Что положено в основу термопар

Обновлено: 30.06.2024

Термопара – это температурный датчик, использующийся в промышленности, технике, где требуется обеспечить высокую точность измеряемых показателей температуры или же когда замер выполняется в условиях агрессивной среды. В быту применяются в отопительных котлах, холодильниках, автомобилях (в системе охлаждения ДВС). Термопары сейчас устанавливаются в том числе в каждый смартфон, ноутбук и компьютер для контроля нагрева процессоров, микроконтроллеров, аккумуляторной батареи.

Устройство термопары, принцип работы

Датчик-термопара

Принцип работы датчика температуры (термопары) основан на таком физическом явлении, как электродвижущая сила (ЭДС, открыта Томасом Зеебеком в 1821 году). Суть явления: в замкнутой цепи между двумя проводниками (электродами) разного типа (например, медью и железом) возникает ток. Единственное требование – это наличие разницы температур в местах контактов (спаев). И чем выше эта разница, тем выше напряжение генерируемого в цепи тока.

Измеряемая же температура рассчитывается на основании двух значений:

  • уровень изменения ЭДС;
  • поправка КХС (компенсация холодного спая).

Значение КХС – это условный коэффициент изменения ЭДС, рассчитываемый при температуре холодного спая в 0 градусов по Цельсию. Его определяют лабораторным методом, то есть подключая термопару к измерительному прибору и постепенно меняя значения горячего спая.

Главное: изменение ЭДС при повышении/снижении температуры на горячем спае происходит линейно. Только благодаря этому подобный метод позволяет рассчитать значение температуры, зная только значение ЭДС.

Типы и виды термопар

Термопары, в зависимости от используемых сплавов проводников, разделяют на:

  • хромель-алюмелевые (ТХА), диапазон измерения от -270 до 1372 градусов, погрешность до 0,75%;
  • железо-константановые (ТЖК), диапазон от -210 до 1200 градусов, погрешность 0,75%;
  • платинородий-платинородиевые (ТПР), диапазон от 0 до 1820 градусов, погрешность – 0,5% (только свыше 800 градусов);
  • медь-константановые (ТМКн), диапазон от -270 до 400 градусов, погрешность 0,75% при температуре выше нуля, 1,5% - ниже нуля;
  • платинородий-платиновые (ТПП 10), диапазон от -50 до 1768 градусов, погрешность 0,25%;
  • вольфрамрениевые (ТФР), диапазон от 0 до 2320 градусов, погрешность – 1% (если свыше 425 градусов).

В теории сделать термопару можно из любых двух проводников. Но вышеуказанные комбинации дают самые точные значения, а некоторые (ТХА, ТПП, ТПР, ТВР) – внесены в ГОСТ для использования в промышленных масштабах.

Различаются термопары и по типу конфигурации проводников. Бывают одноэлементные, двухэлементные, с заземлением на корпус и незаземленные. Точная конфигурация подбирается в зависимости от назначения.

Также существуют многоточечные термопары. Они используются, когда необходимо измерить разницу температур в нескольких измеряемых точках. Допустимое количество точек замера – 60. Чаще многоточечные термопары применяются в нефтепромышленности.

Ещё используется классифицирование по инерционности, то есть по скорости получения итогового значения ЭДС. Как правило, общий диапазон – от 40 секунд до 3,5 минут. Существуют датчики и с ненормированной инерционностью. Именно они преимущественно используются в быту, хоть и погрешность в их замерах высокая (для того же холодильника это не критично, так как отклонение результата не превышает 1,5%).

Подключение термопары

Проводники датчиков температуры (термопар) к измерительному прибору (который регистрирует ЭДС) подключаются через компенсационные провода. Как правило, изготавливают их из тех же материалов, что и сами проводники термопары. Их главное назначение – минимально изменять значение ЭДС, обеспечивая тем самым минимальную погрешность измерения. По этой причине термодатчики производителями могут поставляться сразу с компенсационными проводами. Вместо них ещё могут применяться термисторы, которые вырабатывают ток компенсации для холодного спая. В плане конструкции такие датчики проще, но погрешность у них на порядок больше.

Датчик-термопара

Датчик-термопара

Где используются?

Сейчас они являются самым распространенным вариантом температурных датчиков. Используются как в бытовых приборах, так и в промышленности (в том числе в металлургии, где измеряются температуры жидких металлов). Можно упомянуть следующие варианты применения термопар:

Как выбрать?

Основной критерий – это диапазон измеряемых температур. От этого значения зависит выбор сплава проводников, их конфигурация. В дополнение к этому у продавца следует уточнить наличие сертификата и паспорта датчика (при производстве их обязательно проверяют на соответствие характеристикам, сведения о проверке и дате ее выполнения указываются в паспорте).

Преимущества и недостатки

Ключевыми преимуществами термопар можно назвать следующие:

  • простота конструкции;
  • низкая себестоимость изготовления;
  • широкий диапазон измеряемых температур (от абсолютного нуля и свыше 2000 градусов по Цельсию);
  • надежность (разрешено использовать в условиях агрессивной среды, в химических растворах);
  • высокая точность измерения, при правильной градации можно делать замеры с шагом вплоть до 0,01 градуса;
  • малый размер капсулы датчика (в цифровой электронике используются модели, размером с микротранзистор).

Из недостатков стоит упомянуть:

Итого, датчик температуры (термопара) – один из самых простых, точных и дешевых термодатчиков, принцип работы которого заключен в измерении значения электродвижущей силы (указывается в Вольтах, но не следует путать с напряжением).

Цены, наличие и другие данные, указанные на сайте, не являются публичной офертой. Для уточнения информации свяжитесь с нашими специалистами любым удобным для Вас способом

Если вы хотите измерить температуру чего-то столь же горячего, как вулкан, обычный бытовой ртутный термометр абсолютно бесполезен. Воткните колбу ртутного термометра в вулканическую лаву (температура которой может быть намного выше 1000), и вы получите сюрприз: ртуть внутри мгновенно закипит (она превращается из жидкости в газ всего лишь при 674 ° F), а само стекло может даже расплавиться (если лава действительно горячая). Попробуйте измерить что-нибудь очень холодное (например, жидкий азот) с помощью ртутного термометра, и у вас возникнет обратная проблема: при температурах ниже -38 ° C ртуть представляет собой твердый кусок металла. Так как же измерить действительно горячие или холодные предметы? С хитрой парой электрических кабелей под названием термопара. Давайте подробнее разберемся, как это работает!



Какая связь между электричеством и теплом?

Вы заметили, что, когда мы говорим о проводимости в физике, мы можем иметь в виду две вещи? Иногда мы имеем в виду тепло, а иногда - электричество. Металл, такой как железо или золото, действительно хорошо проводит тепло и электричество; такой материал, как пластик, не очень хорошо проводит ни одно из них.

Между тем, как металл проводит тепло, и тем, как он проводит электричество, существует прямая связь.

Томас Зеебек и термоэлектрический эффект

Предположим, вы воткнете железный пруток в огонь. Вы поймете, что нужно отпустить его довольно быстро, потому что тепло будет подниматься по металлу от огня к вашим пальцам. Но знаете ли вы, что электричество тоже идет по нагретому прутку? Первым, кто правильно подхватил эту идею, был немецкий физик Томас Зеебек (1770–1831), который обнаружил, что если два конца металла будут иметь разную температуру, через них будет протекать электрический ток. Это один из способов обозначить то, что сейчас известно как эффект Зеебека или термоэлектрический эффект. По мере дальнейшего исследования Зеебек обнаружил, что все еще интереснее. Если он соединял два конца металла вместе, ток не протекал; аналогично, если два конца металла имели одинаковую температуру, ток не протекал.



Основная идея термопары: два разнородных металла (серые кривые) соединены на двух концах. Если один конец термопары поместить на что-то горячее (горячий спай), а другой конец на что-то холодное (холодный спай), возникает напряжение (разность потенциалов). Вы можете измерить его, поместив вольтметр (V) через два соединения.

Зеебек повторил эксперимент с другими металлами, а затем попытался использовать вместе два разных металла. Теперь, если способ протекания электричества или тепла через металл зависит от внутренней структуры материала, вы, вероятно, можете увидеть, что два разных металла будут производить разное количество электричества, когда они нагреваются до одной температуры. Так что, если вы возьмете полосу одинаковой длины из двух разных металлов и соедините их вместе двумя концами, чтобы получилась петля. Затем окуните один конец (одно из двух стыков) во что-нибудь горячее (например, стакан с кипящей водой), а другой конец (другой стык) во что-то холодное. Тогда вы обнаружите, что электрический ток течет через петлю (которая фактически представляет собой электрическую цепь), и величина этого тока напрямую связана с разницей в температуре между двумя переходами.

Ключевой момент, который следует помнить об эффекте Зеебека, заключается в том, что величина создаваемого напряжения или тока зависит только от типа металла (или металлов), а также от разницы температур. Для создания эффекта Зеебека не нужно соединение между разными металлами: только разница температур. Однако на практике в термопарах используются металлические переходы.

Почему возникает эффект Зеебека?

А как насчет эффекта Зеебека в соединении двух разных металлов? В одних материалах электроны движутся более свободно, чем в других. В этом основная разница между проводниками и изоляторами, а также между хорошими проводниками и плохими. Если вы соедините два разных металла вместе, свободные электроны будут перемещаться из одного материала в другой посредством своего рода диффузии. Так, например, если вы соедините кусок меди с куском железа, электроны имеют тенденцию перемещаться от железа к меди, в результате чего медь заряжается более отрицательно, а железо - более положительно. Если железо и медь соединены в петлю с двумя переходами, один из переходов получит положительное напряжение, а другой - равное и противоположное отрицательное напряжение, не создавая напряжения в целом. Но если один из стыков горячее другого, электроны будут легче диффундировать между металлами. Это означает, что напряжение на двух переходах будет отличаться на величину, которая зависит от разницы их температур. Это эффект Зеебека - и это основа работы большинства термопар.

Измерение температуры с помощью термопары

Если вы измеряете несколько известных температур с помощью этого устройства с металлическим спаем, вы можете выяснить формулу - математическое соотношение, - которое связывает ток и температуру. Это называется калибровкой: это как разметка шкалы на термометре. После калибровки у вас есть инструмент, который можно использовать для измерения температуры всего, что вам нравится.

Что такое термопары на практике?

Для различных применений доступен широкий спектр различных термопар на основе металлов с высокой проводимостью, таких как железо, никель, медь, хром, алюминий, платина, родий и их сплавы . Иногда конкретная термопара выбирается исключительно потому, что она точно работает в определенном диапазоне температур, но условия, в которых она работает, также могут влиять на выбор (например, материалы в термопаре могут быть немагнитными , некоррозионными или стойкими к атакам. отдельными химическими веществами).

Для чего используются термопары?


Термопары широко используются в науке и промышленности, потому что они, как правило, очень точны и могут работать в огромном диапазоне действительно высоких и низких температур. Поскольку они генерируют электрические токи, они также полезны для автоматизированных измерений: гораздо проще получить электронную схему или компьютер для измерения температуры термопары через определенные промежутки времени, чем делать это самостоятельно с помощью термометра. Поскольку в них нет ничего особенного, кроме пары металлических полос, термопары также относительно недороги и (при условии, что используемые металлы имеют достаточно высокую температуру плавления) достаточно долговечны, чтобы работать в довольно суровых условиях.

Для нагревательных систем термопары являются незаменимым инструментом, который позволяет измерять показатели температуры системы, нагревательных элементов, обрабатываемых материалов. К примеру, на экструзионных линиях термопары устанавливаются на каждый кольцевой нагреватель, греющий цилиндр экструдера, в каждую зону нагрева для измерения температуры расплава, в фильеру для определения температуры на выходе.

Термопара. Принцип работы

Полное название устройства – термоэлектрический преобразователь. Упрощенно его называют термопарой. Прибор используется для температурных замеров в тех или иных отраслях промышленности и производства, медицины, автоматизированных системах.

Для чего нужны термопары

Назначением всех термопар является измерение температур. Во внимание принимаются такие параметры измеряемого объекта, как его объем и давление внутри, электросопротивление, показатели термоэлектродвижущих сил, интенсивность излучений и пр.

Исходя из того, в каком диапазоне необходимо проводить замеры температуры, прибегают к двум разновидностям замеров:

  • контактный – так называемая термометрия;
  • бесконтактный – на основе анализа теплового излучения.

Что касается второго вида измерения, к нему прибегают при необходимости замерить очень горячие среды, либо если нет возможности получить прямой доступ к объекту. Измерения посредством термопар проводятся методом прямого контакта.

Плюсы данного способа именно по отношению к термопарам заключаются в:

  • повышенной степени точности проводимых замеров;
  • существенных температурных разбросах, доступных для измерения;
  • простоте использования и надежности прибора.

Принцип функционирования термопары

Любая термопара состоит из двух проводов, которые спаяны между собой и при этом произведены из различающихся по своим физическим параметрам металлов. Провода скрепляются посредством так называемого спая. При воздействии на спай измененных температур термопара начинает реагировать на это и генерировать электрическое напряжение, которое всегда находится в прямо пропорциональной зависимости от величины колебания температуры.

При присоединении термопары к электроцепи величина сгенерированного напряжения отображается на специальной шкале прибора. Затем эти показания преобразуются в температурные – либо непосредственно внутри самого прибора, либо согласно откалиброванной выносной шкале.


Спаи на термопарах и требования к ним

Как правило, конструкция термопары подразумевает наличие лишь одного спая. Иногда предусматривается и еще один – если термопару необходимо подсоединить к электроцепи (непосредственно в точках присоединения).


На схеме цепь включает в себя три проводка – A, B, C. Скрученные провода имеют обозначения D и E. Спай же представлен в виде дополнительного, образующегося при соединении термопары к электроцепи. В приведенном случае спай носит название холодного (свободного), а спай, обозначенный литерой Е – горячего (рабочего).

Поскольку имеет место прямо пропорциональная зависимость между температурными показателями и напряжением, которое генерирует термопара, оба спая генерируют одну и ту же величину напряжения – если температурные показатели на них будут одинаковыми.


Если же спай на термопаре подвергнуть нагреву, то значение напряжения начинает возрастать в прямой соразмерной зависимости. Соответственно, поток отрицательно заряженных частиц от разогретого спая перетекает сквозь второй спай, проходит сквозь измерительное устройство и переходит назад на горячий спай. Соответственно, прибором начинает фиксироваться и демонстрироваться разница напряжений на этих спаях. Эту разницу может преобразовать как оператор через специальные таблицы в соответствующие температурные значения, так и сам прибор – смотря какой модели термопарный измеритель был задействован.

Требования к материалам для изготовления термопар и спаев для них являются строгими, поскольку эксплуатация данных приборов предполагается в жестких средах:

  1. Показатели термоэлектродвижущей силы для сплавов в термопарах обязаны быть большими с целью обеспечения необходимой точности проводимых замеров. Производители подбирают материалы таким образом, чтобы величины термоэлектродвижущих сил находились в линейной зависимости от температурных величин.
  2. Температурные показатели плавления веществ должны быть значительно выше замеряемых температурных значений. Разница составляет при этом как минимум 50 градусов Цельсия.
  3. Сплавы должны быть устойчивыми к коррозии. Если данное требование невозможно выполнить по тем или иным причинам, то прибегают к защите при помощи чехлов.
  4. Материалы не должны изменять свои физические параметры.
  5. Они должны иметь хорошие показатели пластичности и прочности.
  6. Наконец, материалы должны иметь низкую цену для возможности изготовления термопар в промышленных масштабах.

Холодные спаи для термопар

Холодные спаи – точки, в которые свободные концы провода термопары присоединяются к прибору для измерения. Так как прибор проводит замеры разности напряжений на спаях, то и напряжение на холодном спае должно быть поддержано на постоянном уровне. Таким образом, гарантирована максимальная точность замеров в разных эксплуатационных условиях.


Горячие (рабочие) спаи в термопарах

Имеется также так называемый рабочий (он же горячий) спай, подвергаемый влиянию технологического процесса. Его температура будет изменяться. Так как напряжение, которое генерирует термопара, прямо пропорционально ее температурным показателям, то во время нагрева горячего спая будет сгенерировано больше напряжения и, наоборот – во время охлаждения меньше.


Разновидности термопар

Производители предлагают потребителям разные виды термопар, которые различаются по диапазонам замеряемых температур, их колебаниям. Изготавливают термопары из самых разных металлов и их вариаций. От того, в какой комбинации были использованы те или иные металлы, будет зависеть и измеряемый температурный диапазон.

Соответственно, производителями была введена специальная маркировка, которая обозначает типы термопар:


Когда термопару подключают к электроцепи, она не будет функционировать в нормальном режиме до тех пор, пока не будут соблюдены правила полярностей.

Так, провода положительного полюса нужно соединить вместе и подсоединить к плюсовым выводам в электроцепи, а минусовые – к минусовым. Если не соблюсти данное правило, то горячий спай и холодный не окажутся в необходимой противофазе, следовательно, температурные показания окажутся неточными.

В термопарах могут использоваться удлинительные провода. Цвет на внешней изоляции проводов соединительного типа может быть произвольным – в зависимости от того или иного изготовителя устройства, но первичная изоляция должна соответствовать кодам из таблицы:


Возможные неисправности в термопарах

Несмотря на то, что термопары относятся к достаточно надежным устройствам, и они могут выходить из строя и выдавать погрешности в замерах. Прежде всего, в этом случае нужно проверить устройство на предмет наличия ослабленного соединения. Если все плотно соединено, то, возможно, проблема кроется в приборе регистрации, либо непосредственно в термопаре.

Примечательно, что в случае неправильных показаний причина почти всегда в приборе регистрации. Ведь, если неисправна сама термопара, то прибор не будет демонстрировать вообще никаких показаний.

Если есть подозрения на выход из строя термопары, то нужно для начала проверить ее сигналы на выходе при помощи потенциометра.

Возможные погрешности в замерах при помощи термопар

Если термопара начала выдавать погрешности при измерениях, которые находятся далеко за пределами допустимых, то следует выявить их причину.

Точность замеров может пострадать из-за влияния сопротивления изоляционных материалов на термоэлектродах. При воздействии на них высоких температур сопротивление может снизиться, что, соответственно, отразится и на точности результатов замеров.

Еще одна причина появления погрешности при замерах – изменения температурных показателей на свободных концах термопары. Во время проведения замеров температура может колебаться и отличаться от температурных показателей на свободных концах устройства во время его градуирования.

Для повышения точности проводимых замеров желательно исключать внешние воздействия – электромагнитные и радиационные поля, химические посторонние реакции и т.д

Если прибор был проградуирован с нарушениями процедуры, то это также будет служить причиной проявления погрешностей.


Тип К из никель-хрома (термопара ТХА) или никель-алюмеля (ХА), имеющий следующие свойства: низкую цену, долговечность, погрешность не более 0,4%, пределы измерения от -270 до 1269 градусов. Предназначен для работы в окислительной и инертной средах.

L — хромель-копель(ТХК), недорогая термопара с верхним пределом в 600 градусов.

Е — никель-хром или никель-константан с более высокой точностью и величиной сигнала, верхний предел измерений не превышает 870 градусов.

Датчики из благородных металлов работают при большей температуре, но имеют высокую стоимость, в связи с чем чаще всего применяются в промышленности.

Особенности устройства промышленной термопары

Термодатчики изготавливаются по большей части из неблагородных металлов. От воздействия внешней среды их закрывают трубой с фланцем, служащим для крепления прибора. Защитная арматура предохраняет проводники от влияния агрессивной среды и делается без шва. Материалом служит обычная (до 600ºС) или нержавеющая (до 1100ºС) сталь. Термоэлектроды изолируют друг от друга асбестом, фарфоровыми трубками или керамическими бусами.

Если терминал расположен близко, то провода термопары подключаются к нему напрямую, без дополнительных разъемов. При расположении измерительного прибора на удалении, при включении его в цепь свободные концы термопары размещаются в литой головке, прикрепленной к защитной трубе. Внутри располагаются латунные клеммники на фарфоровом основании для подключения компенсационных проводов, изготовленных из таких же материалов, что и термоэлектроды, но не обладающих точными и строго контролируемыми характеристиками. Они имеют меньшую стоимость и большую толщину. Их вводят в головку через штуцер с асбестовой прокладкой. Керамика служит для выравнивания температуры во всех местах соединения. Сверху располагается резьбовая защитная крышка с герметичным уплотнением.

На провода нельзя устанавливать обжимные оконцеватели, поскольку они могут ухудшить точность показаний. Из проволоки делают кольцо и зажимают его под винт.

Корректировка изменения температуры на клеммах может производиться электронным прибором, что повышает точность измерений.

Недостатки термопары

Недостатков у термопары не так много, в особенности если сравнивать с ближайшими конкурентами (температурными датчиками других типов), но все же они есть, и было бы несправедливо о них умолчать.

Так, разность потенциала измеряется в милливольтах. Поэтому необходимо применять весьма чувствительные потенциометры. А если учесть, что не всегда приборы учета можно разместить в непосредственной близости от места сбора экспериментальных данных, то приходится применять некие усилители. Это доставляет ряд неудобств и приводит к лишним затратам при организации и подготовке производства.

Принцип работы термопары

Термопара представляет собой два провода, изготовленных из различных металлов. Эти два провода скреплены или сварены вместе и образуют спай. Когда на этот спай оказывают воздействие изменения температуры, то термопара реагирует на них генерируя напряжение, пропорциональное по величине изменениям температуры.

Если термопара подсоединена к электрической цепи, то величина генерируемого напряжения будет отображаться на шкале измерительного прибора. Затем показания прибора могут быть преобразованы в температурные показания с помощью таблицы. На некоторых приборах шкала откалибрована непосредственно в градусах.

0b1357a6b832d0412474f9cce1465cf8.jpg

Термопара в электрической цепи

Погрешность измерений

Правильность температурных показателей, получаемых с помощью термопары, зависит от материала контактной группы, а также внешних факторов. К последним можно отнести давление, радиационный фон либо иные причины, способные повлиять на физико-химические показатели металлов, из которых изготовлены контакты.

состоит из следующих составных частей:

случайная погрешность, вызванная особенностями изготовления термопары;

погрешность, причиной которой послужили внешние помехи;

погрешность контрольной аппаратуры.

Замена, если нельзя отремонтировать своими руками

Устройство вызывает сбои по разным причинам. Заменить сломанный прибор на новый можно самостоятельно. Для этого необходимо выполнить поэтапную инструкцию:

  1. Сначала ключом откручивается специальная гайка, которой термопара прикреплена к патрубку.
  2. Откручивается компенсационный винт, фиксирующий прибор к месту (он находится непосредственно под монтажным кронштейном).
  3. Аккуратно снимается старое устройство.
  4. В освободившееся отверстие вставляется новый прибор.
  5. Все фиксируется компенсационным винтом, а затем гайкой.
  6. Выполняется проверка на герметичность. При необходимости используется уплотнитель — полимер либо керамика.

При проведении процедуры следует помнить, что недотянутое, как и перетянутое резьбовое соединение будет опасным для исправности системы.

Список литературы

Устройство и принцип действия термопары

Действительно, постоянно находиться в зоне открытого пламени может далеко не каждый материал. Термоэлемент же изготовлен из металла, точнее, из нескольких металлов, поэтому высокой температуры не боится. При работе газовой котельной установки без него никак не обойтись, выход из строя термопары означает полную остановку агрегата и немедленный ремонт. Все дело в том, что термоэлемент работает совместно с электромагнитным отсекающим клапаном, перекрывающим вход в топливный тракт. Стоит только этой детали выйти из строя, как клапан закроется, подача топлива прекратится и горелочное устройство потухнет.

db670348a613c6a571a18a8531d86975.jpg

В основе этого принципа лежит следующее физическое явление: если надежно соединить между собой 2 разнородных металла, а потом место соединения нагревать, то на холодных концах этого спая появится разница потенциалов, то есть, напряжение. А при подключении к ним измерительного прибора цепь замкнется и возникнет постоянный электрический ток. Напряжение будет совсем небольшим, но этого вполне достаточно, чтобы в чувствительной катушке электромагнитного клапана возникла индукция и он открылся, позволяя топливу пройти к запальнику.

Для справки. Некоторые современные электромагнитные клапаны настолько чувствительны, что остаются открытыми, пока напряжение на входе не станет ниже 20 мВ. Термоэлемент в обычном рабочем режиме вырабатывает напряжение порядка 40—50 мВ.

Соответственно, устройство термопары газового котла основано на описанном явлении, носящем название эффекта Зеебека. Две детали из различных металлов прочно соединяются между собой в одной или нескольких точках, при этом качество соединения играет большую роль. Оно влияет на рабочие параметры элемента и долговечность его эксплуатации. Место соединения и будет той самой рабочей частью, помещаемой в зону открытого огня.

Поскольку для изготовления термоэлементов применяется множество различных пар металлов, не вдаваясь в подробности, отметим, что в термопаре для газового котла используется пара хромель – алюминий. К холодным концам этих металлов приварены проводники, заключенные в защитную оболочку. Второй конец проводников вставляется в соответствующее гнездо автоматики агрегата и закрепляется с помощью зажимной гайки.

В процессе розжига запальника и горелки газового котла для подачи топлива мы открываем электромагнитный клапан вручную, нажимая на его шток. Газ попадает на запальник и поджигается, а термопара находится рядом и нагревается от его пламени. Спустя 10—30 сек кнопку можно отпускать, так как термоэлемент уже начал вырабатывать напряжение, удерживающее шток клапана в открытом состоянии.

Схема подключения термопары

aeaced7833a38d964d1d63f9eb247186.jpg

Нельзя не упомянуть и о так называемом дистанционном способе подключения термопары. Принцип работы остается неизменным. Разница лишь в том, что в цепь добавляются удлинительные провода. Для этих целей не подойдет обычный медный шнур, так как компенсационные провода в обязательном порядке должны выполняться из тех же материалов, что и проводники термопары.

69ac501c5a94ff496477591f16a0a32b.jpg

Недостатки

К сожалению, у таких простых приборов наряду с очевидными достоинствами присутствуют и некоторые недостатки. Прежде всего, стоит упомянуть погрешность, которая обычно составляет 0,5-2 градусов. Поэтому чтобы добиться более точных показаний (до ±0,01 °С), необходима индивидуальная градуировка термопары.

Простота конструкции и высокая надежность, являясь неоценимым преимуществом, вместе с этим это еще и минус. Как такое может быть? Все очень просто – в случае возникновения неисправности термопары починить ее нет возможности, только заменить.

Благо, такой недостаток термопар для плит не столь существенен, так как стоимость не такая высокая.

Как работает термопара с газовым котлом

Термопара — что это такое? Для пользователя все становится ясно, когда возникают перебои в работе газового оборудования. Рабочий спай термопары в котле нагревается от пламени запальника. В цепи наводится термо-ЭДС равная 20-25 mV, значения которой достаточно для срабатывания электромагнитного клапана. При этом открывается подача газа на обогрев котла. Запальная горелка всегда функционирует, пока работает котел. От нее зажигается основная горелка, греющая воду. Термопара для газовой плиты также необходима, чтобы обеспечить электроподжиг на конфорках.

cb452282fbc47f347ddd434a5ee2cab2.jpg

Кроме того, некоторые плиты снабжают защитой при сбоях в подаче, когда в сети пропадает газ, а затем подается снова.

При горении газового факела в котле место спайки термоэлектродов остается нагретым, и за счет этого обеспечивается подача топлива. После того как пламя погаснет, рабочий спай термопары остывает, и она перестает вырабатывать ток. При этом происходит аварийное отключение электромагнитного клапана, перекрывающего газ.

Что за устройство такое

Под термопарой подразумевается специальный прибор, который служит для измерения температуры рабочей среды. Такое устройство широко распространено в промышленности, медицине и прочих областей жизнедеятельности человека. Впрочем, всюду, где необходима высокая точность замеров.

С конструктивной точки зрения – это два разных проводника, которые припаяны (или приварены) друг к другу на одном из концов. Место их соединения называется спаем. А в качестве проводников используются разные материалы, и в зависимости от этого диапазон измеряемой термопарой температуры составляет от -250 ᴼC до 2000 ᴼC, а то и более. В большинстве случаев это металлы, полупроводники используются реже.

Неисправность устройств котлов

Что касается газовых котлов, то среди всех деталей оборудования именно термопара чаще всего выходит из строя. Неисправность можно обнаружить так же, как в случае с плитой. Признак выглядит так: нажимается кнопка подачи газа, поджигается запальник и держится 30 секунд (как полагается по инструкции) и отпускается. При этом горелка сразу же гаснет, что должно насторожить.

Это может говорить о том, что термопара неисправна и требует замены, поскольку неремонтопригодна. Или же между устройством и электромагнитным клапаном плохой контакт.

0cec9799f7a172078389ef6ccff4a1a7.jpg

В этом случае можно самостоятельно выполнить несложную диагностику, а и полностью устранить проблему, без привлечения специалиста. При этом необязательно в точности знать, какой у термопары принцип действия. Вот что потребуется сделать:

  • Откручивается прижимная гайка, что удерживает термопару на после чего устройство извлекается.
  • Внимательно осмотреть разъем – есть ли окислы или загрязнения? В случае чего, пройтись мелкой шкуркой.
  • Проверить работоспособность при помощи мультиметра. Для этого один конец устройства соединяется с прибором, а другой нужно нагреть. Можно воспользоваться ручной газовой горелкой или чем-нибудь еще (свечка). У исправной термопары напряжение должно быть до 50 мВ.
  • Если диагностика прошла успешно, остается установить термопару на свое место и еще раз запустить котел.

Любой, кто осведомлен, что такое термопара, может прийти к правильному выводу – все дело в самом электромагнитном клапане. Однако и он может быть исправен. Тогда нужно прочистить место соединения проводников, после чего найти удачное положение прижимной гайки, при котором обеспечивается хороший контакт.

Для чего нужна

7282031b15d589f3c6a826a86e301497.jpg

Термопара применяется для преобразования термической энергии в электрический ток для электромагнитных катушек в газовых котлах и служит основным элементом защиты газ-контроля.

Она изготавливается из нескольких видов металла, устойчивых к максимальным температурам внутри камеры сгорания. Термопара работает вместе с автоматическим отсекающим газовым клапаном, который перекрывает подачу газа в топливный тракт.

Важно знать: защитная схема работы газовых котлов устроена таким образом, что при выходе из строя термоэлектрического элемента или внезапном исчезновении пламени происходит автоматическое срабатывание отсекающих клапанов и остановка подачи газа.

Разновидности термопар

Основное различие между термопарами кроется в используемом материале для изготовления проводников. При этом встречаются довольно необычные названия сплавов, о которых могут знать лишь любители кроссвордов или сканвордов. В зависимости от этого все устройства делятся на несколько типов. Более наглядно это можно увидеть на таблице ниже.

Читайте также: