не зная Ваших условий?

Пока только флуд, пользы от темы - НОЛЬ.

Саша, может тему в гарбидж?

Не нужно в гарбидж. Но тема действительно похожа на флуд. Неужели настолько беспомощный народ, что нельзя посмотреть в инете, как запитать антенну линией и как её вывести/ввести в квартиру через окно? Это же элементарно делается. Конечно нужно соблюсти условия, чтобы линия не касалась стен, балконов, труб и прочего.
Вы действительно хотите запитать линией или это просто праздный интерес?

Вы действительно хотите запитать линией или это просто праздный интерес?

идея запитать линией исходит из поста:12.
опыта работы с линией не имею, спросил, как это выглядит . на свою голову.
Свои желания определил, проще, малозатратно, надежно.
Рассчитывать не просил, а совета, что лучше - спрашиваю.
Вопросы есть и по изоляторам, и по полотну.
На этапе подготовки изменить можно все, только бы потом не жалеть.
Например: подкорректировал положение дельты в натурно-доступном пространстве



При расчете УКВ антенн, такой разницы значений не получал, подобрать "землю" и получить похожий результат - не получилось.
Вопрос, в каком "пространстве" проводить расчет? Что лучше/правильно?

Отредактировано DON (2020-06-09 02:03:24)

Вопросы есть и по изоляторам, и по полотну.

Я думаю этих вопросов уже нет. Выше уже рассказал.

Свои желания определил, проще, малозатратно, надежно.

Можно спуститься на землю. Забить три кола метров по пять и вы попадёте в свои желания.

На этапе подготовки изменить можно все, только бы потом не жалеть.

Так не бывает. Разочарование будет. Лично я исхожу из того, что пусть будет хотя бы такая, как никакой.
В MMANA вы уже видите параметры антенны. Теперь берите биметалл 4мм. растягиваете рамку. Делаете полуволновой повторитель.
Анализатором смотрите что у вас получилось в реальной антенне. И тогда можно понять что применить для СУ. Может это будет кабель 1/4 или трансформатор на кольце.

RN7T ex UA6GV, RA6FOA

Я думаю этих вопросов уже нет. Выше уже рассказал.

https://forumupload.ru/uploads/000e/73/7c/424/t65731.jpg

благодарен Вам за развернутый, от души, ответ на первый пост. С первых строк чувствуется опыт и гордость за Свой труд.
Даже фото изолятора, с закрепленным на нем тросом, выполнено с творческим подходом и говорит о том, сколько сил и старания было вложено в создание антенны.
По фото читается: антенна приземлена "на своей земле". Колья по пять метров тоже интересно посмотреть.
В случае монтажа антенны в жилой 9 этажной застройке, нужно выдержать не только ТБ, но и дресс-код: с соседями,
с обслуживающими и конкурирующими организациями. итд и тп. тема не для сайта.
Об изоляторах, планирую использовать вот такие.
Орешковые зарекомендовали себя хорошо, применю в самом ответственном месте, в вершинах дельты.
В точке питания коричневая пластина с карабином, в вершинах оттяжек коричневый с двумя отверстиями.
В точке питания на пластине, будут закреплены, на болтах, концы полотна к которым при необходимости подключается СУ.
Заключается все в защитный баллон.
Разочарований быть не должно, потому как, не абы как, и друзья помогут советом.
Что еще нужно к изоляторам?

Расчетная точка установки катушек - на расстоянии около 21 м от точки питания антенны. Однако я использовал имеющиеся в моем распоряжении катушки по 3,5 мкГн от фильтров-пробок прежней антенны, поэтому точки установки катушек пришлось немного сместить. Диаметр катушек - 5 см, число витков - 9, длина намотки - 5 см, диаметр провода - 2,0 мм.

Последовательность настройки двухдиапазонной антенны заключается в следующем. Сначала изменением длины вибратора антенна настраивается на необходимую резонансную частоту в 80-метровом диапазоне. При проведении этой операции следует стремиться к тому, чтобы отрезки полотна до катушек имели одинаковую длину. Затем настраиваем антенну в 40-метровом диапазоне изменением индуктивности катушек. Если после этого произойдет смещение резонансной частоты в диапазоне 80 м, то указанные операции придется повторить.

Таким же образом можно настроить антенну в диапазонах 80 и 20 м, или 80 и 10 м, или 40 и 20 м, или 40 и 10 м, или 20 и 10 м.

Волновое сопротивление применяемого кабеля - 75 Ом. Антенна настраивалась с помощью КСВ-метра, однако проверка антенноскопом, показала практическое совпадение точек резонанса.

Применение симметрирования я посчитал необязательным, ввиду того что ненаправленная антенна излучает во все стороны, и по этой причине дополнительное симметрирование практически ничего не дает (при условии хорошего КСВ).

Высота подвеса антенны составляет 20 м в точке питания, а остальные 2 угла находятся на высоте примерно 7 м.

Четко представлять задачу - уже полдела. Выйти из создавшегося положения можно, например, таким образом: между согласующим устройством и настроенной линией передачи следует установить экранированную коробку (рис. ниже)



с переключателем для подключения дополнительных отрезков кабеля (рис. ниже)


Экранированную коробку соединяем с оплеткой кабеля только в одном месте - либо на входе, либо на выходе устройства. На высокочастотных диапазонах можно при необходимости исключить полуволновый повторитель низкочастотного диапазона и подключать подобранные отрезки кабеля для достижения резонанса.

Необходимо заметить, что настраивать линию передачи следует вместе с переключателем дополнительных отрезков, потому что внутренняя распайка проводов имеет свою реактивность.

При работе в эфире я использую простое, но оригинальное согласующее устройство (рис. ниже).


Катушка индуктивности намотана проводом 01,5 мм с шагом 1,5 мм (первоначально наматывалась в два провода) на каркасе 06 см и содержит 31 виток.
Данное согласующее устройство настраивается вплоть до 20-метрового диапазона (в катушке используется 1 виток), однако при работе на других, более высокочастотных, диапазонах целесообразно повысить добротность катушки, образованной первыми витками. Например, выполнить первые 3 - 5 витков из трубки сечением 5-6 мм. При затруднениях с поиском трубки можно пойти другим путем - намотать эти 3 - 5 витков несколькими сложенными вместе проводами. Так, например, длина окружности 6-миллиметровой трубки (высокочастотный ток, как известно, течет в тонком поверхностном слое проводника) составляет 18,84 мм, а общая сложенная длина окружности 4-х сложенных вместе 1,5-миллиметровых проводов - также 18,84 мм! Получается прекрасный аналог плоской шины, которую еще надо поискать.

Обращаю внимание радиолюбителей, которые раньше не использовали согласующее устрой- ctbq, на то, что перед его настройкой необходимо установить ручки настройки используемого усилителя мощности в положение, соответствующее нагрузке с КСВ равным 1,0.

Я использую это согласующее устройство всегда - даже тогда, когда входное сопротивление антенны составляет 75 Ом. Данное согласующее устройство фактически является ФНЧ и дополнительно ослабляет внеполосные излучения передатчика.

  • n = 1, 2, 3 - число полуволн;
  • Кукор. = 1,52
  • Iэкв = Uвых/Rэкв
  • Rвx = Uвых/Iэкв



На рисунках 1 и 2 в точках Б и Г пучность тока, в точках А и В - пучность напряжения.

Такое решение антенны я сразу отверг: антенна и так установлена низко, а при такой запитке основное излучение происходит вблизи земли. К тому же, запитывать антенну так, как показано на рис.2, следует разве что с 9-этажки - ведь желательность размещения кабеля перпендикулярно полотну антенны никто не отменял, причем хорошо бы, чтобы и радиостанция находилась на 9-м этаже.

Опираясь на эти рассуждения, решил изготовить антенну с запиткой в верхней части на расстоянии L/4 от верхней точки В (рис.3).


На рис.3 хорошо видно, что пучности тока (точки Б и Г) располагаются на большей высоте, а значит, максимум излучения происходит довольно далеко от
земли, что очень важно при небольшой высоте подвеса антенны. К тому же, при такой конфигурации облегчается почти перпендикулярный подвод кабеля к полотну антенны.

При 10-метровой высоте подвеса верхнего полотна получилась неплохая двухдиапазонная (40 и 20 м) антенна, установленная под наклоном, т.к. сделать ее полностью вертикальной при такой высоте подвеса невозможно. Нижняя точка антенны находится буквально в метре от земли, однако это практически не сказывается на эффективности излучения.

Полотно антенны изготовлено из медного провода диаметром 2 мм в эмалевой изоляции. Дельта представляет собой равносторонний треугольник со сторонами 14,34 м, периметр - 43,02 м. Расстояния между точками А, Б, В и Г (рис. 3) равны и составляют по 10,75 м. Расстояние от узла запитки Б до верхнего угла - 3,58 м. С такими размерами резонансные частоты антенны - 7040 и 14100 кГц, пучности тока Б и Г оказываются напротив.

При соблюдении этих пропорций, в некоторых направлениях антенна может иметь определенное усиление. При необходимости удобно укорачивать нижний угол, уменьшив отрезок 3,58 м. например, до 3,50 м. Небольшая неточность расположения точек Б и Г по горизонтали не приводит к заметному ухудшению работы антенны.

Наиболее актуальные характеристики антенны (полное входное сопротивлении и КСВ) снимались анализатором АА-ЗЗОМ с помощью полуволнового повторителя, изготовленного из коаксиального 50-омного кабеля длиной 14 м. В диапазоне 7 МГц активное входное сопротивление составило 120 Ом, в диапазоне 14 МГц - 140 Ом. Из-за недостаточной высоты подвеса имеется реактивная составляющая входного сопротивления, поэтому в диапазоне 7 МГц КСВ=3,0; в диапазоне 14 МГц - 4,0.

В такой ситуации было принято решение снизить КСВ, применив согласующий отрезок 75-омного кабеля. Комбинируя подключение коротких отрезков такого кабеля длиной 10 см, 20 см, 30 см, 50 см, 1 м, 2 м, 3 м, 3.5 м снабженных дешевыми телевизионными разъемами, после полуволнового повторителя выяснилось, что в диапазоне 7 МГц требуется отрезок кабеля длиной 6,9 м, в диапазоне 14 МГц - 3,5 м, что позволило получить в диапазоне 7 МГц КСВ=1,2; в диапазоне 14 МГц - 1,5.

В итоге, было решено непосредственно к антенне подключить отрезок 75-омного кабеля длиной 3,5 м, а уже к нему - 50-омный кабель длиной 8,6 м (всего 14,1 м). К сожалению, из-за неточного выбора длины полуволнового повторителя (она была определена расчетным путем) в диапазоне 7 МГц КСВ составил 2,0; в диапазоне 14 МГц - 2,3. Это не так уж и плохо-при КСВ до 3,0 вся мощность уходит в антенну. Тем более, что повышенный КСВ имеется лишь в кабеле длиной 14 м.

Кабели имеют диаметр 10 мм и многожильный центральный проводник. К месту соединения кабелей примотан пластиковый угольник длиной около 15 см, обрезанный по диаметру кабелей, что обеспечивает надежность соединения при ветровых нагрузках.

Внизу ничто не препятствует установке токового балуна, снабженного разъемами, который окончательно отсечет возможные синфазные токи.


Фактически, СУ на 7 МГц может работать в диапазонах от 1,8 до 15 МГц. В СУ на 14 МГц применена катушка из медной трубки диаметром 6 мм (1+2+4+4 витка, всего 11 витков), и оно может использоваться в диапазонах 7-29 МГц.

Если вместо последних 4 витков намотать 8 (всего витков будет 15), то, в принципе, СУ будет работать начиная с 3,5 МГц, а возможно, и с 1,8 МГц (следует проверить практически). Ввиду простоты изготовления, мною было изготовлено 3 таких СУ. В результате, после согласующих устройств полоса частот без реактивной составляющей составила 400 кГц на 40-метровом диапазоне и 380 кГц в диапазоне 20 м.

Антенну можно упростить, если она будет работать на одном диапазоне. В таком варианте длина 75-омного отрезка кабеля, подключаемого к полотну антенны, составляет 3,5 м в диапазоне 14 МГц и около 7 м - в диапазоне 7 МГц. Согласующее устройство можно установить в помещении радиостанции или вовсе обойтись без него.

Есть еще один вариант: запитать антенну только 75-омным кабелем (например, РК75-4-11). Именно так она использовалась в полевых условиях с полуволновым повторителем (около 28 м) и переключателем на 9 диапазонов. В сентябре 2013 г. мы с Сергеем, RW9UTK, работали в полевых условиях из сравнительно редкого RDA-района КЕ-21. Антенна работала на двух диапазонах и была установлена на 12-метровой высоте на двух стеклопластиковых трубах. Работала антенна отлично - в иные моменты мы узнали, что такое pile-up.

Там, в поле, анализатором АА-ЗЗОМ были измерены некоторые характеристики антенны, которые вследствие более высокого подвеса оказались заметно лучше, чем у антенны, установленной на 10-метровой высоте. В диапазоне 40м реактивной составляющей не было совсем, Rвх=141 Ом, КСВ=1,91, полоса по уровню КСВ=2,0 - 80 кГц, по уровню КСВ=3,0 - 300 кГц, активное сопротивление сохраняется в полосе 800 (!) кГц. В диапазоне 20 м реактивная составляющая также отсутствовала, Rвх=194 Ом, КСВ=2,56, полоса по уровню КСВ=3 - 620 (!) кГц, активное сопротивление сохраняется в полосе 630 (!) кГц.

Согласование производилось с помощью самодельного СУ, к которому подключался 75-омный кабель. Применение согласующего устройства позволило получить на обоих диапазонах КСВ=1,0 в 50-омном кабеле, соединяющем СУ с трансивером.

Широкая полоса рабочих частот без реактивностей - это замечательное свойство замкнутых антенн. Нет необходимости перестраивать СУ в пределах любительского диапазона-достаточно настроить его в одной точке. При этом СУ может находиться достаточно далеко от трансивера.

В поле в качестве полотна антенны мы применили полевой сдвоенный провод П-274. Этот провод в полиэтиленовой изоляции имеет определенный коэффициент укорочения, поэтому периметр антенны получился несколько меньшим, несмотря на большую высоту подвеса, чем дома, и составил 42,70 м.

Здесь также был равносторонний треугольник со стороной 14,23 м. Расстояния между точками А, Б, В и Г также равны и составляют по 10,67 м. Расстояние от узла запитки и до верхнего угла - 3,56 м.

Некоторые проблемы возникли с балуном, который входит в состав универсальной линии: для передвижения полотна антенны были использованы пластиковые круги от игрушки пирамида, и балун несколько сместился вниз от запроектированной точки (3,56 м от верха). Несмотря на это, антенна работала просто великолепно, т.к. на 12-метровых трубах она была установлена почти вертикально.

Также планируется испытать антенну в полевых условиях, но уже на высоте 16 м Опять будут применены стекпопластиковые мачты. Антенна будет установлена вертикально. О результатах испытания непременно сообщу.

Дельта, питаемая снизу (картинка 3), представляет собой не более, чем искривленный вариант первой антенны. Поэтому антенна также имеет горизонтальную поляризацию. Дельту проще построить, чем квадрат, поскольку ей нужна всего одна мачта. Но и усиление такой антенны чуть меньше, около 1.17 dBd. Дельта обладает входным сопротивлением около 106 Ом. Антенну можно запитать не только снизу, но и сверху (картинка 4), ее свойства от этого не сильно меняются. Перевернутая дельта (картинка 5) также обладает примерно теми же свойствами.

Как получить дельту с вертикальной поляризацией? Для этого нужно взять место запитки, при котором антенна имеет горизонтальную поляризацию, отсчитать в сторону λ/4, и запитать антенну в этом месте (картинка 6). Также допускается питать антенну и в ближайший угол, ее свойства от этого не сильно поменяются.

На иллюстрации приведены квадраты со стороной λ/4 и правильные треугольники со стороной λ/3. Однако антенну допускается вытягивать. Так на практике нередко используют прямоугольники с соотношением длин сторон от 2:1 до 3:1. Как правило, рамочные антенны располагают вертикально, но также допускается расположение под углом к земле, немного отличным от прямого. Помимо прочего, это позволяет уменьшить высоту мачты.

Горизонтально поляризованные дельты и квадраты должны быть расположены высоко (высота порядка λ/2) относительно земли, чтобы иметь небольшой угол излучения. Иначе антенна излучает в зенит, и с ее помощью возможны радиосвязи только на близкие расстояния. Рамочной антенне с вертикальной поляризацией достаточно быть поднятой от земли на пару метров (0.05 длины волны), при этом она пригодна для проведения дальних радиосвязей.

Читайте также: