Как осуществляют испытание контактных соединений на надежность

Обновлено: 02.07.2024

1. ВВОДНАЯ ЧАСТЬ.

1.1. Данная методика разработана электролабораторией в Краснодаре и Краснодарском крае ООО "Энерго Альянс" предназначена для проведения испытаний подвесных и опорных изоляторов в соответствии с требованиями п. 1.8.35 ПУЭ, раздел 1.

2. СРЕДСТВА ИЗМЕРЕНИЙ.

2.1. При проведении испытаний используются следующие приборы:

• Мегаомметр 2500 В.

• Испытательная установка АИД-70.

3. МЕТОДЫ ИЗМЕРЕНИЙ.

3.1. Шины испытываются в следующем объеме:

• Измерение сопротивления изоляции подвесных, многоэлементных, опорных фарфоровых изоляторов.

• Испытание повышенным напряжением промышленной частоты.

• Проверка качества болтовых контактных соединений.

• Проверка качества выполнения опрессованных контактных соединений.

• Контроль сварных контактных соединений.

• Испытание проходных изоляторов.

3.2. Для спорно-стержневых изоляторов испытание повышенным напряжением промышленной частоты не обязательно.

3.3. Электрические испытания стеклянных подвесных изоляторов не производится. Контроль их состояния осуществляется путем внешнего осмотра.

4. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ.

4.1. Пусконаладочные работы по испытанию электрооборудования проводятся бригадой в составе не менее двух человек, которые должны иметь группу по электробезопасности не ниже IV, до и выше 1000 В.

4.2. К работам по измерениям и испытаниям должен привлекаться персонал, прошедший специальную подготовку и проверку знаний схем измерений и испытаний и имеющий практический опыт пусконаладочных работ в условиях действующих электроустановках в течение 1 месяца. Лица, допущенные к проведению испытаний, должны иметь при себе удостоверение по проверке знаний ПТБ с соответствующей в ней отметкой.

4.3. Установка приборов и сборка испытательных схем должна выполняться на специальных столах достаточной прочности и с площадью, дающей возможность удобно и свободно их разместить.

4.4. Провода , используемые для сборки временных испытательных схем, должны быть одножильными и многопроволочными с изоляцией , соответствующей напряжению цепей, и сечением, соответствующим пропускаемой величине тока, но не менее 4кв.мм. Применение алюминиевых проводов не допускается.

4.5. При сборке измерительных и испытательных схем прежде всего выполняются защитное и рабочее заземление испытательных аппаратов. Заземление должно быть выполнено медным проводом сечением не менее 4 мм'.

4.6. Питание временных испытательных схем для проверок и испытаний должно выполняться через закрытый автомат и штепсельный разъем (разъемную муфту). Автомат служит для защиты от короткого замыкания и перегрузок, а разъем - для видимого разрыва. При снятии напряжения первым отключается автомат, затем разбирается разъем. При подаче напряжения собирается разъемное соединение при отключенном автомате, затем включается автомат.

4.7. В электроустановках проверять отсутствие напряжения следует указателем напряжения только заводского изготовления , исправность которого перед применением должна быть установлена посредством предназначенных для этой цели специальных приборов или приближением к токоведущим частям, расположенным поблизости и заведомо находящимися под напряжением. В электроустановках напряжением выше 1000В пользоваться указателем напряжения необходимо в диэлектрических перчатках.

4. 8. Накладывать заземления на токоведущие части необходимо непосредственно после проверки отсутствия напряжения. Переносные заземления сначала нужно присоединить к земле, а затем, после проверки отсутствия напряжения, наложить на токоведущие части. Снимать заземления следует в последовательности (обратной наложению): с токоведущих частей, а затем от земли.

4.9. Измерения мегаомметром и испытание повышенным напряжением разрешается выполнять обученным лицам электротехнического персонала.

5. ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПЕРСОНАЛА.

5.1. К проведению работ по испытанию допускаются лица, аттестованные на проведение данных работ, прошедшие проверку знаний по ПТБ и ТБ, обеспеченные средствами защиты.

5.2. Испытания и измерения проводит бригада из двух человек с квалификационной группой не ниже IV, до и выше 1000 В.

6. УСЛОВИЯ ПРОВЕДЕНИЯ ИСПЫТАНИЙ И НАЛАДКИ.

6.1. Характеристики окружающей среды: − Время года — в течение года.

− Время суток — с 8 до 17 часов. − Температура — не ниже +5° С. − Влажность — до 70%.

7. ПРОЦЕДУРА ПРОВЕДЕНИЯ ИСПЫТАНИЙ.

7.1. Измерение сопротивления изоляции подвесных, многоэлементных, опорных фарфоровых изоляторов.

7.1.1. Перед испытаниями изоляторы подвергают наружному осмотру , при котором проверяют целость фарфора и металлической арматуры, надежность армировки металлических деталей изоляторов, параллельность колпачка и фланца у опорных изоляторов и т.п.

7.1.2. Измерение сопротивления изоляции подвесных и многоэлементных изоляторов производится мегаомметром на напряжение 2,5 кВ только при положительных температурах окружающего воздуха.

7.1.3. Проверку изоляторов следует производить непосредственно перед их установкой в распределительных устройствах и на линиях электропередачи.

7.1.4. Измерение сопротивления изоляции проводят в соответствии со схемами на рис.1.


7.1.5. Измерение изоляции многоэлементных изоляторов проводят поочерёдно для каждого элемента.

7.1.6. Измерение изоляции шинопроводов проводят поочерёдно для каждой шины отдельно относительно земли и между фазами.

7.2. Испытание повышенным напряжением промышленной частоты:

7.2.1. Опорных одноэлементных изоляторов.

Для этих изоляторов внутренней и наружной установок значения испытательного напряжения приводятся в таблице 1.

Продолжительность приложения нормированного испытательного напряжения 1 мин.

Состояние токоведущих частей и их контактных соединений кроме визуального контроля проверяют измерением сопротивления постоянному току обмоток, отдельных контактов, токоведущих участков в местах их соединений (сборных шин и шинопроводов). При наличии короткозамкнутых витков измеренное сопротивление постоянному току, как правило, меньше, а при обрыве, неудовлетворительном соединении или нарушении контактных соединений оно превышает паспортные значения или нормируемые величины. Отклонение одного из измерений от заводских данных является признаком того, что дефект находится в соединении обмотки с переключателем или в пайке обмоток.
При плохой регулировке контактов выключателей значительно увеличиваются переходное сопротивление постоянному току силовых контактов по сравнению с нормативными значениями и расхождение сопротивлений по фазам.
Состояние заземляющих проводок и качество их контактных соединений определяют внешним осмотром и по результатам специальных измерений, выполняемых с помощью измерителей заземления. Диапазон сопротивлений, который приходится измерять, очень велик — от 10+5 (переходные сопротивления контактов) до 105 Ом (сопротивления обмоток реле, резисторов). Следовательно, методы и приборный парк, необходимые при выполнении этих работ, разнообразны.
Результаты измерений сопротивления постоянному току не являются единственным критерием состояния токоведущих частей. Качество ответственных контактных соединений может проверяться специальными испытаниями.

ПРОВЕРКА СХЕМ ЭЛЕКТРИЧЕСКИХ СОЕДИНЕНИЙ




Если этого не происходит, необходима механическая регулировка расцепителя. Затем к гнездам 1, 2, 3 полупроводникового блока БУРП подсоединяют в зависимости от рода проверяемого тока зажимы А1, А2, А3 расцепителя переменного или постоянного тока Устанавливают переключатель S3 в положение Номинальный и включают проверяемый выключатель. Подают питание на схему устройства. Расцепитель не должен срабатывать в любом фиксированном положении регулировочных ручек.
Устанавливают переключатель S3 в положение Перегрузка. Автоматический выключатель должен отключиться с выдержкой не более 800 с. Таким образом проверяют работоспособность блока в зоне перегрузки. Затем устанавливают переключатель S3 в положение Номинальный, включают выключатель и нажимают кнопку S2. Автоматический выключатель должен отключиться за промежуток не более I с. Таким образом проверяют работоспособность блока в зоне токов короткого замыкания. Далее можно переходить к проверке или при необходимости к регулировке токов и времени срабатывания выключателя.
QF — автоматический выключатель, X.S0 гнездо, TAI — ТАЗ трансформаторы тока, FUI - плавкий предохранитель, РА! амперметр, НИ — прибор световой сигнализации, UD — выпрямитель



Рис 28 Лицевая панель расцепителя РМТ-1 I — контрольные гнезда, 2—5 — шкалы


В большинстве схем управления электроприводом для включения двигателей применяют контакторы, а также магнитные и бесконтактные (тиристорные) пускатели. С их помощью осуществляется дистанционное и автоматическое включение и отключение приводного двигателя, пусковых и регулировочных сопротивлений, отключение аварийных участков сети, включение тормозных электромагнитов и других вспомогательных устройств/
Контакторы и пускатели чаще всего комплектуются заводами- изготовителями вместе с аппаратурой управления и защиты в специальные блоки, панели, щиты и станции управления соответственно проектным схемам и поставляются потребителю проверенными и отрегулированными. Нередко на монтаж магнитные пускатели поступают россыпью, тогда проектную схему монтируют полностью на месте.
Контакторно-релейная аппаратура, поступающая на монтаж, в большинстве случаев нуждается в предварительной проверке и механической регулировке, так как при транспортировке могут ослабнуть крепления, а при длительном хранении может образоваться коррозия, вызывающая заедание подвижных систем и нарушающая проводимость контактных поверхностей.
При первоначальной наладке аппаратов на месте монтажа проверяют внешним осмотром: соответствие типа аппарата и параметров втягивающей катушки проекту или реальным нагрузкам, отсутствие консервирующей смазки и транспортных креплений, наличие всех деталей магнитной системы и возвращающих пружин; состояние гибких соединений, наличие и состояние искрогасительных камер, наличие немагнитной прокладки или короткозамкнутого витка и их состояние, наличие крепежных болтов, гаек, плоских и пружинных шайб и качество крепления; целостность опорных призм или подшипников; состояние главных и вспомогательных контактов и их пружин. Кроме того, вручную проверяют: отсутствие заедания подвижной системы; одновременность замыкания и размыкания главных контактов; наличие и размеры провалов главных и вспомогательных контактов; правильность действия вспомогательных контактов; плотность прилегания магнитопроводов. Правильность работы контактов и жесткость пружин оценивают при проверке и наладке сравнением с иными контакторами данного типа (в случае крайней необходимости — по каталожным данным). При замыкании и размыкании должно происходить скольжение одного контакта относительно другого (перекатывание).
Раствор А и провал В главных контактов замеряют шаблоном или нутромером в местах, показанных на рис. 29, а, б. Размеры растворов и провалов указаны в специальных таблицах завода-изготовителя.

Рис. 29 Проверка провала (а) и раствора (б) главных контактов
Рис 30 Схемы проверки напряжения втягивания и отпадания контакторов, а — постоянного тока, б — переменного тока, FV — плавкий предохранитель, TV — трансформатор напряжения, VZ — выпрямительный блок, RV — вольт метр. КМ — контакторы

Наладочный персонал, занимающийся проверкой конденсаторных установок, должен знать, для чего их применяют, как они должны быть выполнены и каков объем проверок перед их включением в работу.
Чтобы получить значение коэффициента мощности 0,92—0,95, необходимо установить на предприятии специальные компенсирующие устройства — источники реактивной мощности. К ним относят: конденсаторы для повышения коэффициента мощности; синхронные компенсаторы; синхронные двигатели, работающие в режиме перевозбуждения; синхронизированные асинхронные двигатели; фазокомпенсаторы (трехфазные возбудители).
При использовании конденсаторов различают централизованную, групповую и индивидуальную компенсацию реактивной мощности.
При централизованной компенсации (рис. 32) конденсаторы устанавливают на стороне высокого или низкого напряжения подстанций предприятий. При этом электрическая сеть предприятия от реактивных токов не разгружается, причем при установке конденсаторов на стороне высокого напряжения подстанции не разгружается также и трансформатор предприятия.



Рис. 32. Схема подключения батареи конденсаторов к шинам подстанции;
F — предохранители, С — конденсаторы, TV—трансформатор напряжения



Рис. 33. Схема подключения конденсаторов к цеховому распределительному устройству

При групповой компенсации (рис. 33) батарею конденсаторов присоединяют к цеховому распределительному устройству. В этом случае от реактивных токов разгружаются лишь питающая сеть и трансформаторы предприятия.
При индивидуальной компенсации (рис. 34) конденсаторы устанавливают непосредственно у приемников, например у электродвигателей.
Промышленность выпускает конденсаторы для повышения коэффициента мощности переменного тока частотой 50 Гц на следующие номинальные напряжения: 220, 380, 500, 660, 3150, 6300 и 10 500 В. При этом на напряжения 3150, 6300 и 10 500 В конденсаторы изготовляют однофазными, а на напряжения 220— 660 В — трехфазными с соединением фаз внутри конденсатора в треугольник.

Испытательное напряжение, кВ, для конденсаторов с рабочим напряжением, кВ

Испытательное напряжение повышают плавно е нуля или со значения, равного 20—25 % испытательного. Снижение напряжения осуществляют также плавно. После испытания конденсаторы необходимо разрядить.
Испытание повышенным напряжением промышленной частоты относительно изоляции корпуса конденсаторов, предназначенных для повышения коэффициента мощности и имеющих вывод, соединенный с корпусом, не производится.
Емкость обычно измеряют у конденсаторов напряжением 1 кВ и выше, но при необходимости допускается измерять ее и у конденсаторов напряжением ниже 1 кВ. Измеренные емкости не должны отличаться от паспортных значений более чем на ±10% для конденсаторов напряжением до 1050 В и от 5 до + 10 % для конденсаторов напряжением выше 1050 В. Способы измерения емкости приведены в гл. 11.
В конце проверки батарею конденсаторов испытывают трехкратным включением на рабочее напряжение сети с измерением токов в каждой фазе батареи. Токи в различных фазах не должны отличаться друг от друга более чем на 5%. При включении батареи не должно наблюдаться ненормальных явлений (автоматическое отключение, перегорание предохранителей, шум и потрескивание в баках). Запрещается включать конденсаторы на напряжение более 110%.

Какие дефекты электрического оборудования чаще всего встречаются при наладочных работах?
Какими приборами проверяют схемы соединений?
Как осуществляется наладка контакторов и пускателей?

Тепловизионный контроль контактных соединений

Как известно, в зависимости от конструкции, назначения, способа соединения материалов, области применения и других факторов различают контактные соединения: болтовые, сварные, паяные и выполненные обжатием (опрессованные и скрученные).
К контактным соединениям можно отнести дистанционные распорки проводов.

Сварные контактные соединения.

При эксплуатации контактных соединений, выполненных сваркой, причинами возникновения в них дефектов могут являться: отклонения от заданных параметров, подрезы, пузыри, каверны, непровары, наплывы, трещины, шлаковые и газовые включения (раковины), незаделанные кратеры, пережог проволок жилы, несоосность соединенных проводников, неправильный выбор наконечников, отсутствие защитных покрытий на соединениях и т.п.
Технология термической сварки не обеспечивает надежную работу сварных соединителей проводов больших сечений (240 мм2 и более). Это связано с тем, что из-за недостаточного разогрева в процессе сварки соединяемых проводов и неравномерного сближения их концов происходит пережог наружных повивов проводов, непровар, в месте сварки появляются усадочные раковины и шлаки. В результате снижается механическая прочность сварного соединения. При механических нагрузках менее расчетных возникает обрыв (перегорание) провода в петле анкерной опоры, что приводит к аварийным отключениям ВЛ при малом сроке их эксплуатации. Если в сварном соединении происходит обрыв отдельных проводников провода, то это приводит к увеличению переходного сопротивления контакта и повышению его температуры.
Скорость развития дефекта в этом случае будет существенно зависеть от ряда факторов: значения тока нагрузки, натяжения провода, ветровых и вибрационных воздействий и т.п.
На основании проведенных экспериментов было установлено, что:

  1. уменьшение активного сечения провода на 20 — 25 % за счет обрыва отдельных проводников может быть не выявлено при проведении ИК-контроля с вертолета, что связано с малым коэффициентом излучения провода, удаленностью тепловизора от трассы на 50 — 80 м, влиянием ветра, солнечной радиацией и другими факторами;
  2. при отбраковке дефектных контактных соединений, выполненных сваркой, с помощью тепловизора или пирометра необходимо иметь в виду, что скорость развития дефекта этих соединений намного выше, чем у болтовых контактных соединений с нажатием;
  3. дефекты выполненных сваркой контактных соединений, выявленные тепловизором при обследовании ВЛ с вертолета, необходимо классифицировать как опасные, если их избыточная температура равна 5 °С;
  4. стальные втулки, не удаленные со сварного участка проводов, могут создавать ложное впечатление о возможном нагреве за счет высокого коэффициента излучения отожженной поверхности.

Опрессованные контактные соединения.

В контактных соединениях, выполненных опрессовкой, наблюдаются неправильный подбор наконечников или гильз, неполный ввод жилы в наконечник, недостаточная степень опрессовки, смещение стального сердечника в соединителе провода и т.п. Как известно, одним из способов контроля опрессованных соединителей является измерение их сопротивления постоянному току.
Критерием идеального контактного соединения служит равенство его сопротивления сопротивлению эквивалентного участка целого провода. Опрессованный соединитель считается пригодным к эксплуатации, если его сопротивление не более чем в 1,2 раза превышает эквивалентный участок целого провода. При опрессовании соединителя его сопротивление резко падает, но с увеличением давления оно стабилизируется и изменяется незначительно.
Сопротивление соединителя весьма чувствительно к состоянию контактной поверхности прессуемых проводов. Появление оксидов алюминия на контактных поверхностях ведет к резкому увеличению контактного сопротивления соединителя и повышенному тепловыделению.
Незначительные изменения переходного сопротивления контактного соединения в процессе их опрессования, а также связанное с этим малое тепловыделение в контактном соединении указывают на недостаточную эффективность выявления в них дефектов непосредственно после монтажа с помощью приборов инфракрасной техники. В процессе эксплуатации опрессованных контактных соединений наличие в них дефектов будет способствовать более интенсивному образованию оксидных пленок и повышать переходное сопротивление, что может привести к появлению локальных нагревов. Поэтому можно считать, что ИК-контроль новых опрессованных контактных соединений не позволяет выявлять дефекты опрессовки и должен проводиться для соединителей, проработавших определенный срок (1 год и более).
Основными характеристиками опрессованных соединителей являются степень опрессовки и механическая прочность. С увеличением механической прочности соединителя его контактное сопротивление уменьшается. Максимум механической прочности соединителя соответствует минимуму электрического контактного сопротивления.

Болтовые контактные соединения.

Контактные соединения, выполненные с помощью болтов, чаще всего имеют дефекты из-за отсутствия шайб в месте соединения медной жилы с плоским выводом из меди или сплава алюминия, отсутствия тарельчатых пружин, непосредственного подсоединения алюминиевого наконечника к медным выводам оборудования в помещениях с агрессивной или влажной средой, в результате недостаточной затяжки болтов и др.
Болтовые контактные соединения алюминиевых шин на большие токи (3000 А и выше) недостаточно стабильны в эксплуатации. Если контактные соединения на ток до 1500 А требуют подтяжки болтов 1 раз в 1 — 2 года, то аналогичные соединения на токи 3000 А и выше нуждаются в ежегодной переборке с непременной зачисткой контактных поверхностей. Необходимость в такой операции связана с тем, что в многоамперных шинопроводах (сборные шины электростанций и т.п.), выполненных из алюминия, более интенсивно протекает процесс образования оксидных пленок на поверхности контактных соединений.
Процессу образования оксидных пленок на поверхности болтовых контактных соединений способствуют различные температурные коэффициенты линейного расширения стальных болтов и алюминиевой шины. Поэтому при прохождении по шинопроводу тока КЗ, при работе его с переменной токовой нагрузкой в нем при большой протяженности в результате вибрационных воздействий происходит деформация (уплотнение) контактной поверхности алюминиевой шины. В этом случае усилие, стягивающее две контактные поверхности ошиновки, ослабевает, имевшийся между ними слой смазки испаряется и т.д.
Из-за образования оксидных пленок площадь соприкосновения контактов, т.е. число и размер контактных площадок (число точек), через которые проходит ток, уменьшаются и, вместе с тем, увеличивается плотность тока, которая может достигать тысяч ампер на квадратный сантиметр, вследствие чего сильно растет нагрев этих точек.
Температура последней точки достигает температуры плавления материала контакта, и между контактными поверхностями образуется капля жидкого металла. Температура капли, повышаясь, доходит до кипения, пространство вокруг контактного соединения ионизируется, и появляется опасность многофазного замыкания в РУ. Под действием магнитных сил дуга может перемещаться вдоль шин РУ со всеми вытекающими отсюда последствиями.
Опыт эксплуатации показывает, что наряду с многоамперными шинопроводами недостаточной надежностью обладают и одноболтовые контактные соединения. Последние, в соответствии с ГОСТ 21242-75, допускаются к применению на номинальный ток до 1 ООО А, однако повреждаются уже при токах 400 — 630 А. Повышение надежности одноболтовых контактных соединений требует принятия ряда технических мер по стабилизации их электрического сопротивления.
Процесс развития дефекта в болтовом контактном соединении, как правило, протекает достаточно длительно и зависит от ряда факторов: тока нагрузки, режима работы (стабильная нагрузка или переменная), воздействия химических реагентов, ветровых нагрузок, усилий затяжки болтов, стабилизации давления контактов и др.
Переходное сопротивление болтового контактного соединения зависит от продолжительности токовой нагрузки. Переходное сопротивление контактных соединений постепенно повышается до определенного момента, после чего происходит резкое ухудшение контактной поверхности контактного соединения с интенсивным тепловыделением, свидетельствующим об аварийном состоянии контактного соединения.
Аналогичные результаты были получены специалистами фирмы “Инфраметрикс” (США) при тепловых испытаниях болтовых контактных соединений. Повышение температуры нагрева в процессе испытаний носило постепенный характер в течение года, а затем наступал период резкого повышения тепловыделения.

Контактные соединения, выполненные скруткой.

Отказы контактных соединений, выполненных скруткой, возникают в основном из-за дефектов монтажа. Неполная скрутка проводов в овальных соединителях (менее 4,5 витков) приводит к вытягиванию провода из соединителя и его обрыву. Неочищенные провода создают высокое переходное сопротивление, в результате чего происходит перегрев провода в соединителе с его возможным выгоранием. Неоднократно отмечались случаи выдергивания грозозащитного троса АЖС-70/39, скрученного на меньшее количество оборотов, из овального соединителя марки СОАС-95-3 воздушных линий 220 кВ.

Контактные соединения, выполненные скруткой


Рис. Фотография места крепления дистанционной распорки с изломом проводников в результате вибрационных воздействий (а) и схема протекания токов нагрузки в двухпроводной фазе ОРУ или ВЛ при изломе проводников в месте крепления дистанционных распорок (б)

Дистанционные распорки.

Неудовлетворительная конструкция некоторых исполнений дистанционных распорок, воздействие вибрационных усилий и другие факторы могут приводить к перетиранию проводников провода или их излому (рис. 34). В этом случае через дистанционную распорку будет протекать ток, значение которого будет определяться характером и степенью развития дефекта.

Анализ результатов тепловизионного контроля контактных соединений

Сварные контактные соединения.

При тепловизионном контроле контактных соединений оценка их состояния в соответствии с “Объемом и нормами испытаний электрооборудования” может производиться по коэффициенту дефектности или по значению избыточной температуры. Эксперименты, проведенные Южтехэнерго выявили недостаточную эффективность тепловизионного метода для обнаружения дефекта в сварном контактном соединении на ранней стадии развития, особенно при контроле контактных соединений проводов ВЛ с вертолета. Для сварных контактных соединений предпочтительным является оценка их состояния по значению избыточной температуры.

Опрессованные контактные соединения.

В свое время в качестве критериев оценки состояния опрессованных контактных соединений на ОРУ и ВЛ использовались значения коэффициентов дефектности, т.е. отношение измеренного сопротивления или падения напряжения на соединителе к сопротивлению идентичного участка целого провода.
С появлением приборов И КТ оценка состояния опрессованных контактных соединений может осуществляться по значению избыточной температуры или по коэффициенту дефектности.
Возникает вопрос о степени эффективности каждого из этих способов оценки состояния опрессованных контактных соединений. Для решения этой задачи в Мосэнерго были проведены нагрузочные испытания участка провода марки АСУ-400 с исправным и дефектным соединителями.
Предварительно были определены коэффициенты дефектности на постоянном токе ( Кх — 9) и по падению напряжения (К2 = 5). Результаты нагрузочных испытаний (табл. 1) показали, что для опрессованных соединителей наиболее предпочтителен способ оценки контактных соединений по значению избыточной температуры.

1.1 Настоящий документ распространяется на деятельность лиц электротехнического персонала, занимающихся проведением испытаний электроустановок.

1.2 Настоящий документ определяет методику проверки состояния соединительных и

сборных шин. Испытания производятся на основании требований параграфа 1.8.27 ПУЭ (седьмое издание); ПТЭЭП табл. 8, Приложение 3

1.4. Цель испытаний - проверка соответствия измеренных величин требованиям паспортных данных завода изготовителя и требованиям ПУЭ.

2.1. Испытанию подлежат соединительные и сборные шины до 10кВ включительно.

3.1 Измерение сопротивления изоляции подвесных и опорных фарфоровых изоляторов.

3.2 Испытание изоляции повышенным напряжением промышленной частоты.

3.3 Проверка качества выполнения болтовых контактных соединений.

3.4 Проверка качества выполнения опрессованных контактных соединений.

3.5 Контроль сварных контактных соединений.

3.6 Испытание проходных изоляторов.

4.1 Испытания и измерения производятся при температуре окружающей среды не ниже +5 о С.

4.2 Влажность окружающего воздуха имеет значение при проведении высоковольтных испытаний, т.к. конденсат на изоляторах может привести к пробою изоляции и, соответственно, к выходу из строя оборудования (как испытательного, так и испытуемого). Перед проведением высоковольтных испытаний изоляторы следует протереть от пыли, грязи и влаги.

4.3 Атмосферное давление особого влияния на качество проводимых испытаний не оказывает, но фиксируется для занесения данных в протокол.

5.1 При выполнении испытаний и измерений применяют следующие технические средства см. таблицу №1

Предел основной погрешности

± 15 % от измеренного значения

±2,5% от предела измерения

где: С- значение класса точности.

Х- показание, отсчитанное с лимбом переключателей декад, Ом.

Допускаемая основная погрешность

5.2 Пределы допускаемой относительной погрешности измерений по данной методике обуславливаются классом точности применяемых приборов и аппаратов.

6.1 Измерение сопротивления изоляции подвесных и опорных фарфоровых изоляторов.

6.1.1 Измерение сопротивления изоляции производится мегаомметром на напряжение 2500В.

6.1.2 При монтаже изоляторов сопротивление изоляции измеряется непосредственно перед установкой изоляторов. Сопротивление каждого изолятора или каждого элемента многоэлементного изолятора должно быть не менее 300 МОм.

6.1.3 Измерение сопротивления изоляции сборных и соединительных шин сводятся к измерению сопротивления изоляции изоляторов, на которых эти шины установлены, схема измерений сопротивления изоляции изображена на рисунке №1.

Рис.№1. Измерение сопротивления изоляторов и шинопроводов.

6.1.4 Измерение изоляции многоэлементных изоляторов проводят поочерёдно для каждого элемента.

6.1.5 Измерение изоляции шинопроводов проводят поочерёдно для каждой шины отдельно относительно земли и между фазами. При измерении сопротивления изоляции шин относительно земли две свободные фазы (на которые не подано напряжение от мегаомметра) можно заземлить и таким образом произведя три измерения (по одному на фазу) определить сразу сопротивление изоляции как между фазами, так и каждой из фаз относительно земли.

6.2 Испытание повышенным напряжением промышленной частоты.

6.2.1 Вновь устанавливаемые многоэлементные или подвесные изоляторы должны испытываться повышенным напряжением частоты 50Гц, прикладываемым к каждому элементу изолятора, время приложения испытательного напряжения - 1 минута.

6.2.2 Испытание повышенным напряжением промышленной частоты производится при отсоединенных от сборных шин выключателей, силовых и измерительных трансформаторов, вентильных разрядников или ограничителей перенапряжений. Схема испытаний изображена на рисунке №2. Испытательная установка должна обеспечить отключение питания при пробое или перекрытии изоляции без выдержки времени. Место подключения испытательной установки к сборным шинам выбирается исходя из удобства сборки схемы.

6.2.3 На сборных шинах напряжение подается на одну из фаз, две другие фазы заземляются.

Опорная изоляция шин считается выдержавшей испытания, если не наблюдалось пробоя или перекрытия по поверхности изоляторов, или на другие части корпусов ячеек или помещения РУ или на токоведущие части других фаз. Длительность испытательного напряжения – 1 минута.



Рис.№2 Схема испытания изоляции промышленной частоты: а) изоляторов;

6.2.4 Значения испытательного напряжения промышленной частоты приведены в табл.№2.

Испытательные напряжения промышленной частоты

электрооборудования класса напряжения до 35кВ с нормальной и облегченной изоляцией

Класс напряжения электрообо-

Испытательное напряжение, кВ

Силовые трансформаторы, шунтирующие и дугогасящие реакторы

Аппараты, трансформаторы тока и напряжения, токоограничивающие реакторы, изоляторы, вводы, конденсаторы связи, экранированные токопроводы, сборные шины, КРУ и КТП

На заводе изготовителе

На заводе изготовителе

Перед вводом в эксплуата- цию и в эксплуатации

  1. Испытательные напряжения, указанные в виде дроби, распространяются на электрооборудование: числитель – с нормальной изоляцией, знаменатель – с облегченной изоляцией.
  2. Испытательные напряжения для аппаратов и КРУ распространяются как на их изоляцию относительно земли и между полюсами, так и на промежуток между контактами с одним или двумя (цифра в скобках) разрывами на полюс. В случаях если испытательное оборудование не позволяет обеспечивать испытательное напряжение выше 100кВ, допускается проводить испытание при максимально возможном испытательном напряжении, но не менее 100кВ.
  3. Если электрооборудование на заводе – изготовителе было испытано напряжением, отличающимся от указанного, испытательные напряжения при вводе в эксплуатацию и в эксплуатации должны быть соответственно скорректированы.

6.3 Проверка качества болтовых контактных соединений.

6.3.1 Производится выборочная проверка качества затяжки контактов и вскрытие 2-3% соединений.

6.3.2. Измерение переходного сопротивления контактных соединений следует производить выборочно на 2-3% соединений.

6.3.3. Контактные соединения на ток более 1000 А рекомендуется проверять в полном объеме.

6.3.4. Падение напряжения или сопротивление на участке шины (0,7-0,8м) в месте контактного соединения не должно превышать падения напряжения или сопротивления участка шин той же длины более чем в 1,2 раза.

6.3.5 Измерение переходного сопротивления контактных соединений шин проводится по схеме изображенной на рисунке №3.



Рис.№3 Схема измерения контактных соединений шин.

6.4. Проверка качества выполнения опрессованных контактных соединений.

6.4.1 Опрессованные контактные соединения бракуются, если:

а) их геометрические размеры (длина и диаметр спрессованной части) не соответствуют требованиям инструкции по монтажу соединительных зажимов данного типа;

б) на поверхности соединителя или зажима имеются трещины, следы значительной коррозии и механических повреждений;

в) кривизна опрессованного соединителя превышает 3% его длины;

г) стальной сердечник опрессованного соединителя смещен относительно симметричного положения более чем на 15% длины прессуемой части провода.

6.4.2. Следует произвести выборочное измерение переходного сопротивления 3-5% спрессованных контактных соединений.

6.4.3. Падение напряжения или сопротивление на участке соединения не должно превышать падения напряжения или сопротивления на участке провода той же длины более чем в 1,2 раза.

6.5. Контроль сварных контактных соединений.

6.5.1. Сварные контактные соединения бракуются, если непосредственно после выполнения

сварки будут обнаружены:

а) пережог провода наружного повива или нарушение сварки при перегибе соединительных

б) усадочная раковина в месте сварки глубиной более 1/3 диаметра провода.

6.6. Испытание проходных изоляторов.

  1. Обработка данных и оформление результатов измерений.

7.2. Согласно инструкциям по применению электроизмерительных приборов, используемых при проведении испытаний, определяются погрешности измерений.

7.3. На основании полученных данных оформляется протокол установленной формы для технического отчёта. Формы протоколов прилагаются к данной методике.

  1. 8. Требования безопасности и охраны окружающей среды.

8.1 Перед началом работ необходимо:

  • Получить наряд (разрешение) на производство работ.
  • Подготовить рабочее место в соответствии с характером работы: убедиться в достаточности принятых мер безопасности со стороны допускающего (при работах по наряду).
  • Подготовить необходимый инструмент с изолирующими рукоятками и приборы.
  • При выполнении работ действовать в соответствии с программами (методиками) по испытанию электрооборудования.
  • При проведении высоковольтных испытаний действовать в соответствии с инструкцией.

8.2 По окончании работ:

  • При окончании работ на электрооборудовании убрать рабочее место восстановив нарушенные в процессе работы коммутационные соединения (если таковое имело место).
  • Сдать наряд (сообщить об окончании работ руководителю или оперативному персоналу)
  • Сделать запись в журнал (по проведению испытания электрооборудования), либо сделать запись в черновик для последующей работы с полученными данными.
  • Оформить протокол на проведенные работы.

8.3 При проведении испытаний необходимо руководствоваться требованиями Межотраслевых Правил по охране труда ПОТЭУ (Правила безопасности).

8.4 Испытания сборных и соединительных шин производиться звеном не менее, чем из двух человек, один из которых должен иметь группу по электробезопасности не ниже IY, при необходимости следует выставить охрану, состоящую из членов бригады имеющих группу II, для предотвращения приближения посторонних людей к испытательной установке, соединительным проводам и испытываемому оборудованию. Члены бригады несущие охрану, должны находиться вне ограждения и считать испытываемое оборудование находящимся под напряжением. Покинуть пост эти работники могут только с разрешения производителя работ.

8.5 К проведению испытаний электрооборудования допускается персонал, прошедший специальную подготовку и проверку знаний и требований, содержащихся в разделе 5.1 ПОТЭУ (Правила Безопасности), комиссией, в состав которой включаются специалисты по испытаниям электрооборудования с соответствующей группой.

8.6 Рабочее место оператора испытательной установки должно быть отделено от той части установки, которая имеет напряжение выше 1000В. Дверь, ведущая в часть установки, имеющую напряжение выше 1000В, должна быть снабжена блокировкой, обеспечивающей снятие напряжения с испытательной схемы в случае открытия двери и невозможность подачи напряжения при открытых дверях. На рабочем месте оператора должна быть предусмотрена раздельная световая, извещающая о включении напряжения до и выше 1000В и звуковая сигнализация, извещающая о подаче испытательного напряжения. При подаче испытательного напряжения оператор должен стоять на изолирующем ковре.

8.7 При сборке испытательной схемы прежде всего должно быть выполнено защитное и рабочее заземление испытательной установки. Корпус испытательной установки должен быть заземлен отдельным заземляющим проводником из гибкого медного провода сечением не менее 10мм². Перед испытанием следует проверить надежность заземления корпуса.

8.8 Перед присоединением испытательной установки к сети 380/220В вывод высокого напряжения ее должен быть заземлен. Сечение медного провода, применяемого в испытательных схемах заземления, должно быть не менее 4мм².

8.9 Присоединение испытательной установки к сети напряжением 380/220В должно выполняться через коммутационный аппарат с видимым разрывом или через штепсельную вилку, расположенную на месте управления установкой.

8.10 Провод или кабель, используемый для питания испытательной установки от сети напряжением 380/220В, должен быть защищен установленными в этой сети предохранителями или автоматическими выключателями.

8.11 Перед каждой подачей испытательного напряжения производитель работ обязан:

8.13 Испытания сборных и соединительных шин опасности для окружающей среды не представляют.

Читайте также: