Чему равен кпд в режиме согласования

Обновлено: 17.05.2024

Максимальную полезную мощность (мощность на нагрузке) электрический ток дает, если внешнее сопротивление цепи будет равно внутреннему сопротивлению источника тока. При этом условии полезная мощность равна 50\% общей мощности.

Чему равна полезная мощность в режиме согласования?

Полная мощность P с увеличением сопротивления нагрузки уменьшается и в режиме согласования составляет P = E2/(2RI), т. е. половину мощности, развиваемой источником в режиме короткого замыкания: Pкз = E2/RI. Напряжение UE в режиме согласования равно половине ЭДС E.

Когда достигается максимальная мощность?

Итак, максимальная мощность тока во внешней цепи достигается, когда сопротивление внешней цепи равно внутреннему сопротивлению источника тока.

Чему равна полная мощность источника тока полезная мощность?

Полная мощность источника тока: P полн = P полезн + P потерь, где P полезн — полезная мощность, P полезн = I 2R; P потерь — мощность потерь, P потерь = I 2r; I — сила тока в цепи; R — сопротивление нагрузки (внешней цепи); r — внутреннее сопротивление источника тока.

Какая наибольшая полезная мощность?

Наибольшую полезную мощность( мощность на нагрузке) электрический ток развивает в том случае, если сопротивление нагрузки равно сопротивлению источника тока. Эта наибольшая мощность равна половине всей мощности (50%) развиваемой источником тока во всей цепи.

Какой режим работы генератора называется согласованным чем он характерен?

Согласованным режимом, в общем смысле, называется такой режим работы электрической цепи, когда на нагрузке, подключенной к данному источнику, выделяется максимальная мощность, которую способен дать этот источник в текущем его состоянии.

Чему равен кпд в режиме согласования нагрузки?

коэффициент полезного действия при согласованном режиме работы равен 0,5. Следует отметить, что рассмотренное выше условие согласования сопротивлений источника сигнала и нагрузки справедливо для цепей постоянного тока.

Как определить максимальную мощность?

  1. P – величина нагрузки;
  2. U – приложенная разность потенциалов;
  3. R – сопротивление нагрузки.

Каковы условия получения максимальной мощности?

Максимальную полезную мощность (мощность на нагрузке) электрический ток дает, если внешнее сопротивление цепи будет равно внутреннему сопротивлению источника тока. При этом условии полезная мощность равна 50\% общей мощности.

Что такое максимальная мощность?

№ 861 максимальная мощность – это наибольшая величина мощности, определенная к одномоментному использованию энергопринимающими устройствами (объектами электросетевого хозяйства) в соответствии с документами о технологическом присоединении и обусловленная составом энергопринимающего оборудования (объектов .

Чему равна полная мощность?

Полная мощность (S)

Произведение действующего значения напряжения на действующее значение тока в цепи переменного тока называется полной мощностью. Она является произведением значений напряжения и тока без учёта фазового угла. Единицей измерения полной мощности (S) является ВА, 1 ВА = 1 В х 1 А.

Как зависят полная и полезная мощность от силы тока в цепи?

При протекании тока через такую цепь источником ЭДС выполняется работа и в цепи выделяется мощность. И так, полная мощность, которая выделяется в цепи, равняется произведению силы тока на ЭДС источника тока. . Проанализируем, как полезная и полная мощности зависят от силы тока и внешнего сопротивления.

Чему равна мощность источника питания?

Мощность – это работа, произведенная за единицу времени. Электрическая мощность равна произведению тока на напряжение: P=U∙I.

Чему равна полезная мощность Электроподъемника который за минуту поднимает?

Чему равна полезная мощность электроподъёмника, который за минуту поднимает груз массой 100 кг на высоту 24 м? за время t=1 мин = 60 сек, то есть, мощность равна: Вт. Ответ: 400.

Как найти мощность двигателя если известно кпд?

Для его определения используют формулу: η = N N полная . Поскольку по определению коэффициент полезного действия является отношением мощностей, единицы измерения он не имеет. Часто его выражают в процентах. Если коэффициент полезного действия выражают в процентах, тогда используют формулу: η = N N полная ⋅ 100 % .

Как зависят полная и полезная мощность от сопротивления нагрузки?

С ростом сопротивления нагрузки R полная мощность уменьшается, стремясь к нулю при R   . Внешняя мощность Ре составляет часть полной мощности Р и ее величина зависит от отношения сопротивлений R/(R+r). При коротком замыкании внешняя мощность равна нулю. При увеличении сопротивления R она сначала увеличивается.

Всем доброго времени суток. В прошлой статье я рассказал о таких понятиях, как электрический ток, напряжение, сопротивление и основополагающем законе постоянного тока – законе Ома. Но этого, несомненно, мало для полного понимания процессов и возникающих закономерностей при функционировании электронных схем. В дальнейших статьях я постепенно буду формировать целостную картину такой интересной области техники как электроника.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Составные части электрических цепей

Как известно, для того, чтобы электрический ток в проводниках существовал длительное время необходимо, во-первых, существование разности потенциалов или напряжения, а во-вторых, восполнение необходимого количества разноимённых зарядов для возникновения этой разности потенциалов. Данным условиям соответствует некоторая совокупность элементов называемая электрической цепью.

Таким образом, электрической цепью называется совокупность устройств и объектов, которые образуют путь для электрического тока и электромагнитные процессы, в которых могут быть описаны с помощью понятий ЭДС, напряжения и электрического тока. Кроме того, для протекания электрического тока необходима замкнутая электрическая цепь. В общем случае электрическая цепь состоит из источника электрической энергии, приемника электрической энергии, соединительных проводов, а также вспомогательных элементов, выполняющих разнообразные функции.

Источником электрической энергии является устройство, которое выполняет преобразование неэлектрической энергии в электрическую. Например, аккумуляторы осуществляют преобразование энергии химических реакций в электрическую энергию, а генераторы – преобразование механической энергии. Таким образом, как известно из предыдущей статьи источники энергии называют также источниками ЭДС.

Приёмником электрической энергии, также называемые нагрузками является устройство, в котором выполняется действие противоположное источнику энергии, то есть электрическая энергия преобразуется в неэлектрическую. Например, в лампочке электрическая энергия преобразуется в световую и тепловую энергию, а в электродвигателе – в механическую энергию.

К вспомогательным устройствам относятся различные коммутирующие, распределительные и измерительные приборы и объекты.

Электрические цепи изображают на чертежах в виде принципиальных электрических схем, где каждому элементу электрической цепи соответствует свой графический элемент. Принципиальные схемы показывают назначение каждого элемента цепи, а также его взаимодействие с остальными элементами, однако при расчётах они не очень удобны. Поэтому при расчётах пользуются так называемыми схемами замещения, которые также как и принципиальные схемы изображаются с помощью графических элементов, однако элементы схем замещения выбираются так, чтобы с необходимым приближением описать работу электрической цепи. Пример изображения принципиальных электрических схем и схем замещения показано ниже

Схемы замещения состоят из следующих элементов: контур, ветвь и узел. Ветвь – это один элемент либо последовательное соединение нескольких элементов. Узел – место соединения трёх и более ветвей. Контур – замкнутый путь, проходящий по ветвям так, чтобы ни один узел и ни одна ветвь не встречались больше одного раза.

Таким образом, зная параметры всех элементов схемы замещения, возможно при помощи законов электротехники определить электрическое состояние всей электрической цепи, то есть рассчитать режим её работы.

Источник ЭДС и источник тока

При анализе электрических цепей, часто используют понятие идеального элемента, то есть такого элемента, в котором сосредоточен только один параметр, в отличие от реального элемента, в котором кроме одного основного параметра имеют место быть паразитные параметры. Например, резистор можно представить в виде идеального сопротивления, однако в реальном резисторе присутствует как емкость (например, между выводами), так и индуктивность (в проволочном резисторе, где используется намотанная на керамический каркас проволока). То есть идеальные элементы используются для упрощения анализа электрической цепи.

Источники энергии в электрических цепях при анализе схем также упрощают, кроме того их делят на два типа: источники ЭДС и источники тока. Рассмотрим каждый из них в отдельности.

Идеальный источник ЭДС характеризуется тем, что напряжение на его выводах не зависит от протекающего через него тока, то есть внутри такого источника ЭДС отсутствуют пассивные элементы (сопротивление R, индуктивность L, емкость С), и поэтому падение напряжения на пассивных элементах отсутствует.

Таким образом, напряжение на его выводах равно ЭДС, а ток теоретически не имеет ограничения, то есть если замкнуть его выходные зажимы, то электрический ток должен быть бесконечно большим. Поэтому идеальный источник ЭДС можно рассматривать, как источник бесконечной мощности. Однако в реальности ток имеет конечное значение, так как падение напряжения на внутреннем сопротивлении при коротком замыкании выводов уравновешивает ЭДС источника. Таким образом, реальный источник ЭДС можно изобразить в виде идеального источника ЭДС с последовательно подключённым пассивным элементом, который ограничивает мощность, отдаваемую во внешнюю цепь.

Идеальный источник тока характеризуется тем, что ток протекающий через него не зависит от напряжения, которое присутствует на его выводах, то есть сопротивление внутри источника тока бесконечно велико и поэтому параметры внешних элементов электрической цепи не влияют на ток протекающий через источник.

Таким образом, при бесконечном увеличении сопротивления также увеличивается напряжение на выводах идеального источника тока, поэтому и мощность растёт до бесконечности, то есть получается источник бесконечной мощности. Так как в реальности мощность всё же конечна, то реальный источник тока изображается, как идеальный источник тока с параллельно подключенным пассивным компонентом, характеризующим внутренние параметры источника тока, и ограничивает мощность, отдаваемую во внешнюю цепь.

Закон Ома для полной цепи

В предыдущей статье я рассказал о законе Ома, который устанавливает зависимость между напряжением и током, протекающим через участок цепи. Однако при попытке его применить ко всей цепи, содержащей кроме сопротивления ещё и источник напряжения, приводит к неверным результатам, так как реальный источник напряжения, как мы знаем, имеет некоторое внутреннее сопротивление.

Закон Ома для полной цепи


Закон Ома для полной цепи.

Поэтому полное сопротивление цепи является суммой внутреннего сопротивления источника энергии RВН (обычно небольшого) и внешнего сопротивления нагрузки RН (практически всегда значительно большего, чем RВН), поэтому для полной цепи закон Ома будет иметь следующий вид

Проанализировав данное выражение можно прийти к следующим практически выводам:

При подключении к источнику питания нагрузки, напряжение источника питания меньше его ЭДС, так как на внутреннем сопротивлении RВН источника питания происходит падение некоторого напряжения UВН

Следовательно, при отключенной нагрузке напряжение источника питания будет равно ЭДС. Данное приложение используется для измерения ЭДС источников питания.

измерение внутреннего сопротивления


Схема для измерения источника энергии.

В начале проводят замер ЭДС источника питания Е, путём размыкая ключа S1, затем замыкая ключ S1 замеряют протекающий по цепи ток I и напряжение источника питания под нагрузкой UH. Таким образом, вычисляют падение напряжения на внутреннем сопротивлении источника питания UВН. Тогда, величина внутреннего сопротивления RВН будет вычислена, как отношение внутреннего падения напряжения к протекающему в цепи току

1701201704

Например, при разомкнутом ключе S1 напряжение на выходе источника питания составило U = E = 1,5 В. При замыкании ключа S1 ток составил I = 0,18 А, а напряжение составило UH = 1,42 В. Тогда внутренне сопротивление RВН источника питания составит

1701201705

КПД источника энергии

Кроме внутреннего сопротивления RВН и ЭДС Е источник энергии характеризуется также коэффициентом полезного действия КПД при работе на конкретную нагрузку RН.

Коэффициентом полезного действия КПД источника энергии называется отношение мощности приёмника энергии (мощности нагрузки) или полезной мощности РН к мощности источника энергии Р. Как известно мощность выражается произведением напряжения на ток протекающий через источник энергии, то есть по отношению к источнику энергии это будет

1701201706

где PBH – мощность потерь внутри источника энергии.

Таким образом, КПД будет равен

1701201707

Из вышесказанного возникает резонный вопрос, при каком КПД в нагрузку отдается наибольшая мощность? Можно было бы предположить, что максимальная мощность в нагрузку поступает при КПД η = 1 или 100 %, однако в этом случае напряжение U на источнике питания равняется ЭДС Е, то есть ток в цепи равен нулю I = 0, а значит и мощность на нагрузке также равна нулю Р = 0

1701201708

Данный режим называется режимом холостого хода.

Другой случай, когда КПД η = 0, в этом случае ток имеет максимальное значение и фактически ограничен лишь внутренним сопротивлением источника питания I = E/RBH. Следовательно, напряжение нагрузки равно нулю UH = 0 и мощность в нагрузке также нулевая Р = 0

1701201709

Данный режим называется режимом короткого замыкания.

Не вдаваясь в длинные расчёты сказу сразу, что максимальная мощность на нагрузке выделяется при КПД η = 0,5 или 50 %, в этом случае напряжение на нагрузке равно падению напряжения на внутреннем сопротивлении источника питания UH = UBH, то есть сопротивление нагрузки равно внутреннему сопротивлению источника питания.

1701201710

Данный режим называется режимом согласованной нагрузки.

В данном режиме работает большинство слаботочных устройств автоматики, телемеханики и электросвязи, где низкий КПД не влечёт значительных потерь энергии. Однако в мощных устройствах стараются проектировать устройства так чтобы КПД η = 0,95…0,98.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Читайте также: