Как осуществляют заражение культур клеток вирусом

Обновлено: 28.06.2024

Введение. Основным показателем специфической активности антител к вирусу SARS-CoV-2 является их способность нейтрализовать вирус. Тест на вируснейтрализующие антитела (ВНА) широко востребован в различных направлениях биомедицинских исследований.

Целью работы являлся подбор оптимальных условий для определения ВНА к вирусу SARS-CoV-2 по ингибированию цитопатогенного действия (ЦПД) в культуре клеток с возможностью как микроскопического, так и спектрофотометрического учёта результата.

Материалы и методы. Сыворотку крови реконвалесцентов COVID-19 и здоровых лиц (n = 96) изучали методом ИФА. Коронавирус SARS-CoV-2, штамм Dubrovka (номер GenBank: MW514307.1) выращивали в культуре клеток Vero CCL81 (ATСС). Идентификацию вируса проводили методами ОТ-ПЦР-РВ, ИФА и секвенирования по Сэнгеру. Результаты реакции нейтрализации (РН) учитывали по ЦПД микроскопически и в метилтетразолиевом (МТТ) тесте.

Результаты. От больного COVID-19 изолирован коронавирус SARS-CoV-2 и адаптирован к выращиванию в культуре клеток. При заражении низкой дозой (MOI = 0,00001) вирус вызывал выраженное ЦПД с выживаемостью клеток менее 3%, что позволяло учитывать результаты РН по ингибированию ЦПД. Сравни- тельный анализ сывороток в РН и методом ИФА показал достоверную корреляцию между титрами ВНА и титрами антител к RBD-домену S-белка (Спирмен r = 0,714; р 2 с кратностью пересева 1 : 5. На 3-и сутки, после достижения 100% монослоя, из флакона удаляли культуральную жидкость и добавляли вирусный материал при MOI = 0,01–0,0001 ТЦД50 на клетку. Адсорбцию вируса проводили в СО2 -инкубаторе в течение 60 мин, затем добавляли поддерживающую среду (DМЕМ, L-глутамин — 300 мкг/мл, гентамицин — 40 мкг/ мл, 1% эмбриональной телячьей сыворотки) и инкубировали при 37°С до проявления ЦПД в атмосфере с 5% СО2. При появлении ЦПД вируссодержащую культуральную жидкость собирали, осветляли центрифугированием, аликвотировали и хранили при –80°С.

Титрование вируса по конечной точке ЦПД. Титр вируса SARS-CoV-2 определяли по конечной точке проявления ЦПД в культуре клеток Vero. Клетки Vero высевали в 96-луночные планшеты с кратностью пересева 1 : 5. Через 3 сут из лунок планшета удаляли ростовую среду, вносили последовательные 10-кратные разведения вируса в поддерживающей среде и инкубировали в течение 5 сут в СО2 -инкубаторе при 37°С. Учёт результатов титрования проводили визуально путём микроскопического исследования клеточного монослоя на наличие характерного ЦПД на 5-е сутки после заражения (округление и открепление клеток от монослоя). Титр вируса рассчитывали по методике [16] и выражали в lg ТЦД50/мл.

ИФА на заражённых клетках (In-Cell ELISA). Клетки Vero, выращенные до 100% монослоя в 96-луночном планшете, заражали вирусом при MOI = 0,3. Через 24 ч клетки фиксировали в течение 15 мин раствором 8% параформальдегида, приготовленном на фосфатно-солевом буфере (ФСБ; рН 7,2), промывали дважды ФСБ, планшет хранили при 4°С до постановки ИФА. Перед проведением ИФА в лунки планшета вносили на 30 мин по 150 мкл 0,02 М ФСБ, содержащего 1% Тритона Х-100, затем на 1 ч вносили блокирующий раствор (0,02 М ФСБ, содержащий 0,09% казеината натрия). После удаления блокирующего раствора в лунки планшета вносили по 100 мкл сыворотки крови в разведении 1 : 100 в 0,02 М ФСБ, содержащем 0,2% бычьего сывороточного альбумина, 0,05% Tвин-20 и выдерживали в течение 1 ч при 37°С. После отмывки вносили по 100 мкл конъюгата моноклональных антител мыши к IgG человека с пероксидазой хрена. Повторяли этап инкубации и отмывки, затем вносили по 100 мкл 33 мМ цитратного буферного раствора рН 4,0, содержащего 0,01% перекиси водорода и 0,5 мМ 3,3',5,5' тетраметилбензидина. Через 15 мин реакцию останавливали добавлением 50 мкл 2N серной кислоты, измеряли оптическую плотность (ОП) в двухволновом режиме при основной длине волны 450 нм и длине волны сравнения 680 нм.

За титр антител к SARS-CoV-2 принимали последнее разведение, при котором значение ОП образца было выше, чем порог отсечения в каждом исследовании.

Выживаемость = (ОП530 опытной пробы/ОП530 клеточного контроля) × 100%,

где ОП530 опытной пробы — среднее значение ОП530 в лунках с заражёнными клетками; ОП530 клеточного контроля — среднее значение ОП530 в лунках с незаражённой клеточной культурой.

Реакция нейтрализации. Определение титра

ВНА к SARS-CoV-2 проводили, как описано в работе [17], с модификациями. Образцы сывороток аликвотировали по 100 мкл и хранили при –20°С. Перед постановкой реакции нейтрализации (РН) сыворотку размораживали, прогревали при 56°С в течение 30 мин, готовили последовательные двукратные разведения поддерживающей средой. Разведения сывороток смешивали с равным объёмом вирусного материала SARS-CoV-2 в титре 2 × 10 3 ТЦД50/мл и инкубировали при 37°C в атмосфере 5% CO2 в течение 1 ч. Из 96-луночного планшета с 3-дневным монослоем клеток Vero удаляли среду, в лунки вносили смесь вируса и сыворотки в 4 повторах по 100 мкл (доза вируса — 100 ТЦД50 на лунку) согласно схеме (табл. 2) и инкубировали в течение 5 сут при 37°C в атмосфере с 5% CO2.

Таблица 2. Схема расположения образцов в 96-луночном планшете при постановке РН
Table 2. Arrangement of samples in the 96-well plate during NT


Помимо исследуемых образцов, в РН предусматривали следующие контроли: клеточный контроль (КК — незаражённая клеточная культура), вирусный контроль (ВК — клетки, заражённые рабочим разведением вируса), контроль сыворотки (КС — сыворотка в разведении 1 : 20), контроль дозы (КД — пятикратные разведения вируса).

Учёт результата РН проводили визуально путём микроскопического исследования клеток либо спектрофотометрически в колориметрическом тесте МТТ. В целях защиты персонала перед измерением ОП планшет в открытом виде с разных сторон обрабатывали в течение 5 мин ультрафиолетом в боксе микробиологической безопасности. При визуальном учёте нейтрализующим титром сыворотки считали обратное значение её последнего разведения, в котором признаков ЦПД не обнаруживалось в 2 или более лунках. В тесте МТТ учёт нейтрализующего титра проводили спектрофотометрически и считали по последнему разведению, при котором показатель среднего значения ОП530–620 (далее — ОП530) был равен или превышал значения порогового показателя (ПП), определённого по формуле:

где ОП530 КК — среднее значение ОП530 в контрольных лунках с незаражённой клеточной культурой; ОП530 ВК — среднее значение ОП530 в контрольных лунках, содержащих рабочее разведение вируса.

Значения контрольных показателей учитывали следующим образом: КК — клеточный монослой в контрольных лунках должен быть сохранён полностью. ВК — полная дегенерация монослоя клеток в результате ЦПД вируса. Значения ОП530 ВК должны быть не выше 0,2, а отношение ОП530 КК/ОП530 ВК должно быть не менее 8.

Статистическая обработка данных. Статистическую значимость разницы титров антител, учтённых разными методами, оценивали с помощью коэффициента ранговой корреляции Спирмена. Достоверной считали разницу при р nd passage; c — 7 th passage; d — 21 st passage.

В МТТ-тесте показано, что если при заражении вирусом 2-го пассажа выживаемость клеток Vero составляла 92%, то уже к 14-му пассажу достигала минимального уровня (2–4%) (рис. 4).


Рис. 4. Выживаемость клеток Vero на 5-е сутки после заражения вирусом в зависимости от пассажного уровня вируса, MOI = 0,0001.
Fig. 4. Viability of Vero cells on day 5 post-infection depending on a passage level of the virus, MOI = 0.0001.

Таким образом, адаптированный к культуре клеток Vero штамм SARS-CoV-2 при малых дозах заражения вызывал выраженное ЦПД, которое без труда можно детектировать при микроскопическом исследовании монослоя. На основе созданной индикаторной системы была отработана и апробирована РН. Изучена зависимость значения титра ВНА от дозы заражения клеток. С этой целью сыворотка реконвалесцента COVID-19 с высоким титром антител к вирусу SARS-CoV-2 была исследована в РН при 4 дозах заражения: 200, 100, 50 и 25 ТЦД50 на лунку. В результате значения титра ВНА закономерно распределились в обратной зависимости от дозы заражения и составили 160, 320, 640 и 1280 соответственно. В дальнейшей работе мы использовали в РН дозу 100 ТЦД50 на лунку, поскольку в известных нам научных публикациях применялась эта доза [16][18][19].

Далее было проведено исследование в РН сывороток крови, охарактеризованных ранее по содержанию антител к SARS-CoV-2. Было исследовано 46 образцов, содержащих IgG антитела к вирусу в диапазоне разведений (титр) от 1 : 200 до >1 : 3200 (рис. 5, а). Для контроля специфичности также исследовали 20 сывороток пациентов, не содержащих антитела к SARS-CoV-2. Титры ВНА достоверно коррелировали (Спирмен r = 0,714; р 1 : 3200 обладали нейтрализующей активностью (рис. 5, б).


Об авторах

Грачева Анастасия Вячеславовна — м.н.с. лаб. молекулярной вирусологии

Было показано, что сыворотки из крови северных оленей можно успешно использовать для культивирования клеток Vero, которые наиболее часто применяются для биотехнологических целей. Однако вопрос стандартизации условий культивирования клеток в зависимости от наличия доброкачественных сывороток или их заменителей не утрачивает своего значения. Поэтому, были проведены исследования по получению и применению так называемых ростстимулирующих белков (РБ), выделенных из сывороток северных оленей, суягных овец и свиней с помощью водного раствора полиэтиленгликоля с M.м. 4000—8000 Д, который способствует также удалению ряда контаминирующих агентов. РБ представлены главным образом альбуминовой и α-глобулиновой фракциями, которые являются белковыми факторами роста, влияющими на пролиферацию клеток.

Изучена пролиферативная активность 7 клеточных линий после 5-ти последовательных пассажей в среде с РБ из сывороток свиней, суягных овец и оленей без добавления сыворотки FBS и с 2% FBS. Показано, что для получения показателей индекса пролиферации (ИП), равнозначных с контролем, все же необходимо добавление 2% сыворотки FBS. Показатели ИП разных клеточных линий различались незначительно. Лучшие показатели ИП наблюдались в экспериментах с РБ из сывороток оленей и свиней (11,12). При работе с культурами клеток не менее важным является применение ферментов для диспергирирования или отделения клеток от субстрата при их пересевах. Для этих целей, как известно, можно применять трипсин или химопсин.

Частым контаминантом клеточных культур оказывается вирус бычьей диареи (ВД), относящийся к роду Pestivirus семейства Flaviviridae и являющийся возбудителем вирусной диареи — болезни слизистых крупного рогатого скота. Этот вирус может проникать в клетки из нативных сывороток крупного рогатого скота и даже FBS, добавленных в ростовую среду (13). Так, с помощью метода ПЦР было выявлено наличие ВД в коммерческих FBS, полученных из различных фирм (ПАНЭКО, ООО Биолот, Gibco, Biowest, HyClone, Amimed, Sigma). В сыворотках FBS фирмы ПАНЭКО ВД обнаруживается как до, так и после прогревания в водяной бане при 56°С в течение 30 и даже 60 минут (14). Мы проводили определение ВД с помощью метода ПЦР в клеточных линиях из нашей коллекции.

Иследовались диплоидные клетки легкого и фибробласты эмбриона человека, клетки онкогенных и лимфобластоидных линий человека, перевиваемые клетки обезьян, крупного рогатого скота, собаки, свиньи, крыс, мышей, хомячка, кролика, кошки, овцы, хорька и кур. Клетки хранились в жидком азоте в течение различного периода. Было показано, что диплоидные клетки человека и ряд перевиваемых клеток барана, свиньи, хомячка, обезьян и человека не были контаминированы ВД. Однако в 30% клеточных линий из 83-х изученных был выявлен ВД, причем чаще всего в более поздних закладках. Очевидно, при культивировании этих клеток использовались сыворотки, содержащие этот вирус (15). Одним из пунктов паспорта клеточной линии является чувствительность к репродукции вирусов. Изучение чувствительности разных клеточных линий к определенным вирусам крайне важно для приготовления противовирусных вакцин.

Вирусам свойственен определенный круг хозяев, узкий для одних видов и очень широкий для других. Генетический аппарат вирусов представлен как ДНК, так и РНК в одно- или двунитевой, линейной или циркулярной, моно- или фрагментарной формах. К РНК- содержащим вирусам позвоночных относятся 20 видов вирусов (арена, артери, астро, бирна, борна, бунья, геле, дельта, калици, корона, нода, ортомиксо, парамикса, рабдо, рео, ретро, тога, фило и флави вирусы), включая субвирусные агенты вероиды, сателлиты и прионы. К ДНК-содержащим вирусам позвоночных относятся 11 видов вирусов (адено, анелмо, асфар, гепадна, герпес, иридо, паппилома, парво, покс, полиома и цирко вирусы). Название этих видов вирусов связано либо с их морфологией, либо с местом их изоляции. Интерес к проблеме поиска клеточных линий, чувствительных к различным ДНК- и РНК-содержащим вирусам, позволил нам суммировать различные данные и представить их в виде таблиц 1—4 (16,17).

В мире бушует коронавирус

Вирусы не относят к живым существам — это всего лишь кочевой генетический материал, несколько белков и иногда оболочка. Но это не мешает им проникать в клетки всех групп живых существ, вызывать серьезные заболевания и оставаться в организме своего хозяина годами.

Типы вирусов

Вирусы различаются по размеру, строению, структуре генома и наличию или отсутствию оболочки. Большинство изученных вирусов имеют диаметр от 20 до 300 нанометров. Например, размеры вириона коронавируса SARS-CoV-2 или вируса иммунодефицита человека составляют примерно 100–150 нанометров. Они относятся к песчинке так же, как песчинка относится к пятиэтажному дому. Но бывают вирусы еще меньше. Так, размер парвовируса (вызывает у человека в том числе инфекционную эритему) составляет порядка 22–24 нанометра. Существуют и значительно более крупные вирусы: мамавирус и вирус табачной мозаики сопоставимы по размерам с бактерией.

Вирусы разделяют на ДНК-содержащие и РНК-содержащие, их геном представлен ДНК и РНК соответственно. Большинство самых опасных вирусов, которые заражают человека, относятся к РНК-группе: ВИЧ, SARS-CoV-2, бешенство, грипп, гепатит C и другие.

Кроме того, некоторые исследователи выделяют вирусоподобные частицы (прионы), которые вовсе не содержат генома. В существование последних долго никто не верил, потому что это противоречит представлениям о строении подобных структур. В 1997 году за открытие прионов американский врач и профессор неврологии и биохимии Университета Калифорнии в Сан-Франциско Стенли Прузинер получил Нобелевскую премию. По сути прион — это белок с аномальной структурой, который превращает схожий с ним нормальный белок клетки в себе подобный. Прионы вызывают серьезные заболевания у человека, животных и даже некоторых грибов, но их вирусная природа не подтверждена.

Вирусы могут значительно различаться по строению и объему генетического материала. Например, у герпес-вирусов в тысячу раз больше закодированного материала, чем у более примитивного вируса иммунодефицита человека. Герпес-вирус несет с собой множество структурных белков, необходимых ему для репликации. В то же время вирус иммунодефицита состоит всего из нескольких генов и использует для воспроизведения белки инфицированной клетки.

Также вирусы можно поделить на безоболочечные и оболочечные, то есть покрытые только белковым капсидом или имеющие дополнительный билипидный (двойной) суперкапсид. И те и другие довольно успешно существуют, так как оба этих типа сохранились в ходе эволюции. При этом у каждого вируса есть свой уникальный механизм попадания в клетку и ее заражения.

Однако и такое деление может быть вскоре признано неверным, поскольку некоторые безоболочечные вирусы в определенных ситуациях могут обретать оболочку. Недавно обнаружилось, что вирус гепатита A, который ранее считали безоболочечным, может находиться в так называемых экстраклеточных везикулах — крошечных пузырьках, которые выделяет клетка. Считается, что эти структуры являются либо примитивными вирусами, которые утратили специфичность, либо эволюционно предшествуют современным вирусам. Сейчас подобные везикулы много изучают, потому что они играют важную роль в передаче генов и белков от одних клеток к другим.

Размеры и строение вирусов человека

Механизм проникновения вируса в клетку

Большинство вирусов видоспецифичны и могут поражать только определенные виды хозяев и конкретные клетки-мишени. Вирусные белки в капсиде вируса могут иметь сродство к белкам на поверхности клетки. Для проникновения в клетку белки слияния вируса используют соответствующие белки оболочки клетки — рецепторы. Если вирус не находит подобный рецептор, заражения не случится. Именно поэтому коронавирусы не заражают через кожу: у ее клеток нет необходимых рецепторов.

Рецепторами могут выступать любые белки клеточной оболочки. Конечно, они созданы не для того, чтобы вирус мог за них зацепиться, а для решения других задач. Например, белок ACE2, который отвечает за регулирование давления крови у человека, оказался рецептором для коронавируса SARS-CoV-2. А несколько других важных для иммунного ответа организма белков стали рецепторами для ВИЧ.

После того как вирус зацепился за рецептор на клеточной оболочке, ему нужно попасть внутрь клетки. Это может происходить по двум основным сценариям: через эндоцитоз или напрямую через клеточную мембрану.

Но вирус гриппа оказался хитрым. Он не разрушается в этих пузырьках благодаря белку, который умеет сливать его мембрану с мембраной лизосомы, и активируется именно в кислой среде. Получается, что мембраны вируса и лизосомы сливаются как два воздушных пузыря, после чего генетический материал вируса выбрасывается в клетку.

Во втором случае оболочка вируса сливается сразу с клеточной мембраной по тому же принципу, как это происходит с лизосомой, после чего его генетический материал и белки мигрируют непосредственно внутрь клетки. Так действует ВИЧ. Этот процесс очень отдаленно похож на слияние жировых пятен в супе. Обычно клеточные мембраны не сливаются, иначе жизнь на Земле была бы невозможна, поэтому вирус создал специальный механизм. Он очень близко подводит свою липидную мембрану к липидной мембране клетки и за счет специальных белков немного раздвигает липиды оболочки. Так вирусный геном попадает в клетку.

Например, SARS-CoV-2 никак не взаимодействует с генетическим материалом клетки и находится только в цитоплазме, где происходит репликация его РНК и строятся необходимые вирусу белки. Там же происходит сборка новых вирионов, которые затем выходят из клетки. Вирус иммунодефицита человека тоже содержит РНК, но относится к ретровирусам, то есть его геном встраивается в клеточную хромосому.

Вирусы могут иметь разную степень патогенности (возможность вызывать инфекционный процесс), и это не всегда связано с их способностью взаимодействовать с геномом пораженной клетки. Герпес-вирусы не внедряются в клеточную ДНК, однако могут долго существовать в организме, и избавиться от них очень трудно, от некоторых и вовсе невозможно. И даже самые безобидные из герпес-вирусов время от времени могут начать снова реплицироваться в организме.

Существует множество лекарств, которые уничтожают этот вирус, не позволяют ему реплицироваться и передаваться из одной клетки в другую. Но у него всегда остается так называемый латентный резервуар, который мешает полностью его уничтожить: ВИЧ переходит в латентную форму, сохраняясь внутри лимфоцитов. Что же делать с вирусом, когда его невозможно обнаружить? На сегодняшний день наука не знает, как избавиться от вируса, который встроился в геном и никак себя не проявляет.

Вирус может долгое время оставаться в организме, даже когда симптомы заболевания уже не проявляются. Особенно актуальна эта проблема в связи с COVID-19. На текущий момент (июнь 2020 года) принято считать выздоровевшим и незаразным человека, который две недели не демонстрирует симптомов этого заболевания. Между тем, по последним данным, у некоторых пациентов тест на вирусную РНК оказывается положительным даже 45 дней спустя. Это не является стопроцентным маркером заболевания, потому что вирусная РНК сама по себе без капсида не может проникать в клетку и может являться просто остатками вируса, которые долго выходят из организма.

Как отмечает руководитель гематологического отделения Национального института здоровья США и специалист по парвовирусам Нил Янг, недавно обнаружилось, что парвовирусы могут десятилетиями оставаться в организме людей, которые однажды им переболели. Пока неизвестно, в каком виде он сохраняется в клетке. Аналогично происходит и с вирусом ветрянки, которой многие болели в детстве и которая относится к семейству герпес-вирусов. Это не очень опасная болезнь, но очень заразная. У многих переболевших вирус не исчезает бесследно и остается в нервных окончаниях, проявляясь спустя десятилетия в виде опоясывающего лишая.

Заразность, инфекционность вируса, то есть способность передаваться другому организму, зависит от степени восприимчивости организма, от механизма передачи вируса, а также от того, насколько крепко он связывается со своим рецептором. SARS-CoV-2 отличает от других коронавирусов высокое сродство к рецептору — способность образовывать с ним сильную связь. Поэтому, по-видимому, так высока его инфекционность.

У ВИЧ инфекционность значительно ниже, но у него имеется удивительный механизм, который увеличивает шансы вируса поразить нужную клетку-мишень. Вирус иммунодефицита человека родственен специальным белковым нитям — амилоидным тельцам, которые находятся в сперме и, в свою очередь, привязываются к сперматозоидам. Так вирус не только получает доступ к клеткам-мишеням в организме хозяина, но и добывает себе транспорт в другой организм.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.


У РНК-содержащих ретровирусов сначала происходит обратная транскрипция генома в ДНК, затем ее интеграция в клеточные хромосомы и лишь после этого транскрипция генов.

Цитопатические эффекты при вирусных инфекциях разнообразны, они определяются как вирусом, так и клеткой и сводятся к разрушению клетки (цитолитический эффект), сосуществованию вируса и клетки без гибели последней (латентная и персистирующая инфекция) и трансформации клетки.

Вовлеченность организма в инфекционный процесс зависит от ряда обстоятельств - количества погибших клеток, токсичности вирусов и продуктов распада клеток, от реакций организма, начиная от рефлекторных и заканчивая иммунными. Количество погибших клеток влияет на тяжесть инфекционного процесса. Например, будут ли поражены при гриппе только клетки носа и трахеи или вирус поразит клетки эпителия альвеол, зависит тяжесть и исход болезни.

Хотя вирусы и не образуют типичных токсинов, однако и вирионы, и вирусные компоненты, накапливающиеся в пораженных тканях, выходя в кровоток, оказывают токсическое действие. Неменьшее токсическое действие оказывают и продукты распада клеток. В этом случае действие вирусной инфекции столь же неспецифично, как и действие патогенных организмов, убивающих клетки и вызывающих их аутолиз. Поступление токсинов в кровь вызывает ответную реакцию - лихорадку, воспаление, иммунный ответ. Лихорадка является преимущественно рефлекторным ответом на поступление в кровь и воздействие на ЦНС токсичных веществ.

Если лихорадка - общий ответ организма на вирусную инфекцию, то воспаление - это местная многокомпонентная реакция. При воспалении происходят инфильтрация пораженных тканей макрофагами, утилизация продуктов распада, репарация и регенерация. Одновременно развиваются реакции клеточного и гуморального иммунитета. На ранних стадиях инфекции действуют неспецифические киллеры и антитела класса IgM. Затем вступают в действие основные факторы гуморального и клеточного иммунитета. Однако гораздо раньше, уже в первые часы после заражения, начинает действовать система интерферона, представляющая семейство секреторных белков, вырабатываемых клетками организма в ответ на вирусы и другие стимулы. Описанные явления относятся к так называемой острой репродуктивной вирусной инфекции. Взаимодействие вируса и клеток может происходить, как отмечалось выше, без гибели последних. В этом случае говорят о латентной, т.е. бессимптомной или персистирующей хронической вирусной инфекции. Дальнейшая экспрессия вируса, образование вирусспецифических белков и вирионов вызывает синтез антител, на этой стадии латентная инфекция переходит в персистирующую и появляются первые признаки болезни.

Репродукция вируса в клетках сопровождается развитием цитопатических процессов, специфичных для разных вирусов и для разных типов инфекционных процессов. Цитопатические процессы при вирусных инфекциях разнообразны, они определяются как вирусом, так и клетками, причем специфика их больше "задается" клеткой, нежели вирусом, и сводится в основном к разрушению клеток, сосуществованию вируса и клеток без гибели последних и трансформация клеток. Несмотря на значительные различия цитоцидного действия разных вирусов, в общем, они сходны. Подавление синтеза клеточных макромолекул - нуклеиновых кислот и белков, а также истощение энергетических ресурсов клетки ведут к необратимым процессам, заканчивающимся гибелью пораженной клетки. Повреждение клеток вирусами, их отмирание и распад переносят вирусную инфекцию с клеточного уровня на уровень организма в целом.

При встрече организма с вирусной инфекцией продукция интерферона (растворимого фактора, вырабатываемого вирус-инфицированными клетками, способного индуцировать антивирусный статус в неинфицированных клетках) становится наиболее быстрой реакцией на заражение, формируя защитный барьер на пути вирусов намного раньше специфических защитных реакций иммунитета, стимулируя клеточную резистентность, - делая клетки непригодными для размножения вирусов.

Продукция и секреция цитокинов относятся к самым ранним событиям, сопутствующим взаимодействию микроорганизмов с макрофагами. Этот ранний неспецифический ответ на инфекцию важен по нескольким причинам: он развивается очень быстро, поскольку не связан с необходимостью накопления клона клеток, отвечающих на конкретный антиген; ранний цитокиновый ответ влияет на последующий специфический иммунный ответ.

Интерферон активирует макрофаги, которые затем синтезируют интерферон-гамма, ИЛ-1, 2, 4, 6, ФНО, в результате макрофаги приобретают способность лизировать вирус-инфицированные клетки.

Интерферон-гамма является специализированным индуктором активации макрофагов, который способен индуцировать экспрессию более 100 разных генов в геноме макрофага.

Продуцентами этой молекулы являются активированные Т-лимфоциты (Тh1-тип) и естественные киллеры (NK-клетки). Интерферон-гамма индуцирует и стимулирует продукцию провоспалительных цитокинов (ФНО, ИЛ-1, 6), экспрессию на мембранах макрофагов, антигенов МНС II; гамма-интерферон резко усиливает антимикробную и противовоспалительную активность путем повышения продукции клетками супероксидных радикалов, а усиление иммунного фагоцитоза и антителоопосредованной цитотоксичности макрофагов под влиянием гамма-интерферона связано с усилением экспрессии Fc-рецепторов для JgG. Активирующее действие интерферона-гамма на макрофаги опосредовано индукцией секреции этими клетками ФНО -альфа. Этот пик наблюдается совместно с ФНО-альфа. Максимум продукции ИЛ-4 наступает через 24-48 ч с момента активации клеток. При этом ИЛ-4 рассматривается как цитокин, ограничивающий иммуновоспалительные реакции и снижающий ответ организма на инфекцию, угнетая при этом экспрессию гамма-интерферона. Интерферон-гамма ин витро усиливает фагоцитарную активность нейтрофилов, что обусловлено усилением экспрессии Fc-рецепторов и поверхностных белков семейства интегринов на нейтрофилы. Это позволяет нейтрофилам осуществлять цитотоксические функции и фагоцитоз. В качестве основных эффекторных клеток воспалительного процесса, они обеспечивают элиминацию инфекта из организма.

Взаимодействие цитокина с клеткой определяется универсальной биологической системой, специфическим механизмом которой является рецепторный аппарат, связанный с восприятием метаболического кода. Для проявления биологической активности цитокина необходимо присутствие на поверхности чувствительных клеток специфических рецепторов, которые могут экспрессироваться параллельно с синтезом цитокина. Рецепторы цитокинов представляют собой комплексы, состоящие из двух и более рецепторных молекул, которые объединяются на мембране клетки-мишени и образуют высокоаффинный рецепторный комплекс. Большинство рецепторов состоит из отдельных молекул, связывающих цитокины, которые ассоциируются после связывания лиганда с сигналпередающим рецепторным компонентом; часть рецепторов существует как растворимые изоформы, способные связывать и растворять цитокины, а часть функционирует как многокомпонентные блоки; механизм комплексирования субъединиц рецепторов объясняет плейотропные и дублирующие эффекты цитокинов, имеющих большое структурное сходство. Рецепторы ИЛ-10 имеют гомологию рецепторов интерферона, и подобно ИЛ-10 индуцирует экспрессию в моноцитах гена Fc- рецептора. Для полного функционирования цитокиновой системы необходимы повышение уровня цитокина в ответ на инфект и экспрессия нормального количества рецепторов к ним на клетках. Изменение рецепторов после их связывания с цитокином заключается в интернализации комплексов цитокин - рецептор внутрь клетки. На поверхности клеток рецептор появляется заново, постепенно синтезируясь в течение 24-36 ч (время появления рецепторов интерферон-альфа). В этот период клетки остаются чувствительными к последующим дозам цитокина, чем объясняется эффективность введения препаратов интерферона и их индукторов три раза в неделю.

При антигенной стимуляции клеток трансдукция сигнала с активированного рецептора на генетический аппарат осуществляется с помощью внутриклеточных регуляторных систем, компоненты которых (белки мембран, ферментов, хроматина) связываются с чувствительными к ним последовательностями ДНК. После связывания цитокина (интерферон) с поверхностными клеточными мембранными рецепторами происходит активация ферментов протеинкиназы-С (ПКС), тирозинкиназы, ц-АМФзависимой протеинкиназы, серин-треонинкиназы. Интерферон-альфа активирует tyk 2 и jak 1-киназы, а интерферон-гамма активирует jak 1 и 2-киназы. Далее факторы транскрипции перемещаются в ядро клетки и связывают гены раннего ответа.

Первый ответ клеток на цитокин - это быстрая индукция генов раннего ответа ("immediate early" генов), в число которых и входит ген интерферон-гамма. Стимуляция экспрессии этих генов важна для выхода клеток из Go-стадии и перехода в Gi-стадию и дальнейшей прогрессии клеточного цикла. Их индукция происходит после активации рецепторов роста на клеточной мембране и активации протеин-киназной системы. Гены раннего ответа являются ключевыми регуляторами клеточной пролиферации и дифференцировки, кодируют белки, регулирующие репликацию ДНК.

Таким образом, при активации клеток происходит стимуляция генов раннего ответа, что ассоциируется с изменением фаз клеточного цикла. Основная протективная роль в иммунном ответе, направленном против внутриклеточных паразитов (грибы, простейшие, вирусы, микобактерии туберкулеза), принадлежит клеточным механизмам. Способность перечисленных возбудителей переживать и размножаться внутри клеток делает их защищенными от действия антител и системы комплемента. Резистентность к антимикробным факторам макрофагов позволяет им длительно переживать внутри этих клеток. Для элиминации возбудителя необходим специфический клеточно-опосредованный ответ. Его специфичность определяется антигенраспознающими СД8+-Т-лимфоцитами, которые пролиферируют, активируются и формируют клон эффекторных цитотоксических лимфоцитов. Решающий момент специфического иммунного ответа - это ответ СД4+Т-лимфоцитов с хелперной направленностью на распознавание антигена. На этом этапе определяется форма иммунного ответа: либо с преобладанием гуморального иммунитета, либо с преобладанием клеточных реакций (ГЗТ). Направление дифференцировки СД4 + -лимфоцитов, от которого зависит форма специфического иммунного ответа, контролируется цитокинами, образующимися в ходе воспалительной реакции. Так, в присутствии ИЛ-12 и интерферон-гамма СД4 + -лимфоциты дифференцируются в воспалительные Тh1-клетки, начинают продуцировать и секретировать интерлейкин-2, интерферон-гамма, ФНО и определяют клеточный характер специфического иммунного ответа. Присутствие ИЛ-12 обеспечивается его продукцией макрофагами, а интерферон-гамма - естественными киллерами, активированными в раннюю фазу ответа на внутриклеточно паразитирующие бактерии и вирусы. В отличие от этого, в присутствии ИЛ-4 СД4 + -лимфоциты дифференцируются в хелперы Тh 2, которые начинают продуцировать и секретировать ИЛ-4, ИЛ-5, ИЛ-6 и запускают гуморальный иммунный ответ, т.е. синтез специфических антител - иммуноглобулинов. Воспалительные Тh 1-лимфоциты нужны для борьбы с внутриклеточными паразитами, а Тh 2 хелперы нужны для элективной защиты от внеклеточных паразитов.

Вирусная инфекция может вызывать быстрое подавление экспрессии ряда клеточных генов (из которых наиболее изучены интерфероновые гены и гены, кодирующие дс-РНК-зависимые ферменты -2,5-ОАС и ПК-дс), принимающих участие в антивирусном действии. Специальные исследования механизма антивирусного действия интерферонов и дс-РНК в клеточных и бесклеточных системах показали ключевую роль в этом процессе вышеуказанных ферментов. ПК-дс, взаимодействуя с дс-РНК, фосфорилируется и в активной форме фосфорилирует регуляторные факторы транскрипции и трансляции, из которых наиболее изучен инициирующий фактор трансляции (eIF2).

ПК-дс выполняет регуляторную роль в системе клеточной пролиферации на уровне факторов трансляции и активации ряда генов цитокинов. Вероятно, существует связь между подавлением транскрипции мРНК и ПК-дс, угнетением общего синтеза клеточного белка при вирусных инфекциях и накоплением в ядрах клеток белка нуклеокапсида и белка NSP2. Фрагментация клеточных хромосом, наблюдающаяся на ранних сроках вирусной инфекции, может быть одной из причин подавления экспрессии генов, участвующих в противовирусном ответе.

Есть основания предполагать участие белков NSP2 в регуляции активности генов цитокинов - низкомолекулярных белковых регуляторных веществ, продуцируемых клетками и способных модулировать их функциональную активность. Нарушения в системе цитокинов приводят к нарушению кооперативных взаимодействий иммунокомпетентных клеток и нарушению иммунного гомеостаза.

В последние годы показано, что ИЛ- 12, относящийся к провоспалительным цитокинам, является ключевым для усиления клеточно-опосредованного иммунного ответа и инициации эффективной защиты против вирусов.

Средства терапии гриппа и ОРЗ можно разделить на этиотропные, иммунокорригирующие, патогенетические и симптоматические. Приоритет принадлежит этиотропным препаратам, действие которых направлено непосредственно на возбудитель инфекции. Все препараты этиотропного действия целесообразно рассматривать с учетом их точек приложения в цикле репродукции вирусов гриппа и других ОРЗ.

Применение химиопрепаратов для профилактики и лечения гриппа и ОРЗ относится к базовой терапии и является общепризнанным мировым стандартом. Многолетние клинические исследования достоверно выявили их высокую лечебно-профилактическую значимость. Химиотерапевтические средства представлены тремя основными группами: это блокаторы М2-каналов (амантадин, ремантадин); ингибиторы нейраминидазы (занамивир, озельтамивир) и ингибиторы протеаз (амбен, аминокапроновая кислота, трасилол). Препараты оказывают прямое антивирусное действие, нарушая различные фазы репликативного цикла вирусов. Несколько особняком стоит группа вирулицидных препаратов, применяемых местно для предотвращения адсорбции и проникновения вирионов в клетки.

Читайте также: