Биомедицина что это за профессия и кем работать

Обновлено: 19.05.2024

Биоинформатика, как можно понять из названия, — наука об информации, заключенной в наших клетках (в генах и других составных частях клетки). Человеческий геном составляет свыше трех миллиардов пар нуклеотидов, расположенных в определенной последовательности, в которой зашифрованы как наследственная информация, так и данные обо всем, что касается старения тела человека. Из этой последовательности можно узнать, из каких органов оно состоит, как функционирует, какие процессы протекают в клетке. Биоинформатика — наука как о биологических объектах, так и об информации, которая содержится внутри клетки, в первую очередь, в геноме.

Информация, заключённая в геноме, — это колоссальные объёмы данных, которые необходимо анализировать. Это по-настоящему трудоемкий процесс — понять, что стоит за каждым нуклеотидом, к чему приводит отсутствие или мутация одного из них. Для того, чтобы сделать какие-то выводы, необходима статистика. Нужно изучить геном не одного человека, а сотен тысяч — только тогда можно будет выявить закономерность и понять, какое влияние они оказывают на здоровье человека.

Сегодня наука подошла к такому рубежу, когда этих знаний становится достаточно много, и уровень понимания постоянно растет. Именно поэтому биоинформатика становится всё более актуальной и перспективной. С накоплением информации о геноме человека возникают условия для трансляции этих научных знаний в практическую (клиническую) медицину.

Эволюционная генетика изучает геномы не только людей, но и самых разных животных и живых организмов. Сопоставляя их между собой, исследователи делают выводы о том, как шла эволюция, как из первобытных микроорганизмов получился человек.

Есть наука, которая изучает микроорганизмы, живущие внутри человеческого тела (а их так много, что вместе они весят несколько килограммов). От того, какие это организмы и как они функционируют, также зависит очень многое — самочувствие, здоровье человека.

Я уже не говорю о том, что селекция чрезвычайно важна: элементы биоинформатики присутствуют и в сельском хозяйстве, и в генной инженерии. Биоинформатика играет особую роль, когда речь идёт о создании генно-модифицированных организмов, устойчивых к вредителям и различным заболеваниям.

Опыт решения физических задач очень помогает мне в жизни — преодолевать проблемы, с которыми я сталкиваюсь. Кроме того, довольно сильно помогает и ученая степень: ее можно сравнить с неким интеллектуальным знаком качества. Очевидно, что человек, получивший ее, представляет из себя что-то — как в интеллектуальном, так и в общечеловеческом смысле. Ученая степень — это определенный рубеж, и, если вы его преодолели, значит, сможете преодолеть и другие.

На самом деле, решение поступать в МГУ было принято за пару месяцев до поступления. Однако я не пожалел о нем ни разу в жизни, потому что физика — это не наука, а мировоззрение: ровно то, что остается, когда все выученное забыто.

Квантовая механика мне не нужна в моей повседневной жизни, а биологию, которая нужна, я не учил.

Однако биология, химия, физика — естественно-научные дисциплины, — на мой взгляд, очень близкие вещи, поэтому мой физический бэкграунд помогает мне ориентироваться достаточно хорошо для того, чтобы сейчас делать свою работу.

Существуют современные исследования, которые доказывают, что, если человек хочет иметь успешную карьеру, на протяжении своей жизни он должен менять специальность 5-6 раз. В моём случае это утверждение абсолютно справедливо.

Я был научным сотрудником в Академии наук, оттуда ушел в компанию Coca-Cola, где работал преподавателем учебного центра. Затем я перешел в технический отдел и стал отвечать за определенное оборудование, которое Coca-Cola поставляет на рынок, чтобы продавать свои напитки. После этого я пришел в компанию Intel, в которой занимался академическими программами, работой с правительством, маркетингом (был директором по маркетингу). Потом, так сказать, вернулся чуть ближе к своей специализации: стал генеральным директором по исследованиям и разработкам Intel в России. А сейчас я — генеральный директор Московского центра исследований и разработок EMC по облачным технологиям и большим данным.

Несмотря на то, что после окончания аспирантуры я всего три года работал по специальности, моя карьера достаточно успешна. Я учусь по ходу дела. Главное — понять принцип обучения. Сейчас все мы живем в информационном потоке. Искусство заключается в том, чтобы уметь выхватывать из этого потока одну сотую информации, которая на самом деле нужна. Пока вы читаете толстую книжку по информационным технологиям, реалии меняются до неузнаваемости, поэтому нужно схватывать происходящее буквально на лету.

Конечно — образование нужно каждому человеку. Инвестиции в образование — самые высокоокупаемые инвестиции в будущее. Вопрос только в том, какое это образование. Оно должно готовить человека к современной жизни. Если человек работает не по специальности, это скорее плюс, чем минус. Это означает, что он умеет учиться и переучиваться. А как он научится это делать, не побыв студентом вуза в течение определенного времени?

Это направление активно развивают университеты и академии, а также различные компании. Эта наука сейчас играет такую же роль, какую в свое время играли и космические, и ядерные проекты. В этой области трудится множество математиков, программистов, биологов, физиков, химиков. Будет ли это направление развиваться дальше? Конечно же, будет. Будет ли оно финансироваться? Конечно, будет. Если вы получаете образование в этой области, если у вас есть голова на плечах и страсть к предмету, то вы получите не только интересную работу, но и, скорее всего, достойный заработок.

Можно мечтать о работе в каких угодно компаниях, спектр широк: от крупных IT-компаний (Google, Intel, Microsoft, ЕМС) до крупных фармкомпаний.

Индустрию стартапов можно сравнить с гонкой, в которой участвуют десятки и даже сотни тысяч людей. Быть первым — это настоящий вызов. Однако если у вас получится оставить всех позади, вы сможете выиграть огромный приз, просто гигантский. Это интересно, захватывающе, но и тяжело, потому что требует колоссальных интеллектуальных и физических сил.

Советовать сложно, потому что каждый человек сам должен решить, что ему нужно. Могу сказать, с чего точно стоит начать: позитивно относиться к жизни, иметь пытливый ум и широкий взгляд. Возможности возникают, появляются на горизонте в сфере вашего внимания. Надо уметь их идентифицировать и хвататься за них. Если вам повезет, вы схватитесь именно за ту возможность, которая вам подходит. Это очень общий совет, но более конкретного я не могу дать.

Да, технологии, которые мы разрабатываем, предназначены для решения задач в области энергоэффективности и биоинформатики, в частности, медицины будущего. Анализ информации, заключённой в геноме, серьёзно поможет в лечении различных заболеваний.

Секвенаторы — машины, обрабатывающие огромное количество данных. Для того, чтобы в них разобраться, существует программное обеспечение, алгоритмы для идентификации мутаций для сравнения с базой. Анализ мутаций может серьёзно помочь в изучении наследственных заболеваний.

С помощью такой диагностики наши партнеры в Санкт-Петербурге, компания Parseq Lab, уточняют и подтверждают диагнозы по трем наследственным заболеваниям — муковисцидоз, фенилкетонурия, галактоземия. Исходя из этого назначается необходимое лечение. Особенность этих заболеваний заключается в том, что их необходимо выявить на ранней стадии жизни. Если вовремя диагностировать их и, например, предложить человеку определенный образ жизни и диету, то он может жить нормальной жизнью. Если, не дай бог, этого не сделать, то последствия могут быть катастрофическими.

Тем не менее, существуют подходы, которые могут сильно облегчить течение заболевания. Для них нужна точная диагностика, причем на максимально ранней стадии. Даже в одном гене может быть сто разных мутаций. От того, о какой именно мутации идет речь, зависит течение заболевания, рекомендации по образу жизни и лечению.

Помимо компании, о которой я уже говорил, Parseq Lab, мы сотрудничаем также с Алгоритмическим университетом РАН в Санкт-Петербурге.

Специалисты этого университета под руководством Павла Певзнера, одного из ведущих мировых ученых в области биоинформатики и вычислительной биологии, создали один из лучших в мире геномных ассемблеров SPAdes. Он собирает воедино разрозненные данные, полученные после успешных секвенирований.

Мы объединили усилия для того, чтобы создать эффективную и удобную в применении облачную платформу, применимую в клинической медицине для анализа геномных данных. Такая разработка позволит выявлять мутации, которые, как правило, являются причинами возникновения злокачественных опухолей. Помимо всего прочего, их обнаружение позволит значительно упростить диагностику онкологических заболеваний.

Например, врождённый иммунодефицит. Ребенок, страдающий от этого заболевания, уже рождается с нефункционирующей из-за некоторых мутаций иммунной системой. Любой вирус — банальная простуда — может быть для него смертельным. Такой ребенок может родиться у абсолютно здоровой матери.

Это заболевание лечится трансплантацией костного мозга. Однако принципиально важно сделать ее как можно раньше — примерно в возрасте трех месяцев. Если диагностика сделана в первые дни жизни, такого ребенка помещают в bubble-baby ( специальный стерильный пластиковый пузырь— Прим.ред.), он живет там до достижения трехмесячного возраста, набирается сил, и затем ему делают трансплантацию, после чего он становится полностью здоровым человеком. Если ему не сделать диагностику в этом возрасте, он начинает болеть, и к первому году жизни настолько ослабевает, что операция уже не может пройти успешно. Ребенок умирает. Поэтому диагностика критически важна — ее нужно сделать как можно раньше и как можно точнее.

Поскольку количество мутаций у такого больного очень велико, с помощью одного только анализа крови невозможно определить, в чем проблема. От того, о какой мутации идет речь, зависит то, какой режим надо соблюдать для ребенка и как готовить его к операции. Совокупность клинических данных — анализов крови, анализов иммунной системы и генетических данных — позволяет рано определить точный диагноз и этим спасти жизнь ребенка.

Будущее не будет состоять только из биоинформатики. Медицина будущего будет совсем не такой, как сейчас. Как происходит лечение в данный момент? У человека заболела голова: он приходит к врачу. Тот знает пять лекарств, которые могут вылечить больного, и по некоторым соображениям прописывает ему одно из них. Есть и другой вариант: больной лечится самостоятельно. Если же человек заболел чем-то более серьезным, процедура точно такая же. Врач знает, что гепатит лечится одним способом, туберкулез — другим, и назначает лекарство, слушая жалобы пациента.

Претенциозная медицина, медицина будущего, знает, что существуют диагностика и терапия. Допустим, есть пять лекарств, которые лечат данное заболевание. Если говорить об онкологии, каждое из этих пяти лекарств стоит сумасшедших денег — десятки тысяч долларов в месяц. Ошибка в такой терапии стоит гигантских денег, не говоря уже о жизни пациента. Для того, чтобы подобрать терапию, которая подходит именно этому пациенту, необходимо узнать, как устроены его клетки, какой именно у него геном, какая именно у него болезнь и как именно с ней бороться. Это и называется медициной будущего.

В нее входит не только биоинформатика, но и достаточно сложный комплекс дисциплин. Биоинформатика — только маленькая часть этого процесса. Тем не менее, она играет в нем важную роль, потому что изучаемые процессы очень сложны, информации о них очень много. Обычный человек, глядя на эти данные, мало что сможет понять. Здесь на помощь приходят информационные технологии, которые помогают собрать эти данные, систематизировать, проанализировать и выдать результат в понятном для обычного человека виде.


Биотехнологии: что это такое и зачем это нужно

Система наук в XXI веке стала кластерной. Это значит, что сегодня в науке происходит диффузия различных специальностей. Например, биотехнологии объединили биологию, генную инженерию и генетику.

Биотехнологии — это использование живых организмов, их отдельных составляющих (ДНК, микроорганизмов, клеток и их частей) или продуктов их жизнедеятельности для производства продуктов и решения технических задач.

Сегодня существуют три главных вектора работы биотехнологов:

сельское хозяйство, в частности создание ГМО

энергетика и промышленность, например получение биотоплива или производство веществ, способных к деградации токсических отходов

медицина — специалисты в области биотехнологий работают над созданием препаратов для лечения тяжелых и неизлечимых заболеваний

Продукты и препараты, которые изобретают биотехнологи, маркируются разными цветами:

  • Зеленый: разработка продуктов, способных поддерживать здоровье человека и исключить опасные заболевания. Для этого создаются модифицированные виды растений и продукты с повышенным содержанием протеина и микроэлементов
  • Красный: здесь речь идет в основном о новейших препаратах, изобретаемых фармакологами. Эти лекарства призваны бороться с опасными заболеваниями
  • Белый: минимизация антропогенного фактора при изобретении биотоплива, исключающего нанесение вреда окружающей среде
  • Синий: использование морских организмов. Задача ученых состоит в создании таких сырьевых групп, которые максимально защищают окружающую среду и самого человека


Биотехнологии для здоровья

Ключевое направление в биотехнологиях — биомедицина. Биомедики занимаются разработкой новых лекарственных средств, выделением и культивацией стволовых клеток для клеточной терапии и восстановления поврежденных тканей и даже органов, изучением процессов старения и злокачественной трансформации клеток. Более глубокое молекулярное понимание механизмов, лежащих в основе болезни, позволяет развиваться генной терапии и клеточной инженерии.

Что конкретно происходит в биомедицинской отрасли?

Редактирование генов. Сегодня проводятся эксперименты по редактированию генов в самом теле человека. В сентябре 2018 года Sangamo Therapeutics из Ричмонда, обнародовали информацию о введении редактирующих гены ферментов пациенту, организм которого не справляется с расщеплением сложных сахаров. Как врач не могу давать оценку исследованию, пока не будет установлено, что это безопасно для жизни и здоровья пациентов.


Фото:Patrick T. Fallon / Bloomberg

Лекарство против рака. Изучение влияния бактериальных культур на процесс онкологии подтолкнуло специалистов к работе над препаратом, приостанавливающим развитие злокачественных образований в организме. Таким лекарством является Блеомицин. Он создан на основе микроорганизма Streptomyces verticilliis, имеющего гликопептидную природу. Активные вещества препарата проникают внутрь опухолевых клеток и приводят в беспорядок процесс изменения РНК и ДНК.

Другие препараты. К биотехнологическим знаниям можно отнести открытие десятков тысяч противогрибковых, антибактериальных, гормоносодержащих лекарственных средств, выведенных учеными за несколько десятилетий. Антибиотики не просто борются с инфекциями, они разрушают весь процесс, не вызывая формирования резистентности микроорганизмов к веществам препаратов. Биотехнологи подумали и о заболеваниях печени, разработав препарат на основе аминокислот, глутамата и аспартата. А комбинаторные свойства препарата с натрием и калием положительно влияют на функции сердца, поджелудочной железы.

Биоинженерия в офтальмологии

За последние 20 лет в секторе произошли важные для пациентов изменения: появились генно-инженерные, клеточные, тканевые, иммунобиологические и цифровые технологии.

Новаторские разработки в области офтальмологии:

Биопротезирование и бионический глаз

Фемтосекундная методика коррекции близорукости и астигматизма за 25 секунд ReLEx SMILE (англ. Small Incision Lenticule Extraction)

Сверхточные микроскопы с 3D-визуализацией и ультратонкие инструменты, которые повышают точность и эргономику работы хирурга

Доставка лекарств внутрь полостей и клеток тканей глаза

Спектральные томографы, создающие точную визуализацию структур высокого качества за кратчайшее время

Биологические ткани — выращенные или напечатанные. В будущем они смогут заменять изношенные ткани

Мультифокальные искусственные хрусталики, которые освобождают человека от ношения очков, возвращая контраст и остроту зрению

Электронный глаз, сохраняющий остаточное зрение и поддерживающий функцию ориентирования в пространстве

Что еще почитать по теме:

Подписывайтесь и читайте нас в Яндекс.Дзене — технологии, инновации, эко-номика, образование и шеринг в одном канале.

Биомедицинская инженерия (Факультет ЭЛБИ)

Название университета: Харьковский национальный университет радиоэлектроники (ХНУРЭ)
Название факультета: Факультет электронной и биомедицинской инженерии (ЭЛБИ)
Код и название специальности: 163 Биомедицинская инженерия
Название образовательной программы: Биомедицинская инженерия

Краткое описание образовательной программы Биомедицинская инженерия:
В процессе обучения по направлению образовательной программы "Биомедицинская инженерия" изучаются принципы технического обслуживания медицинских технологий, разработки, производства, эксплуатации, обслуживания и ремонта, сертификации и обработки информации в практическом здравоохранении и различных областях медицинских и биологических исследований.

Студенты изучают современные тенденции развития медицинского приборостроения; механизмы, методы и средства проектирования, разработки и эксплуатации медико-технических средств, биологических и технических аппаратов и систем, в том числе, аппараты и системы замещения утраченных органов и функций организма человека; методы и средства управления технологическими процессами при разработке, изготовлении и эксплуатации биотехнического оборудования для нужд профилактики, диагностики и лечения больных.

Умения и компетенции, которыми будет обладать бакалавр по направлению подготовки Биомедицинская инженерия:
1. Навыки мониторинга функционального состояния организма человека, животных и экосистем с помощью современных аппаратно-программных средств;
2. Навыки обработки и анализа био сигналов и медицинских изображений с применением компьютерных технологий;
3. Навыки разработки и сопровождения специализированных баз данных (электронная карта пациента, системы идентификации по биометрической информацией) с защитой личной информации;
4. Навыки разработки, конструирования и технического сопровождение биомедицинских приборов и систем с соблюдением мер безопасности пациентов и персонала;
5. Навыки проведения монтажа и испытания аппаратуры для медицины, лабораторной диагностики, косметологии, ветеринарии, экологии, пищевой промышленности;
6. Навыки обеспечивать инженерно-техническую экспертизу в процессе планирования, разработки, оценки и спецификации медицинского оборудования;
7. Навыки разрабатывать и применять различные методы моделирования функционирования живых организмов и процессов в биологии и медицине;
8. Навыки планировать, проектировать, разрабатывать, устанавливать, эксплуатировать и поддерживать приборы, оборудование и комплексы для профилактики, диагностики и лечения;
9. Навыки проектировать, разрабатывать и внедрять методы, аппараты и системы восстановления утраченных частично или полностью органов и функций организма человека, или животного;
10. Навыки проводить исследования и наблюдения по взаимодействию биологических, природных и искусственных систем;
11. Навыки планировать техническое обслуживание медицинского оборудования;
12. Навыки идентифицировать, формулировать и решать инженерные проблемы, связанные с взаимодействием между живыми и неживыми;
13. Навыки избирать и использовать соответствующее оборудование, инструменты и методы для реализации и контроля за клинико-инструментальным и клинико-лабораторным оборудованием и комплексами.

Выпускник по направлению подготовки Биомедицинская инженерия может работать:
Специалист этой специальности способен работать в области медицины (медицинские компьютерные устройства и системы мониторирования, диагностики, терапии, хирургии, обработке данных, сигналов и изображения, моделирование органов, статистике, телемедицины), в области реабилитационной инженерии (средства ухода, тренажеры, искусственные органы) с местом работы в профилакториях, центрах реабилитации.

Также, возможна работа в области электронных средств, сельском хозяйстве и экологии, в частности ветеринария, селекция, экологический мониторинг, санитарно-гигиенический и экологический контроль, службы рыбнадзора.

В современно рынка труда обеспечена работа в области биометрии, фитнес-инженерии, косметологии, систем идентификации личности, пластической хирургии, с местом работы в фитнес-клубах, косметических салонах, тренажерных залах, интересная работа с оптимизация режимов производства и разработки продуктов по принципу нанотехнологий с местом работы на предприятиях пищевой промышленности.

Эту страницу нашли, когда искали:
биомедицинская инженерия в украине , где работает биомединженер , хнурэ факультет биомедицинской инженерии отзывы , биомедицинская инженерия сколько мест , инженер по биомедицинским аппаратам и системам описание , биомедицинская инженерия предметы , информатика в здравоохранении и биомедицинская инженерия , инженер биомедицинской технологии работают ли в больнице , инженер по биомедицинской технологиям специальность где работать в азербайджане , инженер биомедицинской технологии в баку , приходите учиться биомедицинская инженерия , тканевая инженерия в медицине где учиться , стоит ли в 2020 году обучаться по специальности инженерное дело в медико биологической практике кем работать , факультет электронной и биомедицинской инженерии kharkiv, kharkiv oblast , информатика в медицине и биомедицинская инженерия факультет к чему обучает , биомедицинская инженерия специальность предметы , специальность 05.13.01 системный анализ биомедицинская инженерия , что изучает факультет биомедицинская технология , biomedical engineering что изучает , факультеты биомедицинской инженерии , профессии после окончания специальности биомедицинская инженерия , биомедицинская инженерия где изучают , специальность biomedical engineering , биомедицинское приборостроение , использование совр. образоват технологий в изучении английского а биомедицинской инженерии


Зачем ребёнку, который будет поступать на биофак, углублённое знание английского? Чтобы читать научную литературу, ездить на международные конференции и стажировки и стать, например, крутым биоинженером. Наш блогер Яна Полянских рассказывает, какие новые сложные и увлекательные направления деятельности есть в современной науке.

Вы уже поняли, кем хотите стать в будущем? Я написала список интересных специальностей, о которых вы, возможно, не знали. Начну со своей.

1. Медицинская химия

Это смесь химии, биологии, фармацевтики, медицины, а в моём случае ещё и математического моделирования. Специалисты в этой отрасли занимаются поиском, оптимизацией, синтезом, модификацией и тестированием новых биологически активных веществ и лекарственных препаратов. Работают со сложными веществами (эти методы носят название тонкого органического синтеза), самыми современными методами анализа и очистки, компьютерным молекулярным моделированием и конструированием (тот самый drug design).

Сложности:

  • нет русскоязычной литературы (очень молодая отрасль науки);
  • масштабный стык наук, требующий дополнительного обучения и стажировок;
  • кропотливые методы синтеза с выходом в 2%;
  • весьма нелёгкие для освоения методы анализа (тот же ЯМР);
  • работа с животными (необязательно).

Где учат:

  • химфак МГУ;
  • МИТХТ;
  • МФТИ;
  • Санкт-Петербургский химико-фармацевтический университет;
  • Казанский федеральный университет.

2. Биотехнология и нанобиотехнология

Выпускники этого направления могут заниматься получением и применением ферментов, вирусов, микроорганизмов и клеточных культур для решения технологических и исследовательских задач. Например, инсулин уже давно получают с помощью генной инженерии. Если совсем просто, то для этого синтезируют особым образом модифицированную нуклеотидную последовательность инсулина и встраивают её в lac-ген плазмид, потом берут колонию кишечной палочки E.Coli и трансформируют её клетки этими плазмидами. Получается, что мы заставляем бактерии синтезировать чужеродный им белок, встраивая информацию о нём в геном. Таким образом получают не только инсулин, но и многие вакцины и ферменты. Вирусы сейчас активно используют в качестве систем доставки лекарственных препаратов (они ведь чудесно проникают в организм). Их модифицируют, чтобы сделать безопасными, заменяют генетический материал на нужный нам и такой вирусный вектор отправляют в путь. Вирусная оболочка надежно защищает нуклеиновые кислоты и отлично доставляет препарат в клетку-мишень. Однако этот способ, как и многие другие, имеет ряд недостатков. Над решением подобных проблем и работают специалисты по биотехнологиям.

Сложности:

Где учат:

  • биофак МГУ;
  • биотехнологический факультет МГУ (совсем недавно созданный);
  • МИТХТ;
  • ММА;
  • МВА;
  • СПбГУ.

Всё ещё легко живётся? Держите смесь физики, химии, биологии, математики и медицины.

3. Молекулярная биофизика

Исследования этих ребят очень помогают специалистам по медицинской химии, потому что они изучают физические свойства молекул и сложные физико-химические процессы, лежащие в основе функционирования живых систем. В их компетенцию входит вычисление электрических зарядов по поверхности молекул и их передача, изучение подвижности участков и изменения параметров структуры при изменении свойств среды. Они умеют прогнозировать структуру молекулы и её свойства ещё до того, как молекула будет синтезирована (компьютерное и математическое моделирование), а значит, существенно экономят время и ресурсы химиков.

Сложности:

  • надо круто разбираться во всех перечисленных дисциплинах;
  • программировать;
  • делать визуализацию;
  • производить грамотные расчёты;
  • ездить на конференции на английском.

Где учат:

Добавим к перечисленному в специальности выше шикарное программирование на C++, Python, R на самом высоком уровне, владение методами работы с большими объёмами данных на SQL, отличное знание MATLAB и получим следующее направление.

4. Биоинженерия и биоинформатика

Это область, где математика встречается с молекулой. Здесь занимаются сложным компьютерным анализом в геномике, ищут сходство и различие между геномами разных живых организмов, разрабатывают алгоритмы и программы для предсказания структуры белков, изучают эволюцию на уровне ДНК, а не просто физиологии, строят компьютерные модели популяций, чтобы предсказывать их поведение во времени, помогают биохимикам делать тест-системы для быстрого анализа на генетические заболевания и/или предрасположенность к ним и многим другим.

Сложности:

  • порядка 30 основных биоинформатических программ и ещё куча баз данных;
  • отсутствие литературы на русском языке;
  • сложная учёба.

Всё это компенсирует зарплата. У хорошего биоинформатика она начинается от 100 000 рублей. Ещё во многих компаниях есть возможность удалённой работы. Например, я сотрудничаю со специалистом, который живет на Бали.

Где учат:

  • профильный факультет биоинженерии и биоинформатики в МГУ, МФТИ, ВШЭ;
  • Институт биоинформатики;
  • Сколковский институт науки и технологий;
  • СПбГУ;
  • ИТМО;
  • СПбАУ РАН.

Не пропустите генную революцию! А лучше — возглавьте её!

5. Молекулярная и трансляционная медицина

Долой обычных терапевтов, грядёт эра высоких медицинских технологий! На этом направлении изучают персонифицированную медицину, ядерную медицину, радиофармацевтику, геномные и постгеномные технологии, разрабатывают био- и фармацевтические препараты и тест-системы, занимаются математическим биомоделированием. Здесь не учат симптомы болезней, а пытаются понять физико-химические причины закономерности развития заболеваний для того, чтобы лечить не симптом, а истинную причину на молекулярном уровне. Для лечения применяют знания не из классической медицины, а из физики, математики, ИКТ и других дисциплин.

Сложности и где учат:

6. Молекулярная и клеточная биология

Основные методы, которые предстоит освоить:

  • генная инженерия;
  • искусственная экспрессия и нокаут генов;
  • выделение, очистка и анализ белков;
  • работа с big data.

Сложности:

  • опять нет ничего на русском;
  • аккуратная работа руками;
  • стык наук.

Где учат:

7. Наноструктуры, материалы и их свойства

Новое слово в физике, электронике, использующей квантовые принципы, и медицине. Изучают сверхпроводниковые гибридные наноструктуры, разрабатывают квантовые компьютеры на этих сверхпроводниках, работают с оптимизацией солнечных батарей. Теперь вместо дорогого кристаллического кремния можно использовать довольно дешёвую плёнку из наноструктур фуллерена без потери качества. Недавно благодаря исследованиям в области нанотехнологий начался промышленный выпуск литий-ионных аккумуляторов, содержащих наночастицы, — они заряжаются с немыслимой ещё вчера скоростью: на 80% всего лишь за минуту (обычно для этого требуется несколько часов). Эти технологии применяются не только в электронике, несколько лет назад появились противоопухолевые препараты в форме нанокапсул. Они действуют сильнее обычных, но атакуют главным образом клетки опухоли, не поражая организм в целом (в отличие от традиционных онкологических средств), эффективность лечения за счёт этого вырастает во много раз. Это современная и очень активно развивающаяся отрасль, научные проекты которой проводятся в ряде институтов совместно со Сколтехом.

Где учиться:

8. Биостатистика

Основа грамотного планирования эксперимента и действительно показательная обработка результатов. Наука, которая знает, что ошибки — наше всё. Например, биостатистика является неотъемлемой частью доклинических и клинических исследований лекарственных средств. Это связано с тем, что в целях наиболее полного изучения действия лекарственных средств на организм необходимо оценить как можно больше параметров как в доклинических исследованиях, так и в исследованиях с участием человека (клинические исследования). Поэтому при изучении влияния лекарственного препарата на различные органы и ткани исследователь имеет дело с огромным объёмом данных, который надо обработать, сделать по нему выводы и представить их в визуально понятной форме. Специалисты по биостатистике работают в специальных программах, чаще всего в SPSS, STATISTICA или в пакете R. Красивого видео не будет, но расскажу, что в работе будут графики, диаграммы, тонны чисел, вероятности, случайные события и благодарные глаза исследователя.

Где учат:

  • мехмат МГУ;
  • экономфак МГУ;
  • РМАНПО;
  • МФТИ;
  • СПбГУ.

На этом на сегодня всё. Учитесь интересно! Следующий пост будет посвящён необычным и самым востребованным специальностям в области физики-математики.

Читайте также: