Что обозначают двоичные коды в предоставлении звука на компьютере

Обновлено: 18.05.2024

Звук – это упругая продольная волна в воздушной среде. Чтобы ее представить в виде, читаемом компьютером, необходимо выпол­нить следующие преобразования (рис. 1.4.). Звуковой сигнал преоб­разовать в электрический аналог звука с помощью микрофона. Элек­трический аналог получается в непрерывной форме и не пригоден для обработки на цифровом компьютере. Чтобы перевести сигнал в цифровой код, надо пропустить его черезаналого-цифровой преобразо­ватель (АЦП). При воспроизведении происходит обратное преобра­зование –цифро-аналоговое (через ЦАП). Позже будет показано, что конструктивно АЦП и ЦАП находятся в звуковой карте компьютера.

Во время оцифровки сигнал дискретизируется по времени и по уровню (рис. 1). Дискретизация по времени выполняется следующим образом: весь период времени Т разбивается на малые интервалы времениt, точкамиt1,t2, . tn. Предполагается, что в течение интервалаtуровень сигнала изменяется незначительно и может с некоторым допущением считаться постоянным. Величина

v= 1/tназываетсячастотой дискретизации. Она измеряется вгер­цах (Гц) – количество измерений в течение секунды.


Рис. 1. Схема обработки звукового сигнала


Рис. 2. Схема дискретизации звукового сигнала

Дискретизация по уровню называется квантованием и выполня­ется так: область изменения сигнала от самого малого значенияXmin до самого большого значения Хmахразбивается на N равныхквантов, промежутков величиной

Каждый квант связывается с его порядковым номером, т.е. це­лым числом, которое легко может быть представлено в двоичной системе счисления. Если сигнал после дискретизации по времени (напомним, его принимаем за постоянную величину) попадает в про­межуток Xi-1 n . Чтобы измерение занимало целое число байт;vвыбираютn= 8 илиn= 16, т.е. каждое измерение занимает один или два байта.

Высокое качество воспроизведения получается в формате лазер­ного аудиодиска при следующих параметрах оцифровки: частота дис­кретизации – 44,1 кГц, квантование – 16 бит. Таким образом, 1 с стерео звука займет 2 байт 44100 байт/с2 канала1 с = 176 400 байт дисковой памяти. Качество звука при этом получается очень высоким.

Для телефонных переговоров удовлетворительное качество полу­чается при частоте дискретизации 8 кГц и частоте квантования 255 уровней.

Представление графический данных в двоичном коде

Есть два основных способа представления изображений.

Первый — графические объекты создаются как совокупности линий, векторов, точек — называется векторной графикой.

Второй — графические объекты формируются в виде множества точек (пикселей) разных цветов и разных яркостей, распределенных по строкам и столбцам, — называется растровой графикой.

Модель RGB. Чтобы оцифровать цвет, его необходимо измерить. Немецкий ученыйГрасман сформулировал три закона смешения цве­тов:

закон трехмерности — любой цвет может быть представлен ком­бинацией трех основных цветов;

закон непрерывности – к любому цвету можно подобрать беско­нечно близкий;

закон аддитивности — цвет смеси зависит только от цвета состав­ляющих.

За основные три цвета приняты красный (Red),зеленый (Green),синий (Blue). В моделиRGBлюбой цвет получается в результате сло­жения основных цветов. Каждый составляющий цвет при этом ха­рактеризуется сноси яркостью, поэтому модель называетсяаддитив­ной. Эта схема применяется для создания графических образов в устройствах, излучающих свет, — мониторах, телевизорах.

Модель CMYK. В полиграфических системах напечатанный на бумаге графический объект сам не излучает световых волн. Изобра­жение формируется на основе отраженной волны от окрашенных поверхностей. Окрашенные поверхности, на которые падает белый свет (т.е. сумма всех цветов), должны поглотить (т.е. вычесть) все составляющие цвета, кроме того, цвет которой мы видим. Цвет по­верхности можно получить красителями, которые поглощают, а не излучают. Например, если мы видим зеленое дерево, то это означа­ет, что из падающего белого цвета, т.е. суммы красного, зеленого, синего, поглощены красный и синий, а зеленый отражен. Цвета кра­сителей должны быть дополняющими:

голубой (Cyan= В +G), дополняющий красного;

пурпурный (Magenta=R+ В), дополняющий зеленого;

желтый (Yellow = R + G), дополняющий синего.

Но так как цветные красители по отражающим свойствам не одинаковы, то для повышения контрастности применяется еще чер­ный (black). Модель CMYK названа по первым буквам слов Cyan, Magenta, Yellow и последней букве слова black. Так как цвета цычи-таются. модель называется субстрактивной.

Оцифровка изображения. При оцифровке изображение с помощью объектива проецируется на светочувствительную матрицу т строк и п столбцов, называемую растром. Каждый элемент матрицы – мель­чайшая точка, при цветном изображении состоящая из трех свето­чувствительных (т.е. регистрирующих яркость) датчиков красного, зе­леного, желтого цвета. Далее оцифровывается яркость каждой точки по каждому цвету последовательно по всем строкам растра.

Если для кодирования яркости каждой точки использовать по одному байту (8 бит) на каждый из трех цветов (всего 3  8 = 24 бита), то система обеспечит представление 2 24 ~ 16,7 млн распознаваемых цветов, что близко цветовосприятию человеческого зрения. Режим представления цветной графики двоичным кодом из 24 разрядов на­зывается полноцветным или True Color. Очевидно, графические дан­ные, также как и звуковые, занимают очень большие объемы на но­сителях. Например, скромный по современным меркам экран монитора имеет растр 800 х 600 точек, изображение, представлен­ное в режиме True Color, займет 800 х 600 х 3 = 1 440 000 байт.

В случае, когда не требуется высокое качество отображения цве­та, применяют режим High Color, который кодирует одну точку рас­тра двумя байтами (16 разрядов дают 2 16 = 65,5 тысячи цветов).

Режим, который при кодировании одной точки растра исполь­зует один байт, называется индексным, в нем различаются 256 цве­тов. Этого недостаточно, чтобы передать весь диапазон цветов. Код каждой точки при этом выражает собственно не цвет, а некоторый номер цвета (индекс) из таблицы цветов, называемой палитрой. Па­литра должна прикладываться к файлам с графическими данными и используется при воспроизведении изображения..


Учи.Дома запускает бесплатный марафон в котором каждый день. В течении 5 дней утром ты будешь получать одно задание по выбранному предмету, а вечером его решение. Твоя задача, успеть выполнение задание до того как получишь ответ.

Бесплатно, онлайн, подготовка к ЕГЭ

Предварительный просмотр:

  1. осмыслить принципы двоичного кодирования звука и разобрать процесс оцифровки звука;
  2. сформировать навык видеть проблему, вырабатывать гипотезу и наблюдать;
  3. сформировать представление учащихся о способах обработки звуковых файлов;
  1. развивать познавательный интерес и внимание школьников;
  2. развивать наблюдательность, аналитические навыки;
  3. продолжить развивать умения учащихся применять компьютер для решения конкретных задач;
  4. создать у учащихся положительную мотивацию к выполнению умственных и практических действий;
  5. помочь развитию интереса у учащихся не только к содержанию, но и к процессу овладения знаниями;
  1. продолжить формировать эстетическую и художественную культуру учащихся средствами компьютера;
  2. воспитывать самостоятельность, усидчивость, внимание.
  1. особенности кодирования звуковой информации;
  2. основные понятия звуковой информации: дискретизация звука и ее частота, оцифровка звука, звуковой адаптер.
  1. решать задачи на кодирование звуковой информации;
  2. основные понятия звуковой информации: дискретизация звука и ее частота, оцифровка звука, звуковой адаптер.
  1. выделять свойства явлений, объектов;
  2. сравнивать характеристики по выделенным признакам.
  3. анализировать полученные результаты.

Тип урока: формирование новых знаний и умений.

Формы работы учащихся : фронтальная, индивидуальная.

Необходимое техническое оборудование: мультимедийный проектор, экран, колонки, компьютеры с наушниками.

Дидактические средства : презентация.


II. Актуализация знаний.

Каждая пара учащихся получает карточки с вопросами и в течение минуты отвечает на три вопроса (приложение 1)

В ходе фронтальной беседы с классом отвечаем на вопросы и вспоминаем:

- Какова физическая природа звука?

У всех источников звука имеются колеблющиеся части, которые приводят в колебательное движение частицы окружающей среды (воздуха) → распространяющаяся звуковая волна вызывает колебательное движение барабанной перепонки уха человека, которое воспринимается мозгом как звук → не все источники колебаний являются источниками звука (птица, бабочка, летучая мышь) → звук – механические колебания в частотном диапазоне от 16 Гц до 22000 Гц.

- Какие характеристики звука вам известны и чем они определяются?

Громкость звука определяется амплитудой колебаний. Для человека звук тем громче, чем больше амплитуда колебаний частиц в волне.

Высота звука определяется частотой колебаний. Чем больше частота колебаний источника звука, тем выше издаваемый им звук

III. Объяснение нового материала.
Итак, мы выяснили, что звук представляет собой волну с непрерывно меняющейся амплитудой и частотой. Для человека звук тем громче, чем больше амплитуда сигнала, и тем выше тон, чем больше частота сигнала.

Для того чтобы компьютер мог обрабатывать звук, непрерывный (аналоговый) звуковой сигнал должен быть преобразован в последовательность электрических импульсов (двоичных нулей и единиц).

Процесс преобразования звуковой волны в двоичный код в памяти компьютера осуществляется в два этапа. Звуковая волна поступает в микрофон, который преобразует механические колебания частиц воздуха в переменный электрический ток (аналоговый сигнал). Громкость звука будет влиять на амплитуду колебаний тока, а высота звука – на частоту колебаний.

Для возможности обработки компьютером необходимо преобразовать непрерывно меняющийся ток в конечный набор электрических импульсов определённой величины. Для этой цели используется звуковая карта (аудиоадаптер).

Процесс преобразования непрерывного аналогового сигнала в дискретный (прерывистый) называется временной дискретизацией.

При воспроизведении звука осуществляется обратный процесс.Звуковая карта согласно поступающему двоичному коду формирует соответствующее переменное напряжение, подача которого на динамик вызывает колебательное движение его мембраны, вследствие чего в окружающем пространстве возбуждается звуковая волна.

Рассмотрим подробнее процесс преобразования переменного электрического тока звуковой частоты, создаваемый микрофоном в двоичный код, выяснив, что будет влиять на качество сохраняемого в компьютере звука.

Для преобразования непрерывного сигнала в дискретный в звуковой плате производится измерение значения силы тока через определённые промежутки времени (период дискретизации). Вплоть до следующего измерения величина сигнала будет неизменной. Данный метод называется импульсно-амплитудной модуляцией PCM (Pulse Code Modulation).

В результате временной дискретизации на выходе звуковой платы формируется прерывистый (дискретный) сигнал.

Можно заметить, что в результате временной дискретизации первоначальная гладкая кривая преобразовалась в ступеньчатую линию. Следовательно, первоначальный сигнал изменился (качество звука ухудшилось).

Рассмотрим, как будет влиять на качество звука уменьшение времени между измерениями силы тока (измерения будут производиться более часто).

Количество измерений уровня звукового сигнала за 1 секунду называют частотой дискретизации.

Сравним форму дискретного сигнала при различных частотах дискретизации с первоначальным аналоговым сигналом:

В ходе фронтальной беседы с классом приходим к выводу: чем больше частота дискретизации, тем качество оцифрованного звука лучше.

При осуществлении дискретизации по времени через период дискретизации производится измерение уровня громкости, каждый из которых должен быть запомнен компьютером.

Как можно заметить, количество уровней громкости будет расти с увеличением частоты дискретизации и времени звучания. Попытка сохранения произвольного количества уровней громкости, полученных при дискретизации по времени, приведёт к бесконечно большому размеру аудиофайла.

С целью уменьшения размера аудиофайла выделим фиксированное количество уровней громкости, которые должны быть запомнены компьютером и при осуществлении временной дискретизации будем заменять значение уровня громкости при очередном измерении наиболее близким из доступных фиксированных значений (для наглядности рассмотрим 4 уровня сигнала).

Можно заметить, что форма сигнала при выделении 4 уровней громкости существенно изменилась. Осуществим тот же процесс, но выделив 8 уровней громкости:

Количество информации, которое потребуется компьютеру для кодирования N уровней громкости можно найти по известному соотношению N=2 I

Количество информации, которое необходимо для кодирования дискретных уровней громкости цифрового звука называют глубиной кодирования звука.

Сделаем вывод о влиянии количества уровней громкости на качество кодируемого звука

В ходе фронтальной беседы с классом приходим к выводу: чем больше глубина кодирования, тем качество оцифрованного звука лучше.

В зависимости от частоты дискретизации и глубины кодирования качество звукового сигнала может меняться от качества соответствующего радиотрансляции (8 бит; 8 кГц) до качества звучания CD-диска (16 бит; 44,1 кГц) и DVD-аудио диска (24 бит; 192 кГц)

Учитывая, что объём аудиофайла пропорционален частоте дискретизации, глубине кодирования и длительности звучания можно записать формулу для подсчёта размера звукового файла:

где V – размер (объём) звукового файла (в битах)

k – количество дорожек в записи (k=1 – моно, k=2 – стерео)

ν – частота дискретизации (в Герцах)

I – глубина кодирования (в битах)

t – время звучания (в секундах)

IV. Решение задачи. Оценка объёма звукового файла.

Определить объём памяти для хранения цифрового аудиофайла, время звучания которого составляет две минуты при частоте дискретизации 44,1 кГц и разрешении 16 бит.

44,1 кГц = 44100 Гц

V = k ν I t = 44100 Гц · 16 бит · 120 с = 84672000 бит =10584000 байт ≈ 10335,9 Кб ≈ 10,1 Мб

Ответ: V = 10,1 Мб

Как видим, звук при кодировании его в компьютере будет иметь достаточно большой информационный объём. При записи с микрофона или извлечении из аудио компакт диска средствами ОС Windows получаются достаточно объёмные звуковые файлы с расширением WAV (от WAVeform-audio – волновая форма аудио).

С целью уменьшения объёма звуковых файлов были разработаны методы компрессии, позволяющие существенно сжимать звуковые файлы с некоторой потерей качества.

Одна минута записи звуковой информации занимает на диске 1,3 Мбайта, глубина кодирования равна 16. С какой частотой дискретизации записан звук?

1,3 Мб=1,3*1024*1024*8=10905190,4 бит

ν=10905190,4:16:60=11359,5 Гц≈11,36 кГц

V. Практическая работа.

а) 1 - телефонная линия

б) 2 - радиотрансляция

в) 3 - компакт-диск

Указать в каждом варианте: объем, частоту, глубину в бит и кбит, вариант звука

2) Указать у файлов тип, расширение, объем и качество звука

Вернёмся к началу урока и попробуем ответить на вопросы:

(в оцифрованном звуке имеется искажение сигнала вследствие временной дискретизации и сжатия)

Что влияет на качество оцифрованного звука?

(качество звука определяется глубиной кодирования и частотой дискретизации)

Почему диски формата mp3 содержат гораздо больше музыки по сравнению с обычными музыкальными дисками?

(музыка в формате mp3 имеет значительно меньший объём за счёт сжатия, учитывающего психологические особенности восприятия звука человеком)

  1. Домашнее задание.
    1) параграф 2.13, стр. 116 учебника Угринович Н.Д., ответьте на вопросы; 2) Задача: какой объем памяти требуется для хранения цифрового аудиофайла с записью звука высокого качества при условии, что время звучания составляет 3 минуты?
    VIII. Подведение итогов .

Безусловно, оценка качества звучания – во многом субъективна и зависит от нашего восприятия. Компьютер, так же как и человек, кодирует звуковую информацию с целью хранения и последующего воспроизведения. Подумайте, а в чем разница между звуковой информацией, хранимой в памяти ПК и в памяти человека? (Ответ: у человека процесс кодирования звука тесно связан с эмоциями).
Таким образом, компьютер хранит звук, а человек музыку. Музыка - единственный язык, на котором душа говорит с душою (Бертольд Авербах) . И прав был Норберг Винер, призывая отдать машине – машинное, а человеку – человеческое.

Лекция № 2 Кодирование информации. Коды, применяемые в ЭВМ: двоичные, позиционные, комбинационные, самокорректирующиеся, параллельные, последовательные.

Формы представления чисел : с фиксированной и плавающей точкой.

1.Коды, применяемые в ЭВМ

Каким образом обрабатывается информация в компьютере и как обеспечить обмен информацией между пользователем и ЭВМ?

Процесс приема и передачи информации можно изобразить на схеме:

кодирование информации в ЭВМ

Кодирование – операция, связанная с переходом от исходной формы представления информации в форму, удобную для хранения, передачи или обработки.

Декодирование – связано с обратным переходом к исходному представлению информации.

В настоящее время существуют разные способы кодирования и декодирования информации в компьютере.

Выбор способа зависит от вида информации, которую необходимо кодировать: текст, число, графическое изображение и т.д.

ЭВМ может обрабатывать информацию, представленную только в числовой форме. Любая другая информация (текстовая, графическая) преобразуется в числовую информацию. Так, например, при вводе текста, каждый символ кодируется определенным числом (существуют специальные таблицы кодировки, наиболее известные и распространенные коды ASCII), а при выводе наоборот, каждому числу соответствует изображение определенного символа.

Восемь двоичных разрядов позволяют закодировать 2 8 =256 символов, этого достаточно, чтобы закодировать любую букву, цифру или служебный символ. Нажатие клавиши на клавиатуре приводит к тому, что сигнал посылается в компьютер в виде двоичного числа, которое хранится в кодовой таблице.

2. Кодовая таблица символов

Кодовая таблица символов — это внутреннее представление символов в компьютере. Во всем мире в качестве стандарта принята таблица ASCII (American Standart Code for Information Interchange) – Американский стандартный код для обмена информацией.

Первые 128 символов (от 0 до 127) – это цифры, прописные и строчные буквы латинского алфавита, управляющие символы. Вторая половина кодовой таблицы (от 128 до 255) предназначена для национальных символов (в том числе кириллицы), математических символов и так называемых псевдографических символов, которые используются для рисования рамок.

Нужно помнить о трех особенностях алфавита в кодовой таблице и их следствия:

1) прописные и строчные буквы представлены разными кодами, т.е. “А” и “а” – разные объекты;

2) при упорядочивании слов по алфавиту сравниваются между собой десятичные коды букв. Поэтому, чтобы избежать недоразумений, если не указано “нечувствителен к регистру”, используйте только латинский или русский алфавит и только прописные или только строчные первые буквы. Необходимо помнить, что любая цифра “меньше” любой буквы, код латинских букв “меньше” чем русских;

3) Многие латинские и русские буквы имеют визуально неразличимое начертание, но разные коды.

Итак, компьютер способен распознавать только значения бита. Однако он редко работает с конкретными битами в отдельности, а совокупность из 8 битов, воспринимаемая компьютером как единое целое, называется байтом.

Вся работа компьютера – это управление потоками байтов, которые устремляются в компьютер с клавиатуры или дисков (или по линии связи), преобразовываются по командам программ, запоминаются временно или записываются на постоянное хранение на магнитный диск, а также выводятся на экран дисплея или бумагу принтера в виде букв, цифр, значков.

коды международные


3.Кодирование информации. Кодирование данных в ЭВМ

В ЭВМ применяется двоичная система счисления, т.е. все числа в компьютере представляются с помощью нулей и единиц, поэтому компьютер может обрабатывать только информацию, представленную в цифровой форме.

Для преобразования числовой, текстовой, графической, звуковой информации в цифровую необходимо применить кодирование.

Кодирование – это преобразование данных одного типа через данные другого типа. В ЭВМ применяется система двоичного кодирования, основанная на представлении данных последовательностью двух знаков: 1 и 0, которые называются двоичными цифрами (binary digit – сокращенно bit).

Целые числа кодируются двоичным кодом довольно просто (путем деления числа на два). Для кодирования нечисловой информации используется следующий алгоритм: все возможные значения кодируемой информации нумеруются и эти номера кодируются с помощью двоичного кода.

Кодирование чисел

Есть два основных формата представления чисел в памяти компьютера. Один из них используется для кодирования целых чисел, второй (так называемое представление числа в формате с плавающей точкой) используется для задания некоторого подмножества действительных чисел.

Для кодирования действительных чисел существует специальный формат чисел с плавающей запятой. Число при этом представляется в виде:


где M – мантисса, p – порядок числа N, q – основание системы счисления. Если при этом мантисса M удовлетворяет условию , то число N называют нормализованным.


Кодирование координат

Закодировать можно не только числа, но и другую информацию, например, о том, где находится некоторый объект. Величины, определяющие положение объекта в пространстве, называются координатами. В любой системе координат есть начало отсчёта, единица измерения, масштаб, направление отсчёта, или оси координат. Примеры систем координат – декартовы координаты, полярная система координат, шахматы, географические координаты.

Кодирование текста

Для представления текстовой информации используется таблица нумерации символов или таблица кодировки символов, в которой каждому символу соответствует целое число (порядковый номер). Восемь двоичных разрядов могут закодировать 256 различных символов.

Существующий стандарт ASCII (сокращение от American Standard Code for Information Intercange – американский стандартный код для обмена информацией; 8 – разрядная система кодирования) содержит две таблицы кодирования – базовую и расширенную. Первая таблица содержит 128 основных символов, в ней размещены коды символов английского алфавита, а во второй таблице кодирования содержатся 128 расширенных символов.

Так как в этот стандарт не входят символы национальных алфавитов других стран, то в каждой стране 128 кодов расширенных символов заменяются символами национального алфавита. В настоящее время существует множество таблиц кодировки символов, в которых 128 кодов расширенных символов заменены символами национального алфавита.

Так, например, кодировка символов русского языка Widows – 1251 используется для компьютеров, работающих под ОС Windows. Другая кодировка для русского языка – это КОИ – 8, которая также широко используется в компьютерных сетях и российском секторе Интернет.

В настоящее время существует универсальная система UNICODE, основанная на 16 – разрядном кодировании символов. Эта 16 – разрядная система обеспечивает универсальные коды для 65536 различных символов, т.е. в этой таблице могут разместиться символы языков большинства стран мира.

Кодирование графической информации

В видеопамяти находится двоичная информация об изображении, выводимом на экран. Почти все создаваемые, обрабатываемые или просматриваемые с помощью компьютера изображения можно разделить на две большие группы – растровую и векторную графику.

Растровые изображения представляют собой однослойную сетку точек, называемых пикселями (pixel, от англ. picture element). Код пикселя содержит информации о его цвете.

Для описания черно-белых изображений используются оттенки серого цвета, то есть при кодировании учитывается только яркость. Она описывается одним числом, поэтому для кодирования одного пикселя требуется от 1 до 8 бит: чёрный цвет – 0, белый цвет – N = 2 k -1, где k – число разрядов, которые отводятся для кодирования цвета. Например, при длине ячейки в 8 бит это 256-1 = 255. Человеческий глаз в состоянии различить от 100 до 200 оттенков серого цвета, поэтому восьми разрядов для этого вполне хватает.

Цветные изображения воспринимаются нами как сумма трёх основных цветов – красного, зелёного и синего. Например, сиреневый = красный + синий; жёлтый = красный + зелёный; оранжевый = красный + зелёный, но в другой пропорции. Поэтому достаточно закодировать цвет тремя числами – яркостью его красной, зелёной и синей составляющих. Этот способ кодирования называется RGB (Red – Green – Blue). Его используют в устройствах, способных излучать свет (мониторы). При рисовании на бумаге действуют другие правила, так как краски сами по себе не испускают свет, а только поглощают некоторые цвета спектра. Если смешать красную и зелёную краски, то получится коричневый, а не жёлтый цвет. Поэтому при печати цветных изображений используют метод CMY (Cyan – Magenta – Yellow) – голубой, сиреневый, жёлтый цвета. При таком кодировании красный = сиреневый + жёлтый; зелёный = голубой + жёлтый.

В противоположность растровой графике векторное изображение многослойно. Каждый элемент такого изображения – линия, прямоугольник, окружность или фрагмент текста – располагается в своем собственном слое, пиксели которого устанавливаются независимо от других слоев. Каждый элемент векторного изображения является объектом, который описывается с помощью специального языка (математических уравнения линий, дуг, окружностей и т.д.) Сложные объекты (ломаные линии, различные геометрические фигуры) представляются в виде совокупности элементарных графических объектов.

Объекты векторного изображения, в отличие от растровой графики, могут изменять свои размеры без потери качества (при увеличении растрового изображения увеличивается зернистость).

Кодирование звука

Как всякий звук, музыка является не чем иным, как звуковыми колебаниями, зарегистрировав которые достаточно точно, можно этот звук безошибочно воспроизвести. Нужно только непрерывный сигнал, которым является звук, преобразовать в последовательность нулей и единиц. С помощью микрофона звук можно превратить в электрические колебания и измерить их амплитуду через равные промежутки времени (несколько десятков тысяч раз в секунду). Каждое измерение записывается в двоичном коде. Этот процесс называется дискретизацией. Устройство для выполнения дискретизации называется аналогово-цифровым преобразователем (АЦП). Воспроизведение такого звука ведётся при помощи цифро-аналогового преобразователя (ЦАП). Полученный ступенчатый сигнал сглаживается и преобразуется в звук при помощи усилителя и динамика. На качество воспроизведения влияют частота дискретизации и разрешение (размер ячейки, отведённой под запись значения амплитуды). Например, при записи музыки на компакт-диски используются 16-разрядные значения и частота дискретизации 44 032 Гц.

Описанный способ кодирования звуковой информации достаточно универсален, он позволяет представить любой звук и преобразовывать его самыми разными способами. Но бывают случаи, когда выгодней действовать по-иному.

Издавна используется достаточно компактный способ представления музыки – нотная запись. В ней с помощью специальных символов указывается высота и длительность, общий темп исполнения и как сыграть. Фактически, такую запись можно считать алгоритмом для музыканта, записанным на особом формальном языке. В 1983 г. ведущие производители компьютеров и музыкальных синтезаторов разработали стандарт, определивший такую систему кодов. Он получил название MIDI (Musical Instrument Digital Interface). При таком кодировании запись компактна, легко меняется инструмент исполнителя, тональность звучания, одна и та же запись воспроизводится как на синтезаторе, так и на компьютере.

Конечно, такая система кодирования позволяет записать далеко не всякий звук, она годится только для инструментальной музыки. Но есть у нее и преимущества: чрезвычайно компактная запись, естественность для музыканта (практически любой MIDI-редактор позволяет работать с музыкой в виде обычных нот), легкость замены инструментов, изменения темпа и тональности мелодии.

Есть и другие форматы записи музыки. Среди них – формат MP3, позволяющий с очень большим качеством и степенью сжатия кодировать музыку, при этом вместо 18 – 20 музыкальных композиций на стандартном компакт-диске (CDROM) помещается около 200. Одна песня занимает примерно 3,5 Mb, что позволяет пользователям сети Интернет легко обмениваться музыкальными композициями.

Лекция № 2 Кодирование информации. Коды, применяемые в ЭВМ: двоичные, позиционные, комбинационные, самокорректирующиеся, параллельные, последовательные.

Формы представления чисел : с фиксированной и плавающей точкой.

1.Коды, применяемые в ЭВМ

Каким образом обрабатывается информация в компьютере и как обеспечить обмен информацией между пользователем и ЭВМ?

Процесс приема и передачи информации можно изобразить на схеме:

кодирование информации в ЭВМ

Кодирование – операция, связанная с переходом от исходной формы представления информации в форму, удобную для хранения, передачи или обработки.

Декодирование – связано с обратным переходом к исходному представлению информации.

В настоящее время существуют разные способы кодирования и декодирования информации в компьютере.

Выбор способа зависит от вида информации, которую необходимо кодировать: текст, число, графическое изображение и т.д.

ЭВМ может обрабатывать информацию, представленную только в числовой форме. Любая другая информация (текстовая, графическая) преобразуется в числовую информацию. Так, например, при вводе текста, каждый символ кодируется определенным числом (существуют специальные таблицы кодировки, наиболее известные и распространенные коды ASCII), а при выводе наоборот, каждому числу соответствует изображение определенного символа.

Восемь двоичных разрядов позволяют закодировать 2 8 =256 символов, этого достаточно, чтобы закодировать любую букву, цифру или служебный символ. Нажатие клавиши на клавиатуре приводит к тому, что сигнал посылается в компьютер в виде двоичного числа, которое хранится в кодовой таблице.

2. Кодовая таблица символов

Кодовая таблица символов — это внутреннее представление символов в компьютере. Во всем мире в качестве стандарта принята таблица ASCII (American Standart Code for Information Interchange) – Американский стандартный код для обмена информацией.

Первые 128 символов (от 0 до 127) – это цифры, прописные и строчные буквы латинского алфавита, управляющие символы. Вторая половина кодовой таблицы (от 128 до 255) предназначена для национальных символов (в том числе кириллицы), математических символов и так называемых псевдографических символов, которые используются для рисования рамок.

Нужно помнить о трех особенностях алфавита в кодовой таблице и их следствия:

1) прописные и строчные буквы представлены разными кодами, т.е. “А” и “а” – разные объекты;

2) при упорядочивании слов по алфавиту сравниваются между собой десятичные коды букв. Поэтому, чтобы избежать недоразумений, если не указано “нечувствителен к регистру”, используйте только латинский или русский алфавит и только прописные или только строчные первые буквы. Необходимо помнить, что любая цифра “меньше” любой буквы, код латинских букв “меньше” чем русских;

3) Многие латинские и русские буквы имеют визуально неразличимое начертание, но разные коды.

Итак, компьютер способен распознавать только значения бита. Однако он редко работает с конкретными битами в отдельности, а совокупность из 8 битов, воспринимаемая компьютером как единое целое, называется байтом.

Вся работа компьютера – это управление потоками байтов, которые устремляются в компьютер с клавиатуры или дисков (или по линии связи), преобразовываются по командам программ, запоминаются временно или записываются на постоянное хранение на магнитный диск, а также выводятся на экран дисплея или бумагу принтера в виде букв, цифр, значков.

коды международные


3.Кодирование информации. Кодирование данных в ЭВМ

В ЭВМ применяется двоичная система счисления, т.е. все числа в компьютере представляются с помощью нулей и единиц, поэтому компьютер может обрабатывать только информацию, представленную в цифровой форме.

Для преобразования числовой, текстовой, графической, звуковой информации в цифровую необходимо применить кодирование.

Кодирование – это преобразование данных одного типа через данные другого типа. В ЭВМ применяется система двоичного кодирования, основанная на представлении данных последовательностью двух знаков: 1 и 0, которые называются двоичными цифрами (binary digit – сокращенно bit).

Целые числа кодируются двоичным кодом довольно просто (путем деления числа на два). Для кодирования нечисловой информации используется следующий алгоритм: все возможные значения кодируемой информации нумеруются и эти номера кодируются с помощью двоичного кода.

Кодирование чисел

Есть два основных формата представления чисел в памяти компьютера. Один из них используется для кодирования целых чисел, второй (так называемое представление числа в формате с плавающей точкой) используется для задания некоторого подмножества действительных чисел.

Для кодирования действительных чисел существует специальный формат чисел с плавающей запятой. Число при этом представляется в виде:


где M – мантисса, p – порядок числа N, q – основание системы счисления. Если при этом мантисса M удовлетворяет условию , то число N называют нормализованным.


Кодирование координат

Закодировать можно не только числа, но и другую информацию, например, о том, где находится некоторый объект. Величины, определяющие положение объекта в пространстве, называются координатами. В любой системе координат есть начало отсчёта, единица измерения, масштаб, направление отсчёта, или оси координат. Примеры систем координат – декартовы координаты, полярная система координат, шахматы, географические координаты.

Кодирование текста

Для представления текстовой информации используется таблица нумерации символов или таблица кодировки символов, в которой каждому символу соответствует целое число (порядковый номер). Восемь двоичных разрядов могут закодировать 256 различных символов.

Существующий стандарт ASCII (сокращение от American Standard Code for Information Intercange – американский стандартный код для обмена информацией; 8 – разрядная система кодирования) содержит две таблицы кодирования – базовую и расширенную. Первая таблица содержит 128 основных символов, в ней размещены коды символов английского алфавита, а во второй таблице кодирования содержатся 128 расширенных символов.

Так как в этот стандарт не входят символы национальных алфавитов других стран, то в каждой стране 128 кодов расширенных символов заменяются символами национального алфавита. В настоящее время существует множество таблиц кодировки символов, в которых 128 кодов расширенных символов заменены символами национального алфавита.

Так, например, кодировка символов русского языка Widows – 1251 используется для компьютеров, работающих под ОС Windows. Другая кодировка для русского языка – это КОИ – 8, которая также широко используется в компьютерных сетях и российском секторе Интернет.

В настоящее время существует универсальная система UNICODE, основанная на 16 – разрядном кодировании символов. Эта 16 – разрядная система обеспечивает универсальные коды для 65536 различных символов, т.е. в этой таблице могут разместиться символы языков большинства стран мира.

Кодирование графической информации

В видеопамяти находится двоичная информация об изображении, выводимом на экран. Почти все создаваемые, обрабатываемые или просматриваемые с помощью компьютера изображения можно разделить на две большие группы – растровую и векторную графику.

Растровые изображения представляют собой однослойную сетку точек, называемых пикселями (pixel, от англ. picture element). Код пикселя содержит информации о его цвете.

Для описания черно-белых изображений используются оттенки серого цвета, то есть при кодировании учитывается только яркость. Она описывается одним числом, поэтому для кодирования одного пикселя требуется от 1 до 8 бит: чёрный цвет – 0, белый цвет – N = 2 k -1, где k – число разрядов, которые отводятся для кодирования цвета. Например, при длине ячейки в 8 бит это 256-1 = 255. Человеческий глаз в состоянии различить от 100 до 200 оттенков серого цвета, поэтому восьми разрядов для этого вполне хватает.

Цветные изображения воспринимаются нами как сумма трёх основных цветов – красного, зелёного и синего. Например, сиреневый = красный + синий; жёлтый = красный + зелёный; оранжевый = красный + зелёный, но в другой пропорции. Поэтому достаточно закодировать цвет тремя числами – яркостью его красной, зелёной и синей составляющих. Этот способ кодирования называется RGB (Red – Green – Blue). Его используют в устройствах, способных излучать свет (мониторы). При рисовании на бумаге действуют другие правила, так как краски сами по себе не испускают свет, а только поглощают некоторые цвета спектра. Если смешать красную и зелёную краски, то получится коричневый, а не жёлтый цвет. Поэтому при печати цветных изображений используют метод CMY (Cyan – Magenta – Yellow) – голубой, сиреневый, жёлтый цвета. При таком кодировании красный = сиреневый + жёлтый; зелёный = голубой + жёлтый.

В противоположность растровой графике векторное изображение многослойно. Каждый элемент такого изображения – линия, прямоугольник, окружность или фрагмент текста – располагается в своем собственном слое, пиксели которого устанавливаются независимо от других слоев. Каждый элемент векторного изображения является объектом, который описывается с помощью специального языка (математических уравнения линий, дуг, окружностей и т.д.) Сложные объекты (ломаные линии, различные геометрические фигуры) представляются в виде совокупности элементарных графических объектов.

Объекты векторного изображения, в отличие от растровой графики, могут изменять свои размеры без потери качества (при увеличении растрового изображения увеличивается зернистость).

Кодирование звука

Как всякий звук, музыка является не чем иным, как звуковыми колебаниями, зарегистрировав которые достаточно точно, можно этот звук безошибочно воспроизвести. Нужно только непрерывный сигнал, которым является звук, преобразовать в последовательность нулей и единиц. С помощью микрофона звук можно превратить в электрические колебания и измерить их амплитуду через равные промежутки времени (несколько десятков тысяч раз в секунду). Каждое измерение записывается в двоичном коде. Этот процесс называется дискретизацией. Устройство для выполнения дискретизации называется аналогово-цифровым преобразователем (АЦП). Воспроизведение такого звука ведётся при помощи цифро-аналогового преобразователя (ЦАП). Полученный ступенчатый сигнал сглаживается и преобразуется в звук при помощи усилителя и динамика. На качество воспроизведения влияют частота дискретизации и разрешение (размер ячейки, отведённой под запись значения амплитуды). Например, при записи музыки на компакт-диски используются 16-разрядные значения и частота дискретизации 44 032 Гц.

Описанный способ кодирования звуковой информации достаточно универсален, он позволяет представить любой звук и преобразовывать его самыми разными способами. Но бывают случаи, когда выгодней действовать по-иному.

Издавна используется достаточно компактный способ представления музыки – нотная запись. В ней с помощью специальных символов указывается высота и длительность, общий темп исполнения и как сыграть. Фактически, такую запись можно считать алгоритмом для музыканта, записанным на особом формальном языке. В 1983 г. ведущие производители компьютеров и музыкальных синтезаторов разработали стандарт, определивший такую систему кодов. Он получил название MIDI (Musical Instrument Digital Interface). При таком кодировании запись компактна, легко меняется инструмент исполнителя, тональность звучания, одна и та же запись воспроизводится как на синтезаторе, так и на компьютере.

Конечно, такая система кодирования позволяет записать далеко не всякий звук, она годится только для инструментальной музыки. Но есть у нее и преимущества: чрезвычайно компактная запись, естественность для музыканта (практически любой MIDI-редактор позволяет работать с музыкой в виде обычных нот), легкость замены инструментов, изменения темпа и тональности мелодии.

Есть и другие форматы записи музыки. Среди них – формат MP3, позволяющий с очень большим качеством и степенью сжатия кодировать музыку, при этом вместо 18 – 20 музыкальных композиций на стандартном компакт-диске (CDROM) помещается около 200. Одна песня занимает примерно 3,5 Mb, что позволяет пользователям сети Интернет легко обмениваться музыкальными композициями.

Читайте также: