Чем отличаются паспортные данные однофазных и трехфазных трансформаторов

Обновлено: 04.07.2024

1.\u041d\u0430 \u0449\u0438\u0442\u043a\u0435 \u0442\u0440\u0435\u0445\u0444\u0430\u0437\u043d\u043e\u0433\u043e \u0442\u0440\u0430\u043d\u0441\u0444\u043e\u0440\u043c\u0430\u0442\u043e\u0440\u0430 \u0443\u043a\u0430\u0437\u044b\u0432\u0430\u044e\u0442: \u0441\u0445\u0435\u043c\u0443 \u0438 \u0433\u0440\u0443\u043f\u043f\u0443 \u0441\u043e\u0435\u0434\u0438\u043d\u0435\u043d\u0438\u044f \u043e\u0431\u043c\u043e\u0442\u043e\u043a; \u043d\u043e\u043c\u0438\u043d\u0430\u043b\u044c\u043d\u044b\u0435 \u0432\u044b\u0441\u0448\u0435\u0435 \u0438 \u043d\u0438\u0437\u0449\u0435\u0435 \u043d\u0430\u043f\u0440\u044f\u0436\u0435\u043d\u0438\u044f (\u0412 \u0438\u043b\u0438 \u043a\u0412); \u043d\u043e\u043c\u0438\u043d\u0430\u043b\u044c\u043d\u0443\u044e \u043f\u043e\u043b\u043d\u0443\u044e \u043c\u043e\u0449\u043d\u043e\u0441\u0442\u044c (\u0412 \u2022 \u0410 \u0438\u043b\u0438 \u043a\u0412 - \u0410); \u043b\u0438\u043d\u0435\u0439\u043d\u044b\u0435 \u0442\u043e\u043a\u0438 \u043f\u0440\u0438 \u043d\u043e\u043c\u0438\u043d\u0430\u043b\u044c\u043d\u043e\u0439 \u043c\u043e\u0449\u043d\u043e\u0441\u0442\u0438 (\u0410 \u0438\u043b\u0438 \u043a\u0410); \u0447\u0430\u0441\u0442\u043e\u0442\u0443 \u0438 \u0441\u043f\u043e\u0441\u043e\u0431 \u043e\u0445\u043b\u0430\u0436\u0434\u0435\u043d\u0438\u044f. \u0415\u0441\u043b\u0438 \u0434\u0432\u0430 \u0442\u0440\u0430\u043d\u0441\u0444\u043e\u0440\u043c\u0430\u0442\u043e\u0440\u0430 \u0438\u043c\u0435\u044e\u0442 \u043e\u0434\u0438\u043d\u0430\u043a\u043e\u0432\u044b\u0435 \u043d\u043e\u043c\u0438\u043d\u0430\u043b\u044c\u043d\u044b\u0435 \u0434\u0430\u043d\u043d\u044b\u0435 \u0438 \u043e\u0434\u0438\u043d\u0430\u043a\u043e\u0432\u0443\u044e \u0433\u0440\u0443\u043f\u043f\u0443 \u0434\u043b\u044f \u0443\u0432\u0435\u043b\u0438\u0447\u0435\u043d\u0438\u044f \u0442\u043e\u043a\u0430, \u0442\u043e \u0438\u0445 \u043c\u043e\u0436\u043d\u043e \u0432\u043a\u043b\u044e\u0447\u0430\u0442\u044c \u043d\u0430 \u043f\u0430\u0440\u0430\u043b\u043b\u0435\u043b\u044c\u043d\u0443\u044e \u0440\u0430\u0431\u043e\u0442\u0443.

2. \u0422\u0440\u0435\u0445\u0444\u0430\u0437\u043d\u044b\u0439 \u0442\u0440\u0430\u043d\u0441\u0444\u043e\u0440\u043c\u0430\u0442\u043e\u0440 \u0438\u043c\u0435\u0435\u0442 \u0434\u0432\u0435 \u0442\u0440\u0435\u0445\u0444\u0430\u0437\u043d\u044b\u0435 \u043e\u0431\u043c\u043e\u0442\u043a\u0438 - \u0432\u044b\u0441\u0448\u0435\u0433\u043e (\u0412\u041d) \u0438 \u043d\u0438\u0437\u0448\u0435\u0433\u043e (\u041d\u041d) \u043d\u0430\u043f\u0440\u044f\u0436\u0435\u043d\u0438\u044f, \u0432 \u043a\u0430\u0436\u0434\u0443\u044e \u0438\u0437 \u043a\u043e\u0442\u043e\u0440\u044b\u0445 \u0432\u0445\u043e\u0434\u044f\u0442 \u043f\u043e \u0442\u0440\u0438 \u0444\u0430\u0437\u043d\u044b\u0435 \u043e\u0431\u043c\u043e\u0442\u043a\u0438, \u0438\u043b\u0438 \u0444\u0430\u0437\u044b. \u0422\u0430\u043a\u0438\u043c \u043e\u0431\u0440\u0430\u0437\u043e\u043c, \u0442\u0440\u0435\u0445\u0444\u0430\u0437\u043d\u044b\u0439 \u0442\u0440\u0430\u043d\u0441\u0444\u043e\u0440\u043c\u0430\u0442\u043e\u0440 \u0438\u043c\u0435\u0435\u0442 \u0448\u0435\u0441\u0442\u044c \u043d\u0435\u0437\u0430\u0432\u0438\u0441\u0438\u043c\u044b\u0445 \u0444\u0430\u0437\u043d\u044b\u0445 \u043e\u0431\u043c\u043e\u0442\u043e\u043a \u0438 12 \u0432\u044b\u0432\u043e\u0434\u043e\u0432 \u0441 \u0441\u043e\u043e\u0442\u0432\u0435\u0442\u0441\u0442\u0432\u0443\u044e\u0449\u0438\u043c\u0438 \u0437\u0430\u0436\u0438\u043c\u0430\u043c\u0438, \u043f\u0440\u0438\u0447\u0435\u043c \u043d\u0430\u0447\u0430\u043b\u044c\u043d\u044b\u0435 \u0432\u044b\u0432\u043e\u0434\u044b \u0444\u0430\u0437 \u043e\u0431\u043c\u043e\u0442\u043a\u0438 \u0432\u044b\u0441\u0448\u0435\u0433\u043e \u043d\u0430\u043f\u0440\u044f\u0436\u0435\u043d\u0438\u044f \u043e\u0431\u043e\u0437\u043d\u0430\u0447\u0430\u044e\u0442 \u0431\u0443\u043a\u0432\u0430\u043c\u0438 A, B, \u0421, \u043a\u043e\u043d\u0435\u0447\u043d\u044b\u0435 \u0432\u044b\u0432\u043e\u0434\u044b - X, Y, Z, \u0430 \u0434\u043b\u044f \u0430\u043d\u0430\u043b\u043e\u0433\u0438\u0447\u043d\u044b\u0445 \u0432\u044b\u0432\u043e\u0434\u043e\u0432 \u0444\u0430\u0437 \u043e\u0431\u043c\u043e\u0442\u043a\u0438 \u043d\u0438\u0437\u0448\u0435\u0433\u043e \u043d\u0430\u043f\u0440\u044f\u0436\u0435\u043d\u0438\u044f \u043f\u0440\u0438\u043c\u0435\u043d\u044f\u044e\u0442 \u0442\u0430\u043a\u0438\u0435 \u043e\u0431\u043e\u0437\u043d\u0430\u0447\u0435\u043d\u0438\u044f: a,b,c,x,y,z.\n

\u0412 \u0431\u043e\u043b\u044c\u0448\u0438\u043d\u0441\u0442\u0432\u0435 \u0441\u043b\u0443\u0447\u0430\u0435\u0432 \u043e\u0431\u043c\u043e\u0442\u043a\u0438 \u0442\u0440\u0435\u0445\u0444\u0430\u0437\u043d\u044b\u0445 \u0442\u0440\u0430\u043d\u0441\u0444\u043e\u0440\u043c\u0430\u0442\u043e\u0440\u043e\u0432 \u0441\u043e\u0435\u0434\u0438\u043d\u044f\u044e\u0442 \u043b\u0438\u0431\u043e \u0432 \u0437\u0432\u0435\u0437\u0434\u0443 -Y, \u043b\u0438\u0431\u043e \u0432 \u0442\u0440\u0435\u0443\u0433\u043e\u043b\u044c\u043d\u0438\u043a - \u0394

Трансформаторы – статические электромагнитные аппараты, с помощью которых возможно преобразовать переменный ток из одного класса напряжения в другой, при этом с неизменной частотой.

В энергосистемах трансформатор, который преобразовывает электроэнергию трехфазного напряжения, называют трехфазным силовым.

Для передачи электроэнергии от генераторов электростанций к линиям электропередач (ЛЭП) применяют повышающие трансформаторы (они увеличивают класс напряжения), от ЛЭП к распределительным подстанциям и далее к потребителям – понижающие (они уменьшают класс напряжения).

Конструктивная особенность

Трехфазный трансформатор имеет основу – магнитный сердечник, собранный из трёх ферромагнитных стержней.

На первичную обмотку подаётся электроэнергия из питающей сети, а на вторичную подключается нагрузка.

Электроэнергия передаётся за счет электромагнитной индукции.

Главная функция магнитопровода – обеспечить между обмотками магнитную связь. Магнитопровод изготавливают из тонких стальных пластин (электротехническая листовая сталь). Чтобы сократить потери, стальные листы между собой изолируют, используя оксидную пленку или специальный лак.

Трансформатор силовой трехфазный с литой изоляцией ТСЛ (ТСГЛ) и ТСЗЛ (ТСЗГЛ)

Трансформатор силовой трехфазный ТС и ТСЗ

Трансформатор-стабилизатор высоковольтный дискретный ВДТ-СН

Обмотки с магнитопроводом погружаются в бак, в котором находится трансформаторное масло. Оно одновременно выполняет функцию изоляции и охлаждающей среды. Такие трансформаторы называются масляными. Трехфазный трансформатор, у которого в качестве охлаждения и изоляции используется воздух, называют сухим. Недостаток масляных трансформаторов заключается в повышенной пожароопасности.

Принцип работы

Электромагнитная индукция является базовым явлением в работе трансформатора.

Из электрической сети подается питание к первичной обмотке, в ней появляется переменный ток, в магнитопроводе при этом образуется магнитный переменный поток. Как известно из физики, если поместить второй проводник в магнитное поле, в нем также появляется переменный ток. В качестве второго проводника в трансформаторе выступает вторичная обмотка. Таким образом, в ней появляется напряжение.

Разница между первичным и вторичным напряжением зависит от коэффициента трансформации, который определяется числом витков в обмотках.

Трехфазный трансформатор: строение, виды, принцип работы

Преобразование трёхфазной системы напряжения можно реализовать с помощью трёх однофазных трансформаторов. Но при этом будет использован аппарат значительного веса и внушительных размеров. Трехфазный трансформатор лишён этих недостатков, так как его обмотки располагаются на стержнях общего магнитопровода. Поэтому в сетях мощностью до 60 тыс. кВА его применение является оптимальным вариантом.

Назначение трёхфазного трансформатора

Главной функцией трансформаторов является передача электроэнергии на большие дистанции. Электрическая энергия переменного тока вырабатывается на электростанциях. При передаче электроэнергии появляются потери на нагревание проводов. Их можно уменьшить, снизив силу тока. Для этого необходимо увеличить напряжение таким образом, чтобы его значение находилось в диапазоне от 6 до 500 кВ.

Кратность увеличения зависит от значения передаваемой мощности и расстояния до конечного пункта.

Мощность, которая при этом передаётся, зависит от двух параметров: напряжения и силы тока.

Главной характеристикой, влияющей на изменение потерь проводов, связанных с нагревом, является значение силы тока. Для того, чтобы снизить потери на нагревание, необходимо уменьшить силу тока. Уменьшая ток, величину напряжения соответственно нужно увеличивать. Тогда значение мощности, которая передаётся, останется неизменным.

После того, как напряжение будет доставлено потребителям, его следует снизить до необходимой величины.

Соответственно, основной задачей трёхфазных трансформаторов является повышение напряжения перед передачей электроэнергии и понижение после неё.

Определение и виды прибора

Трехфазный трансформатор — это статический аппарат с тремя парами обмоток. Прибор предназначен для преобразования напряжения при передаче мощности на значительные дистанции.

Классификация по количеству фаз:

Однофазные трансформаторы имеют небольшую мощность. Основными областями их применения являются быт и проведение работ специального назначения (сварка, измерения, испытания).

Диапазон мощности трёхфазных трансформаторов варьируется в больших пределах. Поэтому и область их применения весьма разнообразна:

  • для питания токоприёмников специального назначения;
  • для присоединения измерительных приборов;
  • для изменения значения напряжения при испытаниях;
  • для увеличения или уменьшения напряжения при подключении освещения или силовой нагрузки.

Принцип действия

Основой трёхфазного трансформатора являются магнитопровод и обмотки. В каждой фазе присутствует своя повышающая и понижающая обмотка. Так как фаз три, соответственно обмоток шесть. Между собой они не соединены.

Принцип работы трёхфазного трансформатора, как и однофазного, базируется на законе электромагнитной индукции.

При подключении к сети первичной обмотки в ней начинает протекать переменный ток. Из-за него в сердечнике магнитопровода из стали появляется основной магнитный поток, который охватывает обмотки в каждой фазе. В каждом витке появляется одинаковая по значению и величине электродвижущая сила.

Если количество витков вторичной обмотки меньше, нежели число витков первичной, то на выходе окажется напряжение меньшего значения, чем на входе и наоборот.

Тот факт, что значение электродвижущей силы зависит лишь от количества витков определённой обмотки, подтверждают формулы:

E 1 = 4, 44f 1 Ф W 1

E 2 = 4, 44 f 1 Ф W 2

E 1, Е 2 — значение электродвижущей силы в первичной и вторичной обмотках соответственно, В;

f 1 — частота тока в сети, Гц;

Ф — максимальное значение основного магнитного потока, Вб;

W 1, W 2 — количество витков в первичной и вторичной обмотках соответственно.

Строение трансформатора

Основными частями преобразователя напряжения являются:

  • магнитопровод;
  • обмотки высокого и низкого напряжения;
  • бак;
  • вводы и выводы.

К дополнительной аппаратуре относятся:

  • расширительный бак;
  • выхлопная труба;
  • пробивной предохранитель;
  • приборы для контроля и сигнализации.

Магнитопровод необходим для крепления всех частей аппарата. Он является своеобразным скелетом преобразователя напряжения. Второй его задачей является создание направление движения для основного магнитного потока. В зависимости от особенностей крепления обмоток к сердечнику, магнитопровод трансформатора может быть трёх видов:

  • бронестержневой;
  • броневой;
  • стержневой.

Для изготовления обмоток трансформаторов небольшой мощности используют провод из меди, имеющий прямоугольное или круглое сечение.

Трансформаторное масло является очень важным элементом в аппарате. В маломощных трансформаторах (сухих) его не применяют. При средней и высокой мощности его использование обязательно.

У трансформаторного масла две задачи:

  • охлаждение обмоток, нагревающихся вследствие протекания по ним тока;
  • повышение изоляции.

Схемы и группы соединения обмоток

В трёхфазных трансформаторах необходимо соединять между собой первичные обмотки по фазам и вторичные.

Существует три схемы соединения:

При соединении обмоток звездой напряжение линейное — между началами фаз — будет в 1,73 раза больше, чем фазное (между началом и концом фазы). При соединении обмоток трансформатора треугольником фазное и линейное напряжения будут одинаковы.

Соединять обмотки звездой более выгодно при высоких напряжениях, а треугольником — при значительных токах. Соединение обмоток зигзагом даёт возможность сгладить асимметрию намагничивающих токов. Но недостатком такого способа соединения является повышенная трата обмоточного материала.

Сфера использования

Такие трансформаторы в основном используются в промышленности. Почти все трехфазные трансформаторы считаются силовыми. То есть они используются в цепях, где нужно питать мощные нагрузки. Это могут быть станки ЧПУ и другое промышленное оборудование.

На схемах трехфазные трансформаторы обозначаются вот так:

Первичные обмотки обозначаются заглавными буквами, а вторичные обмотки – маленькими буквами.

Немного из истории

Изобретение трансформаторов начиналось ещё в 1876 году великим русским учёным П.Н. Яблоковым. Его изделие не имело замкнутого сердечника, он появился позже – в 1884 году. И с появлением прибора учёные активно стали интересоваться переменным током.

Например, уже в 1889 году М.О. Доливо-Добровольским (русским электротехником) была предложена трёхфазная система переменного тока. Им был построен первый трёхфазный асинхронный двигатель и трансформатор. Через два года была представлена презентация трёхфазной высоковольтной линии протяженностью 175 км, где успешно повышалась и понижалась электроэнергия.

Чуть позже появились масляные агрегаты, так как масло не только оказалось хорошим изолятором, но и прекрасной охлаждающей средой.

Однофазный трансформатор – статическое устройство, имеющее две обмотки связанные индуктивно на магнитопроводе, предназначенное для преобразования одной величины напряжение и тока в другое в одной фазе.

Конструкция однофазного трансформатора

Любой однофазный трансформатор может работать только в цепях переменного тока. За счёт него полученное электрическое напряжение изменяется в нужную величину. Ток, полученный таким способом, повышается, в результате того, что мощность отдаётся в действительности без потерь. С этого и следует вывод, что основное использование такого прибора – вывести необходимое для решения задачи напряжение, после чего можно применять в определённых целях.

Вникнуть в работу прибора поможет детальный разбор конструкции трансформатора. Состоит он из следующих основных частей:

  • Сердечник, состоящий из материалов с ферромагнитными свойствами;
  • Две катушки, вторая находится на отдельном каркасе;
  • Защитный чехол (имеется не у всех моделей).

Принцип работы

Однофазный трансформатор работает на определённом законе, ввиду которого идущее в витке переменное электромагнитное поле наводит электродвижущую силу в расположенном рядом проводнике. Действие названо законом электромагнитной индукции, которое было открыто Майклом Фарадеем в 1831 году. В результате обоснования закона учёный создал общую теорию, используемую в работе огромного числа современных электрических приборов.

При подключении первичной обмотки к источнику переменного тока в витках этой обмотки протекает переменный ток I1, который создает в сердечнике (магнитопроводе) переменный магнитный поток. Замыкаясь в сердечнике, этот поток сцепляется с первичной и вторичной обмотками и индуцирует в них ЭДС, пропорциональные числу витков W.

Принцип работы трансформатора

Принцип работы трансформатора

В первичной обмотке ЭДС самоиндукции:
во вторичной обмотке ЭДС взаимоиндукции:
При подключение ко вторичной обмотке нагрузке потечет I2 и установиться U2.

Режимы работы

Как и любой другой преобразователь, однофазный трансформатор имеет три режима работы:

режимы работы

  1. Режим холостого хода. Из названия понятно, что ток проходить не будет, в виду разомкнутой вторичной цепью устройства. А по первичной обмотке проходит холостой ток, основной элемент которого представлен реактивным током намагничивания. Режим используется в качестве определения КПД трансформатора, либо для вывода потерь в сердечнике.
  2. Режим нагрузки. Режим определяется работой трансформатора с подсоединённым источником в первичной цепи, и определённой нагрузкой во вторичном канале устройства. Для вторичной цепи характерен протекающий ток нагрузки (посчитанного из отношения количества витков обмотки и вторичного тока) и ток холостого хода.
  3. Режим короткого замыкания. Режим действует в процессе замыкания вторичной цепи из-за разностей значения потенциала. В этом режиме получаемое сопротивление от вторичной обмотки будет одним источником нагрузки. При проведении короткого замыкания можно вычислить убыток на нагрев обмотки в цепи устройства.

Коэффициент трансформации

Трансформаторы бывают повышающие и понижающие, что бы это определить нужно узнать коэффициент трансформации, с его помощью можно узнать какой трансформатор. Если коэффициент меньше 1 то трансформатор повышающий(также это можно определить по значениям если во вторичной обмотке больше чем в первичной то такой повышающий) и наоборот если К>1, то понижающий(если в первичной обмотке меньше витков чем во вторичной).

  • U1 и U2 — напряжение в первичной и вторичной обмотки,
  • N1 и N2 — количество витков в первичной и вторичной обмотке,
  • I1 и I2 — ток в первичной и вторичной обмотки.

Виды магнитопроводов

виды-магнитопроводов

Виды магнитопроводов

Классификация однофазных трансформаторов

Силовой трансформатор

Автотрансформатор – один из видов преобразователя, где первичная и вторичная обмотки не разделены, а соединены друг с другом напрямую. Ввиду этого между ними образуется как электромагнитная, так и электрическая связь. Обмотка сопровождается как минимум тремя выводами, подсоединяясь к каждой из них, можно использовать разные мощности. Главным достоинством такого трансформатора – это его высокий уровень КПД, так как преобразуется не всё напряжение, а лишь некоторая часть. Разница особенно заметна, когда входная и выходная мощность имеют незначительные отличия.

схема работы автотрансформатора

Трансформатор тока

Такой трансформатора используется в основном для уменьшения тока первичной обмотки до нужного значения, подходящего в применении цепей измерения, защиты, регулирования и сигнализации. Помимо этого используется в гальванической развязке (передача электроэнергии или сигнала связанными электрическими цепями, при этом электрический контакт между ними отсутствует).

Нормируемое значение параметров тока вторичной обмотки – 1 А или 5 А. Первичная обмотка трансформатора подсоединяется ступенчато в цепь с нагрузкой, при этом переменный ток подвергается контролю, ко вторичной обмотке подключаются измерительные устройства.

Вторичной обмотке трансформатора тока необходимо постоянно находиться в режиме около короткого замыкания. Ведь при любом варианте разъединения цепи на неё поступает высокая мощность, способная выбить изоляцию и выхода из строя включённых приборов.

Высоковольтный ТТ(слева) и низковольтный ТТ(справа)

Высоковольтный ТТ(слева) и низковольтный ТТ(справа)

Трансформатор напряжения

Такой трансформатор получает энергию от источника напряжения. Используется в основном для изменения высокого напряжения в низкое в различных цепях, в том числе измерительных и релейной защиты и автоматики. Имеет возможность проводить изоляцию цепей защиты и измерения от цепей повышенной мощности.

трансформатор напряжения

Высоковольтный ТН(слева) и низковольтный ТН(справа)

Импульсный трансформатор

Применяется для изменения импульсных сигналов с откликом импульса в точности до десятков микросекунд. При этом форма импульса сопровождается лишь незначительным искажением. Главным назначением импульсного трансформатора является передача прямоугольного электрического импульса. Используется для преобразования коротких видеоимпульсов напряжения, зачастую воспроизводящихся с высокой скважностью.

Важный параметр при использовании импульсного трансформатора – это неискажённый вид передачи импульсных систем напряжения. При влиянии на вход устройства мощности, отличающейся друг от друга, важно получить напряжение, в точности совпадающее с той же самой формой, разве что, с другой амплитудой или различающейся полярностью.

Виды трансформаторов

Виды импульсных трансформаторов

Особенности

Как правило, однофазные трансформаторы используют в электрических сетях и в роли источников питания различных устройствах.

Исходя из того факта, что нагрев провода прямо пропорционален квадрату току, идущего через провод, то при передаче энергии на дальние расстояния выгоднее будет использовать высокие напряжения и небольшие токи. Для исключения повреждений электроприборов и уменьшения объёма изоляции в домашних условиях лучше использовать низкие мощности.

Ввиду этого, для уменьшения затрат на транспортировку электрической энергии в общей электросети в большом количестве применяются силовые трансформаторы: вначале увеличивают напряжение генераторов на электростанциях перед передачей энергии по кабелю, а уже после транспортировки уменьшают напряжение линий электропередач до нужного уровня в повсеместном использовании.

однофазный трансформатор

Однофазные трансформаторы

Эксплуатация

При использовании однофазных трансформаторов технике безопасности отводится особое место. Обусловлено это тем, что устройство находится под высоким напряжением, находящимся на первичных обмотках. При подключении и установке трансформатора в электрические схемы важно соблюдать ряд правил, для исключения поломок и нарушений работы прибора:

  • Чтобы обмотки не выходили из строя (выгорали), необходимо поставить защиту от короткого замыкания на вторичной цепи;
  • Необходимо контролировать температурный режим сердечника и обмоток. Желательно установить систему охлаждения, предусматривающую исключение критического повышения температуры при работе.

В случае различной нагрузки от электросети изменяется и её напряжение. Для стабильной работы устройств, получающих энергию, необходимо, чтобы напряжение не изменялось от установленного уровня выше допустимого диапазона. Ввиду этого допускается использование методов регулирования напряжения в сети.

Статья адресована начинающим электрикам. Я тоже когда-то был начинающим, и всегда рад поделиться знаниями и поднять профессиональный уровень моих читателей.

Итак, почему в некоторые электрощитки приходит напряжение 380 Вольт, а в некоторые – 220? Почему у одних потребителей напряжение трёхфазное, а у других – однофазное? Было время, я задавался этими вопросами и искал на них ответы. Сейчас расскажу популярно, без формул и диаграмм, которыми изобилуют учебники.

Очень коротко, для тех, кто не будет читать дальше: напряжение 380 В называется линейным и действует в трехфазной сети между любыми из трёх фаз. Напряжение 220 В называется фазным и действует между любой из трёх фаз и нейтралью (нулём).

Другими словами. Если к потребителю подходит одна фаза, то потребитель называется однофазным, и напряжение его питания будет 220 В (фазное). Если говорят о трехфазном напряжении, то всегда идёт речь о напряжении 380 В (линейное). Какая разница? Далее – подробнее.

Чем три фазы отличаются от одной?

В обоих видах питания присутствует рабочий нулевой проводник (НОЛЬ). Про защитное заземление я подробно рассказал здесь, это обширная тема. По отношению к нулю на всех трёх фазах – напряжение 220 Вольт. А вот по отношению этих трёх фаз друг к другу – на них 380 Вольт.

Напряжения в трёхфазной системе

Так получается, потому что напряжения (при активной нагрузке , и ток) на трёх фазных проводах отличаются на треть цикла, т.е. на 120°.

Подробнее можно ознакомиться в учебнике электротехники – про напряжение и ток в трехфазной сети, а также увидеть векторные диаграммы.

Получается, что если у нас есть трехфазное напряжение, то у нас есть три фазных напряжения по 220 В. И однофазных потребителей (а таких – почти 100% в наших жилищах) можно подключать к любой фазе и нулю. Только делать это надо так, чтобы потребление по каждой фазе было примерно одинаковым, иначе возможен перекос фаз.

Подробнее о перекосе фаз, и от чего он бывает – здесь.

А защититься от перекоса фаз лучше всего с помощью реле напряжения, например Барьер или ФиФ ЕвроАвтоматика.

Кроме того, чрезмерно нагруженной фазе будет тяжело и обидно, что другие “отдыхают”)

Преимущества и недостатки

Обе системы питания имеют свои плюсы и минусы, которые меняются местами или становятся несущественными при переходе мощности через порог 10 кВт. Попробую перечислить.

Однофазная сеть 220 В, плюсы

  • Простота
  • Дешевизна
  • Ниже опасное напряжение

Однофазная сеть 220 В, минусы

Трехфазная сеть 380 В, плюсы

  • Мощность ограничена только сечением проводов
  • Экономия при трехфазном потреблении
  • Питание промышленного оборудования
  • Возможность переключения однофазной нагрузки на “хорошую” фазу при ухудшении качества или пропадании питания

Трехфазная сеть 380 В, минусы

  • Дороже оборудование
  • Более опасное напряжение
  • Ограничивается максимальная мощность однофазных нагрузок

Когда 380, а когда 220?

Так почему же в квартирах у нас напряжение 220 В, а не 380? Дело в том, что к потребителям мощностью менее 10 кВт, как правило, подключают одну фазу. А это значит, что в дом вводится одна фаза и нейтральный (нулевой) проводник. В 99% квартир и домов именно так и происходит.

Электрощиток в доме

Однофазный электрощиток в доме. Правый автомат – вводной, далее – по комнатам. Кто найдёт ошибки на фото? Хотя, этот щиток – одна сплошная ошибка…

Однако, если планируется потреблять мощность более 10 кВт, то лучше – трехфазный ввод. А если имеется оборудование с трехфазным питанием (содержащее трехфазные двигатели), то я категорически рекомендую заводить в дом трехфазный ввод с линейным напряжением 380 В. Это позволит сэкономить на сечении проводов, на безопасности, и на электроэнергии.

Трехфазный ввод

Трехфазный ввод. Вводной автомат на 100 А, далее – на счетчик трехфазный прямого включения Меркурий 230.

Не смотря на то, что есть способы включения трехфазной нагрузки в однофазную сеть, такие переделки резко снижают КПД двигателей, и иногда при прочих равных условиях можно за 220 В заплатить в 2 раза больше, чем за 380.

Однофазное напряжение применяется в частном секторе, где потребляемая мощность, как правило, не превышает 10 кВт. При этом на вводе применяют кабель с проводами сечением 4-6 мм². Потребляемый ток ограничивается вводным автоматическим выключателем, номинальный ток защиты которого – не более 40 А.

Про выбор защитного автомата я уже писал здесь. А про выбор сечения провода – здесь. Там же – жаркие обсуждения вопросов.

Но если мощность потребителя – 15 кВт и выше, то тут обязательно нужно использовать трехфазное питание. Даже, если в данном здании нет трехфазных потребителей, например, электродвигателей. В таком случае мощность разделяется по фазам, и на электрооборудование (вводной кабель, коммутация) ложится не такая нагрузка, как если бы ту же мощность брали от одной фазы.

Пример трехфазного электрощитка. Потребители и трехфазные, и однофазные.

Пример трехфазного электрощитка. Потребители и трехфазные, и однофазные.

Например, если дом питается от одной фазы, и потребляет мощность 15 кВт – это ток около 70А, нужен медный провод сечением не менее 10 мм². Стоить кабель с такими жилами будет существенно. А автоматов на одну фазу (однополюсных) на ток больше 63 А на ДИН-рейку я не встречал.

Поэтому в офисах, магазинах, и тем более на предприятиях применяют только трёхфазное питание. И, соответственно, трёхфазные счетчики, которые бывают прямого включения и трансформаторного включения (с трансформаторами тока).

И на вводе (перед счетчиком) стоят примерно такие “ящички”:

Трехфазный ввод

Трехфазный ввод. Вводной автомат перед счетчиком.

Существенный минус трехфазного ввода (отмечал его выше) – ограничение по мощности однофазных нагрузок. Например, выделенная мощность трехфазного напряжения – 15 кВт. Это значит, что по каждой фазе – максимум 5 кВт. А это значит, что максимальный ток по каждой фазе – не более 22 А (практически – 25). И надо крутиться, распределяя нагрузку.

Надеюсь, теперь понятно, что такое трехфазное напряжение 380 В и однофазное напряжение 220 В?

Схемы Звезда и Треугольник в трехфазной сети

Существуют различные вариации включения нагрузки с рабочим напряжением 220 и 380 Вольт в трехфазную сеть. Эти схемы называются “Звезда” и “Треугольник”.

Когда нагрузка рассчитана на напряжение 220В, то она включается в трехфазную сеть по схеме “Звезда”, то есть к фазному напряжению. При этом все группы нагрузки распределяются так, чтобы мощности по фазам были примерно одинаковы. Нули всех групп соединены вместе и подключены к нейтральному проводу трехфазного ввода.

В “Звезду” подключены все наши квартиры и дома с однофазным вводом, другой пример – подключение ТЭНов в мощных калориферах и конвектоматах.

Когда нагрузка на напряжение 380В, то она включается по схеме “Треугольник”, то есть к линейному напряжению. Такое распределение по фазам наиболее типично для электродвигателей и другой нагрузки, где все три части нагрузки принадлежат к единому устройству.

Система распределения электроэнергии

Исходно напряжение всегда является трехфазным. Под “исходно” я подразумеваю генератор на электростанции (тепловой, газовой, атомной), с которого напряжение в много тысяч вольт поступает на понижающие трансформаторы, которые образуют несколько ступеней напряжения. Последний трансформатор понижает напряжение до уровня 0,4 кВ и подаёт его конечным потребителям – нам с вами, в квартирные дома и в частный жилой сектор.

На крупных предприятиях с потреблением мощности более 100 кВт обычно существуют собственные подстанции 10/0,4 кВ.

Трехфазное питание – ступени от генератора до потребителя

На рисунке упрощенно показано, как с генератора G напряжение (везде речь идёт про трехфазное) 110 кВ (может быть 220 кВ, 330 кВ или другое) поступает на первую трансформаторную подстанцию ТП1, которая понижает напряжение в первый раз до 10 кВ. Одна такая ТП устанавливается для питания города или района и может иметь мощность порядка от единиц до сотен мегаватт (МВт).

Далее напряжение поступает на трансформатор ТП2 второй ступени, на выходе которого действует напряжение конечного потребителя 0,4 кВ (380В). Мощность трансформаторов ТП2 – от сотен до тысяч кВт. С ТП2 напряжение поступает к нам – на несколько многоквартирных домов, на частный сектор, и т.п.

Такие ступени преобразования уровня напряжения необходимы для того, чтобы уменьшить потери при транспортировке электроэнергии. Подробнее о потерях в кабельных линиях – в другой моей статье.

Схема упрощённая, ступеней может быть несколько, напряжения и мощности могут быть другие, но суть от этого не меняется. Только конечное напряжение потребителей одно – 380 В.

Напоследок – ещё несколько фото с комментариями.

Электрощит с трехфазным вводом, но все потребители – однофазные.

Трехфазный ввод. Переход на меньшее сечение проводов, чтобы подключить их к счетчику.

Трехфазный ввод. Переход на меньшее сечение проводов, чтобы подключить их к счетчику.

Статья адресована начинающим электрикам. Я тоже когда-то был начинающим, и всегда рад поделиться знаниями и поднять профессиональный уровень моих читателей.

Итак, почему в некоторые электрощитки приходит напряжение 380 Вольт, а в некоторые – 220? Почему у одних потребителей напряжение трёхфазное, а у других – однофазное? Было время, я задавался этими вопросами и искал на них ответы. Сейчас расскажу популярно, без формул и диаграмм, которыми изобилуют учебники.

Очень коротко, для тех, кто не будет читать дальше: напряжение 380 В называется линейным и действует в трехфазной сети между любыми из трёх фаз. Напряжение 220 В называется фазным и действует между любой из трёх фаз и нейтралью (нулём).

Другими словами. Если к потребителю подходит одна фаза, то потребитель называется однофазным, и напряжение его питания будет 220 В (фазное). Если говорят о трехфазном напряжении, то всегда идёт речь о напряжении 380 В (линейное). Какая разница? Далее – подробнее.

Чем три фазы отличаются от одной?

В обоих видах питания присутствует рабочий нулевой проводник (НОЛЬ). Про защитное заземление я подробно рассказал здесь, это обширная тема. По отношению к нулю на всех трёх фазах – напряжение 220 Вольт. А вот по отношению этих трёх фаз друг к другу – на них 380 Вольт.

Напряжения в трёхфазной системе

Так получается, потому что напряжения (при активной нагрузке , и ток) на трёх фазных проводах отличаются на треть цикла, т.е. на 120°.

Подробнее можно ознакомиться в учебнике электротехники – про напряжение и ток в трехфазной сети, а также увидеть векторные диаграммы.

Получается, что если у нас есть трехфазное напряжение, то у нас есть три фазных напряжения по 220 В. И однофазных потребителей (а таких – почти 100% в наших жилищах) можно подключать к любой фазе и нулю. Только делать это надо так, чтобы потребление по каждой фазе было примерно одинаковым, иначе возможен перекос фаз.

Подробнее о перекосе фаз, и от чего он бывает – здесь.

А защититься от перекоса фаз лучше всего с помощью реле напряжения, например Барьер или ФиФ ЕвроАвтоматика.

Кроме того, чрезмерно нагруженной фазе будет тяжело и обидно, что другие “отдыхают”)

Преимущества и недостатки

Обе системы питания имеют свои плюсы и минусы, которые меняются местами или становятся несущественными при переходе мощности через порог 10 кВт. Попробую перечислить.

Однофазная сеть 220 В, плюсы

  • Простота
  • Дешевизна
  • Ниже опасное напряжение

Однофазная сеть 220 В, минусы

Трехфазная сеть 380 В, плюсы

  • Мощность ограничена только сечением проводов
  • Экономия при трехфазном потреблении
  • Питание промышленного оборудования
  • Возможность переключения однофазной нагрузки на “хорошую” фазу при ухудшении качества или пропадании питания

Трехфазная сеть 380 В, минусы

  • Дороже оборудование
  • Более опасное напряжение
  • Ограничивается максимальная мощность однофазных нагрузок

Когда 380, а когда 220?

Так почему же в квартирах у нас напряжение 220 В, а не 380? Дело в том, что к потребителям мощностью менее 10 кВт, как правило, подключают одну фазу. А это значит, что в дом вводится одна фаза и нейтральный (нулевой) проводник. В 99% квартир и домов именно так и происходит.

Электрощиток в доме

Однофазный электрощиток в доме. Правый автомат – вводной, далее – по комнатам. Кто найдёт ошибки на фото? Хотя, этот щиток – одна сплошная ошибка…

Однако, если планируется потреблять мощность более 10 кВт, то лучше – трехфазный ввод. А если имеется оборудование с трехфазным питанием (содержащее трехфазные двигатели), то я категорически рекомендую заводить в дом трехфазный ввод с линейным напряжением 380 В. Это позволит сэкономить на сечении проводов, на безопасности, и на электроэнергии.

Трехфазный ввод

Трехфазный ввод. Вводной автомат на 100 А, далее – на счетчик трехфазный прямого включения Меркурий 230.

Не смотря на то, что есть способы включения трехфазной нагрузки в однофазную сеть, такие переделки резко снижают КПД двигателей, и иногда при прочих равных условиях можно за 220 В заплатить в 2 раза больше, чем за 380.

Однофазное напряжение применяется в частном секторе, где потребляемая мощность, как правило, не превышает 10 кВт. При этом на вводе применяют кабель с проводами сечением 4-6 мм². Потребляемый ток ограничивается вводным автоматическим выключателем, номинальный ток защиты которого – не более 40 А.

Про выбор защитного автомата я уже писал здесь. А про выбор сечения провода – здесь. Там же – жаркие обсуждения вопросов.

Но если мощность потребителя – 15 кВт и выше, то тут обязательно нужно использовать трехфазное питание. Даже, если в данном здании нет трехфазных потребителей, например, электродвигателей. В таком случае мощность разделяется по фазам, и на электрооборудование (вводной кабель, коммутация) ложится не такая нагрузка, как если бы ту же мощность брали от одной фазы.

Пример трехфазного электрощитка. Потребители и трехфазные, и однофазные.

Пример трехфазного электрощитка. Потребители и трехфазные, и однофазные.

Например, если дом питается от одной фазы, и потребляет мощность 15 кВт – это ток около 70А, нужен медный провод сечением не менее 10 мм². Стоить кабель с такими жилами будет существенно. А автоматов на одну фазу (однополюсных) на ток больше 63 А на ДИН-рейку я не встречал.

Поэтому в офисах, магазинах, и тем более на предприятиях применяют только трёхфазное питание. И, соответственно, трёхфазные счетчики, которые бывают прямого включения и трансформаторного включения (с трансформаторами тока).

И на вводе (перед счетчиком) стоят примерно такие “ящички”:

Трехфазный ввод

Трехфазный ввод. Вводной автомат перед счетчиком.

Существенный минус трехфазного ввода (отмечал его выше) – ограничение по мощности однофазных нагрузок. Например, выделенная мощность трехфазного напряжения – 15 кВт. Это значит, что по каждой фазе – максимум 5 кВт. А это значит, что максимальный ток по каждой фазе – не более 22 А (практически – 25). И надо крутиться, распределяя нагрузку.

Надеюсь, теперь понятно, что такое трехфазное напряжение 380 В и однофазное напряжение 220 В?

Схемы Звезда и Треугольник в трехфазной сети

Существуют различные вариации включения нагрузки с рабочим напряжением 220 и 380 Вольт в трехфазную сеть. Эти схемы называются “Звезда” и “Треугольник”.

Когда нагрузка рассчитана на напряжение 220В, то она включается в трехфазную сеть по схеме “Звезда”, то есть к фазному напряжению. При этом все группы нагрузки распределяются так, чтобы мощности по фазам были примерно одинаковы. Нули всех групп соединены вместе и подключены к нейтральному проводу трехфазного ввода.

В “Звезду” подключены все наши квартиры и дома с однофазным вводом, другой пример – подключение ТЭНов в мощных калориферах и конвектоматах.

Когда нагрузка на напряжение 380В, то она включается по схеме “Треугольник”, то есть к линейному напряжению. Такое распределение по фазам наиболее типично для электродвигателей и другой нагрузки, где все три части нагрузки принадлежат к единому устройству.

Система распределения электроэнергии

Исходно напряжение всегда является трехфазным. Под “исходно” я подразумеваю генератор на электростанции (тепловой, газовой, атомной), с которого напряжение в много тысяч вольт поступает на понижающие трансформаторы, которые образуют несколько ступеней напряжения. Последний трансформатор понижает напряжение до уровня 0,4 кВ и подаёт его конечным потребителям – нам с вами, в квартирные дома и в частный жилой сектор.

На крупных предприятиях с потреблением мощности более 100 кВт обычно существуют собственные подстанции 10/0,4 кВ.

Трехфазное питание – ступени от генератора до потребителя

На рисунке упрощенно показано, как с генератора G напряжение (везде речь идёт про трехфазное) 110 кВ (может быть 220 кВ, 330 кВ или другое) поступает на первую трансформаторную подстанцию ТП1, которая понижает напряжение в первый раз до 10 кВ. Одна такая ТП устанавливается для питания города или района и может иметь мощность порядка от единиц до сотен мегаватт (МВт).

Далее напряжение поступает на трансформатор ТП2 второй ступени, на выходе которого действует напряжение конечного потребителя 0,4 кВ (380В). Мощность трансформаторов ТП2 – от сотен до тысяч кВт. С ТП2 напряжение поступает к нам – на несколько многоквартирных домов, на частный сектор, и т.п.

Такие ступени преобразования уровня напряжения необходимы для того, чтобы уменьшить потери при транспортировке электроэнергии. Подробнее о потерях в кабельных линиях – в другой моей статье.

Схема упрощённая, ступеней может быть несколько, напряжения и мощности могут быть другие, но суть от этого не меняется. Только конечное напряжение потребителей одно – 380 В.

Напоследок – ещё несколько фото с комментариями.

Электрощит с трехфазным вводом, но все потребители – однофазные.

Трехфазный ввод. Переход на меньшее сечение проводов, чтобы подключить их к счетчику.

Трехфазный ввод. Переход на меньшее сечение проводов, чтобы подключить их к счетчику.

Читайте также: