Для чего используется программное обеспечение для программирования

Обновлено: 04.07.2024

Программное обеспечение (англ. software) – это совокупность программ, обеспечивающих функционирование компьютеров и решение с их помощью задач предметных областей. Программное обеспечение (ПО) представляет собой неотъемлемую часть компьютерной системы, является логическим продолжением технических средств и определяет сферу применения компьютера.

ПО современных компьютеров включает множество разнообразных программ, которое можно условно разделить на три группы (рис. 3.1):

1. Системное программное обеспечение (системные программы);

2. Прикладное программное обеспечение (прикладные программы);

3. Инструментальное обеспечение (инструментальные системы).

Системное программное обеспечение (СПО) – это программы, управляющие работой компьютера и выполняющие различные вспомогательные функции, например, управление ресурсами компьютера, создание копий информации, проверка работоспособности устройств компьютера, выдача справочной информации о компьютере и др. Они предназначены для всех категорий пользователей, используются для эффективной работы компьютера и пользователя, а также эффективного выполнения прикладных программ.

Центральное место среди системных программ занимают операционные системы (англ. operating systems). Операционная система (ОС) – это комплекс программ, предназначенных для управления загрузкой, запуском и выполнением других пользовательских программ, а также для планирования и управления вычислительными ресурсами ЭВМ, т.е. управления работой ПЭВМ с момента включения до момента выключения питания. Она загружается автоматически при включении компьютера, ведет диалог с пользователем, осуществляет управление компьютером, его ресурсами (оперативной памятью, дисковым пространством и т.д.), запускает другие программы на выполнение и обеспечивает пользователю и программам удобный способ общения – интерфейс – с устройствами компьютера. Другими словами, операционная система обеспечивает функционирование и взаимосвязь всех компонентов компьютера, а также предоставляет пользователю доступ к его аппаратным возможностям.

ОС определяет производительность системы, степень защиты данных, выбор программ, с которыми можно работать на компьютере, требования к аппаратным средствам. Примерами ОС являются MS DOS, OS/2, Unix, Windows 9х, Windows XP.

Сервисные системы расширяют возможности ОС по обслуживанию системы, обеспечивают удобство работы пользователя. К этой категории относят системы технического обслуживания, программные оболочки и среды ОС, а также служебные программы.

Системы технического обслуживания – это совокупность программно-аппаратных средств ПК, которые выполняют контроль, тестирование и диагностику и используются для проверки функционирования устройств компьютера и обнаружения неисправностей в процессе работы компьютера. Они являются инструментом специалистов по эксплуатации и ремонту технических средств компьютера.

Для организации более удобного и наглядного интерфейса пользователя с компьютером используются программные оболочки операционных систем – программы, которые позволяют пользователю отличными от предоставляемых ОС средствами (более понятными и эффективными) осуществлять действия по управлению ресурсами компьютера. К числу наиболее популярных оболочек относятся пакеты Norton Commander (Symantec), FAR (File and Archive manageR) (Е.Рошаль).

Служебные программы ( утилиты, лат. utilitas – польза) – это вспомогательные программы, предоставляющие пользователю ряд дополнительных услуг по реализации часто выполняемых работ или же повышающие удобство и комфортность работы. К ним относятся:

 программы-упаковщики (архиваторы), которые позволяют более плотно записывать информацию на дисках, а также объединять копии нескольких файлов в один, так называемый, архивный файл (архив);

 антивирусные программы, предназначенные для предотвращения заражения компьютерными вирусами и ликвидации последствий заражения;

 программы оптимизации и контроля качества дискового пространства;

 программы восстановления информации, форматирования, защиты данных;

 программы для записи компакт-дисков;

 драйверы – программы, расширяющие возможности операционной системы по управлению устройствами ввода/вывода, оперативной памятью и т.д. При подключении к компьютеру новых устройств необходимо установить соответствующие драйверы;

 коммуникационные программы, организующие обмен информацией между компьютерами и др.

Некоторые утилиты входят в состав операционной системы, а некоторые поставляются на рынок как самостоятельные программные продукты, например, многофункциональный пакет сервисных утилит Norton Utilities (Symantec).

Прикладное программное обеспечение (ППО) предназначено для решения задач пользователя. В его состав входят прикладные программы пользователей и пакеты прикладных программ (ППП) различного назначения .

Прикладная программа пользователя – это любая программа, способствующая решению какой-либо задачи в пределах данной проблемной области. Прикладные программы могут использоваться либо автономно, либо в составе программных комплексов или пакетов.

Пакеты прикладных программ (ППП) – это специальным образом организованные программные комплексы, рассчитанные на общее применение в определенной проблемной области и дополненные соответствующей технической документацией. Различают следующие типы ППП:

ППП общего назначения – универсальные программные продукты, предназначенные для автоматизации широкого класса задач пользователя. К ним относятся:

Текстовые редакторы (например, MS Word, Word Perfect, Лексикон);

Табличные процессоры (например, MS Excel, Lotus 1-2-3, Quattro Pro);

Системы динамических презентаций (например, MS Power Point, Freelance Graphics, Harvard Graphics);

Системы управления базами данных (например, MS Access, Oracle, MS SQL Server, Informix);

Графические редакторы (например, Сorel Draw, Adobe Photoshop);

Издательские системы (например, Page Maker, Venture Publisher);

Системы автоматизации проектирования (например, BPWin, ERWin);

Электронные словари и системы перевода (например, Prompt, Сократ, Лингво , Контекст);

Системы распознавания текста (например, Fine Reader, Cunei Form).

Системы общего назначения часто интегрируются в многокомпонентные пакеты для автоматизации офисной деятельности – офисные пакеты – Microsoft Office, StarOffice и др.

методо-ориентированные ППП, в основе которых лежит реализация математических методов решения задач. К ним относятся, например, системы математической обработки данных (Mathematica, MathCad, Maple), системы статистической обработки данных (Statistica, Stat).;

проблемно-ориентированные ППП предназначены для решения определенной задачи в конкретной предметной области. Например, информационно-правовые системы ЮрЭксперт, ЮрИнформ; пакеты бухгалтерского учета и контроля 1С: Бухгалтерия, Галактика, Анжелика; в области маркетинга –Касатка, Marketing Expert; банковская система СТБанк;

интегрированные ППП представляют собой набор нескольких программных продуктов, объединенных в единый инструмент. Наиболее развитые из них включают в себя текстовый редактор, персональный менеджер (органайзер), электронную таблицу, систему управления базами данных, средства поддержки электронной почты, программу создания презентационной графики. Результаты, полученные отдельными подпрограммами, могут быть объединены в окончательный документ, содержащий табличный, графический и текстовый материал. К ним относят, например, MS Works. Интегрированные пакеты, как правило, содержат некоторое ядро, обеспечивающее возможность тесного взаимодействия между составляющими.

Обычно пакеты прикладных программ имеют средства настройки, что позволяет при эксплуатации адаптировать их к специфике предметной области.

К инструментальному программному обеспечению относят: системы программирования – для разработки новых программ, например, Паскаль, Бейсик. Обычно они включают: редактор текстов, обеспечивающий создание и редактирование программ на исходном языке программирования (исходных программ), транслятор, а также библиотеки подпрограмм; инструментальные среды для разработки приложений, например, C++, Delphi, Visual Basic, Java, которые включают средства визуального программирования; системы моделирования , например, система имитационного моделирования MatLab, системы моделирования бизнес-процессов BpWin и баз данных ErWin и другие.

Транслятор (англ. translator – переводчик) – это программа-переводчик, которая преобразует программу с языка высокого уровня в программу, состоящую из машинных команд. Трансляторы реализуются в виде компиляторов или интерпретаторов, которые существенно различаются по принципам работы.

Компилятор (англ. compiler – составитель, собиратель) читает всю программу целиком, делает ее перевод и создает законченный вариант программы на машинном языке, который затем и выполняется. После компилирования получается исполняемая программа, при выполнении которой не нужна ни исходная программа, ни компилятор.

Интерпретатор (англ. interpreter – истолкователь, устный переводчик) переводит и выполняет программу строка за строкой. Программа, обрабатываемая интерпретатором, должна заново переводиться на машинный язык при каждом очередном ее запуске.

Откомпилированные программы работают быстрее, но интерпретируемые проще исправлять и изменять.

Системы программирования обеспечивают платформу для разработки прикладного программного обеспечения и непосредственно взаимодействуют с компьютерным оборудованием, чтобы получить необходимую производительность при выполнении задач пользователей. Платформу можно использовать для программирования приложений iPhone, iPad и операционных систем Android, используя язык программирования Java. Интерфейс Android Studio и Oracle Java SDK в сочетании с необходимыми базовыми знаниями позволяет создавать самые разнообразные приложения.

Элементы программных систем

Вам будет интересно: Холодильники "Хотпоинт-Аристон": отзывы, обзор, инструкция по эксплуатации. Неисправности и их устранение. Холодильник Hotpoint-Ariston

Для начала раскроем понятие о системах программирования. Те, которыми мы пользуемся сейчас, относятся к периоду 3-го поколения ЭВМ. Системное программирование заключается в создании программного обеспечения. Оно может выполнять множество различных задач. Без него большинство аппаратных средств не исполняли бы свои функции. Чтобы сделать их полезными, используют программное обеспечение. Пользователю требуется выбирать нужную программу для каждого задания.

Элементы классической системы программирования:

Вам будет интересно: Роутер D-Link DIR 620: настройки, пошаговая инструкция

Пример современной системы программирования включает в себя сервисное и базовое ПО.


Структура программы

Общая форма программы уделяет особое внимание отдельным компонентам и взаимосвязи между ними. Программы бывают хорошо или плохо структурированными. С хорошо структурированной программой разделение на компоненты следует по принципам, например, таким как сокрытие информации, а интерфейсы между компонентами ясны и просты. На более тонком уровне она использует соответствующие структуры данных и программные единицы с единственной точкой входа и одной точкой выхода.

Вам будет интересно: Ада Лавлейс: биография, личная жизнь, достижения, фото

При плохо структурированной программе разделение на компоненты в значительной степени произвольно, а интерфейсы являются неявными и сложными. Кроме того, такая программа имеет произвольные структуры данных и поток контроля. Практически все структурированные программы имеют общий характер действий:


Чтобы использовать переменную внутри программы, компилятор должен заранее знать тип данных, которые будут храниться в нем. По этой причине переменные объявляются в начале программы.

Объявление переменной состоит из указания нового имени и типа данных для переменной. Обычно это делается в самом начале.


На следующем рисунке показан пример системы программирования для структуры цикла, который запускает набор операторов, пока условие не станет истинным.


Бесконечный цикл

Это тот, который не имеет функционирующей процедуры выхода. В результате цикл повторяется непрерывно до тех пор, пока операционная система не почувствует его и не прекратит программу с ошибкой или пока не произойдет какое-либо другое событие, например, программа автоматически прекратится через определенное время.

Системы программирования и примеры программ на языке C для программы сортировки строк в словаре представлены ниже. Эта программа принимает 10 слов (строк) от пользователя и сортирует их в лексикографическом порядке. Например, 10 языков программирования:


Основные инструменты


Для программирования нужно несколько инструментов. Схема классической системы программирования:

Шаблоны проектирования

Вам будет интересно: Принцип BYOD в корпоративной модели закупок

Использование шаблона дизайна состоит в том, чтобы структурировать программу или использовать инструменты языка и максимально четко обеспечить системный подход к программированию, а также связь с базой данных шаблона, создание страницы, которая будет отображать пользовательский вид. В более общем плане шаблон проектирования представляет собой многозадачное и усовершенствованное решение.

Структура программного обеспечения (или фреймворка) представляет собой специальный тип библиотеки программного обеспечения. Его первая цель состоит в том, чтобы компоновать программирование, обеспечивая максимально инструментами, которые понадобятся. Например, Django 2 представляет собой структуру в Python, предназначенную для облегчения создания реактивных веб-сайтов. Она создает структуру и предлагает общие инструменты, которые могут потребоваться всем сайтам (интерфейс администрирования, службы аутентификации, способ перевода сайта на несколько языков и т. д).

Другим примером является наличие нескольких фреймворков в JavaScript (jQuery или angular.js) с одной целью - одни и те же действия должны быть написаны по-разному в зависимости от типа браузера, используемого посетителем на веб-сайте. Они имеют уникальный интерфейс, чтобы превратить это в код, понятный каждому браузеру. На фото пример системы программирования в JavaScript для задачи по открытию нового окна после нажатия на кнопку.


Скомпилированные языки

Язык программирования - это набор соглашений и абстракций, которые позволяют писать то, что нужно пользователю, чтобы компьютер выдавал результат в более понятной форме. Компиляции заключается в преобразовании исходного кода в исполняемый файл. Это преобразование выполняется компилятором. Разница в скорости исполнения огромна. В целом при прочих равных условиях программа на скомпилированном языке будет работать примерно в десять раз быстрее, чем на интерпретируемом. Ниже приведен пример системы программирования на Си. Он демонстрирует программу, которая использует так называемые функции высшего порядка и чистые функции.


Языки виртуальных машин

Наконец, можно создавать новые языки, которые скомпилируются в один и тот же байт-код как еще один существующий язык, что упрощает их взаимодействие. Это одна из задач системы программирования. Пример - языки Clojure и Frege компилируются как для байт-кода Java. Они являются функциональными и радикально отличными от Java в их дизайне. В этом случае можно написать разные части программы с одним из наиболее подходящих языков и заставить их работать вместе на виртуальной машине. Java - язык, который лучше всего компилируется на виртуальную машину. Но потребуется приложение, состоящее из набора классов Java. В начале любого класса существует определенная структура, такая как JavaClassFileFormat.


Примеры языков и систем программирования

Представляем самые известные языки программирования:

  • Assembler. Он не новый, однако научит пользователей многим вещам, скрытым в других языках.
  • C. Один наиболее часто используемых в мире. Именно этот язык дает самый полный контроль над машиной. Он используется для кодирования операционных систем. Его приличный почти полувековой возраст и огромное количество библиотек, которые подойдут для чего угодно, становятся незаменимыми как для начинающих, так и для продвинутых пользователей.
  • Cobol. Это старый язык. Он, как правило, сложнее в использовании, чем другие. Однако по историческим причинам он по-прежнему широко используется в банковском деле, финансах и страховании.
  • Fortran. Он все еще востребован в области научных вычислений, для которого и был разработан. Хотя синтаксис этого языка регулярно обновляется, ощущается его возраст. Кроме того, некоторые программные библиотеки в Fortran никогда не были сопоставлены с точки зрения эффективности.
  • Java. Имеет особенность компиляции в байт-код, который затем интерпретируется виртуальной машиной. Это значительно упрощает создание программ для использования на нескольких платформах операционных систем. Например, Java является шлюзом для кодирования приложения для Android.
  • Perl. Это язык, который в основном ценится в мире Linux и Unixoids. Он эффективен для создания небольших, но очень мощных приложений с командной строкой. Однако Perl не очень подходит для создания графических интерфейсов.
  • PHP. Во многом доминирует в мире веб-программирования.
  • Python. Этот язык рекомендуется начинающим.
  • Ruby. Связан с Python, регулярно заимствует инновации. В целом они очень похожи. Можно констатировать, что Ruby предлагает больше синтаксической свободы и больше настаивает на своем объектно-ориентированном характере, а Python легче и поддерживается более крупным сообществом.
  • Swift. Это довольно молодой язык, подвержен изменениям и корректировкам, подходит для продуктов Apple. В ближайшие годы он вполне может стать основным продуктом программирования приложений iOS и OSX.

Применение

Вам будет интересно: Выбираем ноутбук с хорошим экраном

Представляем пример машинного кода:

110101010010001000111001001 010101001000100001011101001 000111001101110001101101010 001111010010010101011001010 001010101111110100101010001.

Как видим, в этом типе кода очень мало различимой структуры. В языках программирования семантический разрыв - это разница между языком, который используется для программирования аппаратного обеспечения (машинный код), и тем, который нужно использовать для программирования компьютера, как системы. Пример системы программирования: для клиентской стороны JavaScript потребуется использование двух языков, за исключением того, который генерирует JavaScript (CoffeScript или Elm).

Программирование PASCAL

На протяжении всей истории вычислений было предпринято сотни попыток сделать языки программирования на компьютере такими, как письменный английский - легко читать и легко понять. PASCAL является результатом одного из таких усилий. Создатель PASCAL Николас Вирт хотел иметь HLL, который можно было бы легко учить, читать и писать. Он разработал PASCAL на базе следующих концепций:

Пример системы программирования в PASCAL

Ниже приведен пример для определения количества букв в слове.


PASCAL облегчает модульное кодирование посредством:


В приведенном примере системы программирования на Паскале программа показывает двоичный выбор (есть только два случая: ActualMark> = 50 или ActualMark Понравилась статья? Поделись с друзьями:

Для удобной разработки программ существуют специальные средства их создания, — системы (среды) программирования, которые обеспечивают весь цикл работы с программой — от ее разработки до выполнения и получения необходимых результатов.

Система программирования — это комплекс программных средств, предназначенных для автоматизации процесса подготовки и выполнения программ пользователя.


Назначение и состав систем программирования

Рассмотрим основные составляющие системы программирования:

  • Редактор текста
  • Язык программирования
  • Библиотека подпрограмм
  • Редактор связей (компоновщик)
  • Транслятор
  • Отладчик

Для сознательного понимания назначения составляющих системы программирования опишем этапы процесса разработки программы, связанные с использованием компьютера.

Редактор исходного кода

Вводим текст разработанной программы, которую называют исходным кодом, в компьютер и храним в памяти. Для этого система программирования имеет редактор текста, который обеспечивает ввод и редактирование исходного кода.

Компиляция и интерпретация

После введения программы и исправления ошибок, которые могли произойти во время ввода, осуществляется преобразование программы с языка программирования высокого уровня в двоичный код.

Такое преобразование осуществляется с помощью транслятора программ.

Различают два типа трансляторов: компиляторы и интерпретаторы.

В процессе интерпретации исходных текстов программ каждая команда (инструкция) последовательно превращается в двоичный код и сразу выполняется — на экране высвечивается результат ее выполнения. После завершения одной команды выполняется следующая и так далее до последней команды. Но результат преобразования не сохраняется, и каждый запуск программы начинается сначала.

В процессе компиляции осуществляется преобразование всего текста программного кода в двоичный код. Полученную после компиляции программу называют объектным модулем. Такая программа еще не готова к выполнению.

Исходный код обычно содержит ссылки на другие модули (подпрограммы), которые содержатся в библиотеке подпрограмм (например, модуль вычисления квадратного корня). Таким образом, к программному модуля нужно добавить коды необходимых подпрограмм, чтобы подготовить программу для исполнения.

Компилируемая программы выполняются быстрее интерпретируемых. Режим интерпретации нуждается в дополнительной основной памяти, поскольку интерпретатор должен все время храниться вместе с кодом. Но интерпретация в работе удобнее. Особенно для программистов, которые только начинают работать с системами программирования, так контролируется результат каждой команды.

Компоновка

Исходный код программы -> компилятор -> объектный модуль -> библиотека подпрограмм -> редактор связей -> выполняемая программа

Для дальнейшего выполнения программного кода, компилятор не нужен. Итак, после компиляции программа представлена ​​двоичными символами 1 и 0 и готова к исполнению на компьютере.

Отладка и тестирование

Полученная программа, даже если она выполняется, не гарантирует, что нет логических ошибок. Она может выполняться, но результат исполнения может быть неправильным. Поэтому нужно провести тестирование (испытания) программы на предмет выявления и устранения в ней логических ошибок.

Тестирование — достаточно ответственный этап. В крупных IT-компаниях над разработкой программ, которые называют проектами, работают десятки и даже сотни программистов разных направлений. Одни из них разрабатывают проекты, другие занимаются тестированием программ, экономическим обоснованием и тому подобное.

На этом этапе применяется отладчик программ, который позволяет пошагово анализировать программу. Отладчик позволяет выполнять трассировку программы, устанавливать и удалять контрольные точки в программах, условия приостановления выполнения программы и тому подобное.

Создание переносимых программ

Описанный выше процесс разработки программ является классическим для процедурных языков программирования. Для программ, разработанных языком ООП, есть отличия. Их сущность заключается в том, что после компиляции создается не машинный, а промежуточный код, так называемый байт-код. С помощью специального программного обеспечения он затем превращается в машинный.

Такой подход обусловлен тем, что в Интернете свободно перемещаются данные и программы (апплеты — небольшие программы, предназначенные для передачи через Интернет и выполнения в браузере, совместимом с языком программирования). Их нужно защитить от вирусов и других вредоносных программ, а также реализовать переносимость программ.

Под переносимостью понимают возможность загрузки и выполнения апплета на компьютерах с любым типом процессора, любой операционной системой и браузером, подключен к Интернету. Именно эти проблемы и позволяет решить байт-код.

Понятно, что использование любого промежуточного кода, в том числе и байт-кода, снижает скорость выполнения программ и требует дополнительных аппаратных средств. Впрочем, эти потери незначительны по сравнению с полученным выигрышем. Если бы ООП-программа сразу компилировалась в машинный код, то для каждого компьютера со своим типом процессора необходимо было бы иметь отдельную версию той самой программы, что экономически крайне невыгодно.

Иногда используются так называемые динамические компиляторы. Их сущность заключается в том, что байт-код компилируется в машинный код не весь сразу, а отдельными фрагментами, по мере необходимости. Другие части кода могут выполняться в режиме интерпретации. Тем самым достигается высокая эффективность работы с кодом.

Примеры систем программирования

Системы (среды) программирования часто именуются по названию языка, например среда Pascal, среда Delphi. Иногда название системы содержит префикс, указывающий на разработчика среды: название системы Turbo-C означает, что ее разработчиком является фирма Borland.

Сегодня все чаще используются интегрированные среды программирования, которые обеспечивают работу с несколькими языками. Такими системами являются, например, IntelliJ IDEA, Eclipse. Вариант Ultimate Edition системы IDEA обеспечивает работу с языками программирования Java, PHP, Python.

Некоторые системы программирования поддерживают как режим интерпретации, так и режим компиляции программ.

Далее, в процессе описания языка программирования Python, мы будем применять среду IDLE.

Для удобной разработки программ существуют специальные средства их создания, — системы (среды) программирования, которые обеспечивают весь цикл работы с программой — от ее разработки до выполнения и получения необходимых результатов.

Система программирования — это комплекс программных средств, предназначенных для автоматизации процесса подготовки и выполнения программ пользователя.


Назначение и состав систем программирования

Рассмотрим основные составляющие системы программирования:

  • Редактор текста
  • Язык программирования
  • Библиотека подпрограмм
  • Редактор связей (компоновщик)
  • Транслятор
  • Отладчик

Для сознательного понимания назначения составляющих системы программирования опишем этапы процесса разработки программы, связанные с использованием компьютера.

Редактор исходного кода

Вводим текст разработанной программы, которую называют исходным кодом, в компьютер и храним в памяти. Для этого система программирования имеет редактор текста, который обеспечивает ввод и редактирование исходного кода.

Компиляция и интерпретация

После введения программы и исправления ошибок, которые могли произойти во время ввода, осуществляется преобразование программы с языка программирования высокого уровня в двоичный код.

Такое преобразование осуществляется с помощью транслятора программ.

Различают два типа трансляторов: компиляторы и интерпретаторы.

В процессе интерпретации исходных текстов программ каждая команда (инструкция) последовательно превращается в двоичный код и сразу выполняется — на экране высвечивается результат ее выполнения. После завершения одной команды выполняется следующая и так далее до последней команды. Но результат преобразования не сохраняется, и каждый запуск программы начинается сначала.

В процессе компиляции осуществляется преобразование всего текста программного кода в двоичный код. Полученную после компиляции программу называют объектным модулем. Такая программа еще не готова к выполнению.

Исходный код обычно содержит ссылки на другие модули (подпрограммы), которые содержатся в библиотеке подпрограмм (например, модуль вычисления квадратного корня). Таким образом, к программному модуля нужно добавить коды необходимых подпрограмм, чтобы подготовить программу для исполнения.

Компилируемая программы выполняются быстрее интерпретируемых. Режим интерпретации нуждается в дополнительной основной памяти, поскольку интерпретатор должен все время храниться вместе с кодом. Но интерпретация в работе удобнее. Особенно для программистов, которые только начинают работать с системами программирования, так контролируется результат каждой команды.

Компоновка

Исходный код программы -> компилятор -> объектный модуль -> библиотека подпрограмм -> редактор связей -> выполняемая программа

Для дальнейшего выполнения программного кода, компилятор не нужен. Итак, после компиляции программа представлена ​​двоичными символами 1 и 0 и готова к исполнению на компьютере.

Отладка и тестирование

Полученная программа, даже если она выполняется, не гарантирует, что нет логических ошибок. Она может выполняться, но результат исполнения может быть неправильным. Поэтому нужно провести тестирование (испытания) программы на предмет выявления и устранения в ней логических ошибок.

Тестирование — достаточно ответственный этап. В крупных IT-компаниях над разработкой программ, которые называют проектами, работают десятки и даже сотни программистов разных направлений. Одни из них разрабатывают проекты, другие занимаются тестированием программ, экономическим обоснованием и тому подобное.

На этом этапе применяется отладчик программ, который позволяет пошагово анализировать программу. Отладчик позволяет выполнять трассировку программы, устанавливать и удалять контрольные точки в программах, условия приостановления выполнения программы и тому подобное.

Создание переносимых программ

Описанный выше процесс разработки программ является классическим для процедурных языков программирования. Для программ, разработанных языком ООП, есть отличия. Их сущность заключается в том, что после компиляции создается не машинный, а промежуточный код, так называемый байт-код. С помощью специального программного обеспечения он затем превращается в машинный.

Такой подход обусловлен тем, что в Интернете свободно перемещаются данные и программы (апплеты — небольшие программы, предназначенные для передачи через Интернет и выполнения в браузере, совместимом с языком программирования). Их нужно защитить от вирусов и других вредоносных программ, а также реализовать переносимость программ.

Под переносимостью понимают возможность загрузки и выполнения апплета на компьютерах с любым типом процессора, любой операционной системой и браузером, подключен к Интернету. Именно эти проблемы и позволяет решить байт-код.

Понятно, что использование любого промежуточного кода, в том числе и байт-кода, снижает скорость выполнения программ и требует дополнительных аппаратных средств. Впрочем, эти потери незначительны по сравнению с полученным выигрышем. Если бы ООП-программа сразу компилировалась в машинный код, то для каждого компьютера со своим типом процессора необходимо было бы иметь отдельную версию той самой программы, что экономически крайне невыгодно.

Иногда используются так называемые динамические компиляторы. Их сущность заключается в том, что байт-код компилируется в машинный код не весь сразу, а отдельными фрагментами, по мере необходимости. Другие части кода могут выполняться в режиме интерпретации. Тем самым достигается высокая эффективность работы с кодом.

Примеры систем программирования

Системы (среды) программирования часто именуются по названию языка, например среда Pascal, среда Delphi. Иногда название системы содержит префикс, указывающий на разработчика среды: название системы Turbo-C означает, что ее разработчиком является фирма Borland.

Сегодня все чаще используются интегрированные среды программирования, которые обеспечивают работу с несколькими языками. Такими системами являются, например, IntelliJ IDEA, Eclipse. Вариант Ultimate Edition системы IDEA обеспечивает работу с языками программирования Java, PHP, Python.

Некоторые системы программирования поддерживают как режим интерпретации, так и режим компиляции программ.

Далее, в процессе описания языка программирования Python, мы будем применять среду IDLE.

Читайте также: