24 схема работы сетевых протоколов при приеме передаче данных между прикладными программами

Обновлено: 02.05.2024

В большинстве сетевых ОС используется очень небольшой набор собственных протоколов. Эти весьма компактные и высокофункциональные протоколы позволяют сетевой операционной системе рационализировать свою работу, что существенно повышает эффективность совместного использования файлов и принтеров.

Следует отметить, однако, что сами по себе эти протоколы каких-то значительных дополнительных возможностей не предоставляют. В отличие от них, комплект TCP/IP обеспечивает выполнение широчайшей гаммы сервисных функций. Пользователи могут совместно использовать файлы и принтеры. С помощью сервисов эмуляции терминалов они могут выполнять приложения на удаленных компьютерах, позволяя использовать возможности больших систем для выполнения конкретных программ. TCP/IP обладает высокой степенью масштабируемости, и пользователи могут по своему усмотрению выбрать любое подмножество протоколов в качестве клиентских или серверных сервисов.

Другая примечательная черта TCP/IP - его "открытость": это полностью общедоступная спецификация. Любой человек может предлагать дополнения к этой спецификации, и процесс протекает абсолютно открыто. Так, многие фирмы предлагают свои платформы с уже встроенными протоколами и сервисами TCP/IP . Это облегчает конечному пользователю задачу совместного использования различных ресурсов без привязки к какому-то одному поставщику.

Третье важное преимущество TCP/IP состоит в том, что это набор очень надежных протоколов, в состав которого входят транспортные протоколы, эффективно работающие в глобальных сетях. Протокол NBF ( и в меньшей степени IPX ) предназначался для использования в локальных сетях. NBF не предусматривает маршрутизацию, т.е. пользователи, подключенные к одному сетевому кабелю, видят серверы, подключенные к другому кабелю, только в том случае, если два этих сегмента соединены мостом и образуют одну логическую сеть. В глобальных сетевых средах эта схема работает плохо. Протокол IPX - полностью маршрутизируемый, но вот более высокоуровневый NCP предусматривает явное квитирование всех передаваемых сетевых пакетов, что сильно замедляет его работу с глобальными сетевыми каналами. Ни один из этих наборов протоколов не подходит для использования в Internet .

Комплект протоколов TCP/IP с самого начала разрабатывался для соединения хост-компьютеров между собой через глобальные сети, поэтому он и маршрутизируемый, и эффективный. Эти достоинства сохраняются и в локальных сетях, что делает TCP/IP отличным вариантом и для мелко-, и для крупномасштабных сетей. Три вышеупомянутых качества (масштабируемость, открытость и надежность) делают TCP/IP привлекательным вариантом для пользователей разнородных сред. Именно поэтому TCP/IP является стержнем Internet .

Функционирование сети TCP/IP

Чтобы лучше понять, как работают некоторые протоколы из набора TCP/IP , рассмотрим работу небольшой сети, состоящей из двух компьютеров, на которых запущено несколько сетевых приложений.

Однако эти приложения не заработают, пока не будут произведены некоторые подготовительные действия. Например, в Ethernet- кадрах, которые идут от Саши к Коле, должна быть информация, которой Саша пока не располагает, - IP -адрес получателя и его MAC -адрес.

Саша знает имя своего компьютера, IP- и MAC -адрес, т.к. все эти параметры прописаны в конфигурации его компьютера. Остается узнать только IP- и MAC -адрес компьютера Коли. Для этого Саша должен воспользоваться системой доменных имен ( DNS ) и протоколом разрешения адресов ( ARP ). Саша знает IP -адрес DNS , т.к. он прописан в конфигурации Сашиной машины. Далее Саша отправляет DNS -запрос системе DNS , спрашивая у нее IP- адрес Колиной машины. DNS отвечает адресом 10.1.1.2. Но Саше все еще нужен адрес Ethernet MAC , использующий адрес 10.1.1.2, поэтому он выполняет широковещательный ARP -зарос. Такой запрос отправляется по широковещательному Ethernet -адресу, чтобы все компьютеры, находящиеся в сети, его получили. Поскольку компьютер Коли подключен к сети, он получает этот запрос. А так как адрес его компьютера 10.1.1.2, а ARP -запрос ищет MAC -адрес, связанный с адресом 10.1.1.2, Коля сообщает свой MAC -адрес. На рис.1 схематически показан весь этот процесс.

Рис. 1. Работа служб DNS и протокола ARP

Теперь Саша знает адреса IP и Ethernet MAC , которые необходимы для отправки данных Коле. Весь этот процесс проходит автоматически, невидимо для пользователя, но важно знать, как это все происходит, чтобы уметь решать возникающие проблемы.

Коле, соответственно, необходимо знать, какому приложению какие данные предназначаются, но все три пакета приходят от одного IP - и MAC -адреса. Можно было бы, конечно, распределять пришедшие пакеты по использованному при передаче протоколу UDP или TCP , но в нашем случае два из трех приложений используют протокол TCP . К счастью, разработчики протоколов UDP и TCP позаботились о распределении пакетов по приложениям и вставили в передаваемые пакеты специальное поле, которое называется номером порта. Процесс разбиения данных по номерам портов называется мультиплексированием, т.е. определение приложения, которое получает данные из пакета. Каждое приложение Саши использует разные номера портов, поэтому Коля знает, какому приложению предназначаются данные.

Итак, мы рассмотрели, как работает элементарная сеть с несколькими приложениями. Давайте теперь познакомимся с использованными в данном примере протоколами немного поближе.

Протоколы канального уровня SLIP и PPP

На канальном уровне используются протоколы SLIP ( Serial Link Internet Protocol - межсетевой протокол для последовательного канала ) и PPP ( Point-to-Point Protocol - протокол "точка-точка" ) .

Протоколы канального уровня SLIP и PPP применяются как на коммутируемых линиях, так и на выделенных телефонных каналах. С их помощью к глобальной сети подключается большинство индивидуальных пользователей, а также небольшие локальные сети. Подобные линии связи могут обеспечивать скорость передачи данных до 115200 бит/с.

Serial Line Internet Protocol (SLIP )

Согласно RFC -1055 впервые SLIP был включен в качестве средства доступа к IP -сети в пакет фирмы 3COM-UNET . В 1984 г. Рик Адамс реализовал SLIP для BSD 4.2 , и таким образом SLIP стал достоянием Internet в целом. Обычно этот протокол применяют как на выделенных, так и на коммутируемых линиях связи со скоростью передачи от 1200 до 19200 бит/с.

Такие операционные системы, как FreeBSD, Linux, NetBSD , которые можно свободно скопировать и установить на своем персональном компьютере, или HP-UX , которая поставляется вместе с рабочими станциями Hewlett-Packard , имеют в своем арсенале программные средства типа sliplogin (FreeBSD) или slp (HP-UX ), обеспечивающие работу компьютера в качестве SLIP -сервера для удаленных пользователей, подключающихся к IP -сети по телефону. Хотя в стандарте SLIP нет определения понятия " SLIP -сервер", обычно используют термины " SLIP -клиент" для компьютера, инициирующего физическое соединение, и " SLIP -сервер" для машины, постоянно включенной в IP -сеть.

В рамках протокола SLIP осуществляется фрагментация IP -пакетов, при этом SLIP -пакет должен начинаться символом ESC (восьмеричное 333 или десятичное 219) и заканчиваться символом END (восьмеричное 300 или десятичное 192). Стандарт не определяет размер SLIP -пакета, поэтому любой интерфейс имеет специальное поле, в котором пользователь должен указать эту длину. SLIP -модуль не анализирует поток данных и не выделяет какую-либо информацию в этом потоке, а также не позволяет выполнять какие-либо действия, связанные с адресами, т.к. в структуре пакета не предусмотрены поле адреса и его специальная обработка. Компьютеры, взаимодействующие по SLIP , обязаны знать свои IP -адреса заранее. SLIP не предусматривает корректировку ошибок линии связи, и коррекция ошибок возлагается на протоколы транспортного уровня - TCP, UDP . В стандартное SLIP не предусмотрена компрессия данных, но существуют варианты протокола с такими возможностями.

Point to Point Protocol (PPP )

Согласно RFC -1661 данный протокол обеспечивает стандартный метод взаимодействия двух узлов сети. Предполагается, что обеспечивается двунаправленная одновременная передача данных. Как и в SLIP , данные разбиваются на пакеты, которые передаются от узла к узлу упорядоченно. В отличие от SLIP , PPP позволяет одновременно передавать по линии связи пакеты различных протоколов. Кроме того, PPP предполагает процесс автоконфигурации обеих взаимодействующих сторон. Собственно говоря, PPP состоит из трех частей: механизма инкапсуляции ( encapsulation), протокола управления соединением ( link control protocol) и семейства протоколов управления сетью ( network control protocols ).

Под датаграммой в PPP понимается информационная единица сетевого уровня (применительно к IP - IP- пакет). Под фреймом понимают информационную единицу канального уровня (согласно модели OSI ). Для обеспечения быстрой обработки информации длина фрейма PPP должна быть кратна 32 битам. Фрейм состоит из заголовка и хвоста, между которыми содержаться данные. Датаграмма может быть инкапсулирована в один или несколько фреймов (Рис.2). Пакетом называют информационную единицу обмена между модулями сетевого и канального уровней. Обычно каждому пакету ставится в соответствие один фрейм, за исключением тех случаев когда канальный уровень требует большей фрагментации данных или, наоборот, объединяет пакеты для более эффективной передачи.

В поле "Протокол" указывается тип инкапсулированной датаграммы. Существуют специальные правила кодирования протоколов в этом поле (см. ISO 3309 и RFC -1661). В поле "Информация" записывается собственно пакет данных, а в поле "Хвост" добавляется заполнитель для выравнивания на 32-битовую границу. По умолчанию длина фрейма PPP устанавливается в 1500 байт, но в это число не входит длина поля "Протокол".

Рис. 2. PPP -фрейм

Протокол управления соединением предназначен для установки соглашения между узлами сети о параметрах инкапсуляции (размер фрейма и т.п.), кроме того, он позволяет проводить идентификацию узлов. Первой фазой установки соединения является проверка готовности физического уровня передачи данных. При этом такая проверка может осуществляться периодически, позволяя реализовать механизм автоматического восстановления физического соединения, как это бывает при работе через модем по коммутируемой линии. Если физическое соединение установлено, то узлы начинают обмен пакетами протокола управления соединением, настраивая параметры сессии. Любой пакет, отличный от пакета протокола управления соединением, не обрабатывается во время этого обмена. После установки параметров соединения возможен переход к идентификации. После всех этих действий происходит настройка параметров работы с протоколами межсетевого обмена ( IP, IPX и т.п.). Для каждого из них используется свой протокол управления. Для завершения работы по протоколу PPP по сети передается пакет завершения работы протокола управления соединением.

Процедура конфигурации сетевых модулей операционной системы для работы по протоколу PPP более сложна, чем для протокола SLIP , однако возможности PPP -соединения гораздо более широкие. Например, при работе через модем модуль PPP сам восстанавливает соединение при потере несущей частоты. Кроме того, модуль PPP автоматически определяет параметры фреймов, в то время как при SLIP их надо задавать вручную.

Point-to-Point Tunneling Protocol (PPTP )

Протокол PPTP - туннельный протокол "точка-точка" - продвинул концепцию PPP на шаг вперед: этот протокол "заворачивает" в PPTP -обертку PPP -пакеты. С эксплуатационной точки зрения, разница между PPP и PPTP заключается только в следующем: чтобы создать PPP -канал, вы набираете номер телефона, а чтобы создать PPTP -канал, вы "набираете" IP -адрес.

Как и в случае с PPP , пакеты PPTP "заворачиваются", транспортируются на другой конец канала (в данном случае в систему, обозначенную IP -адресом, упомянутым в предыдущем абзаце), и "разворачиваются". в результате между дв4умя системами создается "частная виртуальная сеть", по которой передаются пакеты PPTP . Чтобы этот канал был действительно частным, PPTP поддерживает ряд возможностей защиты, вплоть до шифрования всех данных пакета.

Таким образом, с помощью протоколов PPP и SLIP можно установить глобально-сетевое соединение по коммутируемым линиям, ISDN , сетям X.25 и другим каналам. И PPP , и SLIP характеризуются относительной нечувствительностью к помехам в линии и задержкам приема пакетов.

Протокол PPP более гибок, чем SLIP . Принцип его работы заключается в "заворачивании" пакетов транспортных протоколов TCP , IPX или NBF в пакет особого формата и транспортировке завернутого таким образом пакета по каналу ГВС (глобальной вычислительной сети). На другом конце соединения пакет "разворачивается", и исходные пакеты передаются по локальной сети. После установления соединения все эти операции становятся полностью прозрачными для приложений - приложения видят абсолютно нормальные пакеты TCP, IPX и NBF (хотя эти пакеты могут прибывать несколько медленнее, чем по локальной сети).

SLIP менее гибок. Он представляет собой, по сути дела, расширение IP , предназначенное для работы по низкоскоростным каналам, поэтому и поддерживает только IP -сети. Кроме того, он менее устойчив к помехам в линии. Сервис RAS ( Remote Access Services - служба удаленного доступа) операционной системы Windows NT поддерживает SLIP , главным образом, для совместимости с серверами ГВС, работающими на базе ОС UNIX .

PPTP обладает наибольшими функциональными возможностями по сравнению с SLIP и PPP , позволяя устанавливать частные виртуальные защищенные каналы связи.

Межсетевые протоколы

Internet Protocol (IP)

Протокол IP используется для управления рассылкой TCP/IP -пакетов по сети Internet . Среди различных функций, возложенных на IP , обычно выделяют следующие:

  • определение пакета, который является базовым понятием и единицей передачи данных в сети Internet ;
  • определение адресной схемы, которая используется в сети Internet ;
  • передача данных между канальным уровнем (уровнем доступа к среде передачи) и транспортным уровнем (другими словами, преобразование транспортных дейтаграмм во фреймы канального уровня);
  • маршрутизация пакетов по сети, т.е. передача пакетов от одного шлюза к другому с целью передачи пакета машине-получателю;
  • фрагментация и дефрагментация пакетов транспортного уровня.

Главной особенностью протокола IP является отсутствие ориентации на физическое или виртуальное соединение. Это значит, что, прежде чем послать пакет в сеть, модуль операционной системы, реализующий IP , не проверяет возможность установк4и соединения, т.е. никакой управляющей информации кроме той, что содержится в самом IP -пакете, по сети не передается. Кроме того, IP не заботится о проверке целостности информации в поле данных пакета, что заставляет отнести его к протоколам ненадежной доставки. Целостность данных проверяется протоколами транспортного уровня (TCP) или протоколами приложений.

Таким образом, вся информация о пути, по которому должен пройти пакет, определяется по состоянию сети в момент прохождения пакета. Эта процедура называется маршрутизацией, в отличие от коммутации, используемой для предварительного установления маршрута следования отправляемых данных.

Существует несколько версий протокола IP . В настоящее время используется версия Ipv4 (RFC 791) , структура пакета которой представлена на рис. 3.

Рис. 3. формат пакета Ipv4

Фактически в заголовке пакета определены все основные данные, необходимые для перечисленных выше функций протокола IP : адрес отправителя, адрес получателя, общая длина пакета и тип пересылаемой дейтаграммы.

Используя данные заголовка, машина может определить, на какой сетевой интерфейс отправлять пакет. Если IP -адрес получателя принадлежит одной из ее сетей, то на интерфейс этой сети пакет и будет отправлен, в противном случае пакет отправят на другой шлюз.

На основе протокола транспортного уровня IP -модуль производит экскапсуляцию информации из IP -пакета и ее передачу на модуль обслуживания соответствующего транспорта.

При обсуждении формата заголовка пакета IP вернемся еще раз к инкапсулированию. Как уже отмечалось, при обычной процедуре инкапсулирован я пакет просто помещается в поле данных фрейма, а в случае, когда это не может быть осуществлено, разбивается на более мелкие фрагменты. Размер максимально возможного фре2йма, который передается по сети, определяется величиной MTU (Maximum Transmission Unit ), определенной для протокола канального уровня. Для последующего восстановления пакет IP должен держать информацию о своем разбиении, и для этой цели используются поля Flags и Fragmentation offset . В этих полях определяется, какая часть пакета получена в данном фрейме, если этот пакет был фрагментирован на более мелкие части.

Internet Control Message Protocol (ICMP)

Routing Information Protocol (RIP)

Address Resolution Protocol (ARP)

К моменту, когда протокол IP должен отправлять дейтаграмму, он уже информирован протоколами верхних уровней об IP -адресе получателя. В свою очередь, он должен сообщить протоколу канального уровня аппаратный адрес удаленного компьютера. Если этот адрес не известен, для поиска нужной информации применяется протокол определения адресов ARP ( Address Resolution Protocol - протокол разрешения адресов), который ведет широковещательный опрос сети - запрашивает у каждого имеющего определенный IP -адрес компьютера адрес его аппаратного обеспечения (или, другими словами, MAC -адрес). Протокол ARP может перевести IP -адрес в адрес аппаратного обеспечения, например, в MAC -адрес сетевой платы удаленного компьютера.

Протоколы транспортного уровня

User Datagram Protocol (UDP)

Таблица 1. Стандартные сетевые сервисы и соответствующие им порты

Наиболее известными сервисами, основанными на UDP , являются служба доменных имен BIND и распределенная файловая система NFS .

Transfer Control Protocol (TCP)

В том случае, когда контроль качества передачи данных по сети имеет особое значение для приложения, используется протокол TCP . Этот протокол также называют надежным, ориентированным на соединение, потокоориентированным протоколом. Рассмотрим формат передаваемой по сети дейтаграммы (рис. 5).

Рис. 5. Структура пакета TCP

Потоковый характер протокола определяется тем, что SYN определяет стартовый номер для отсчета переданных байтов, а не пакетов. Это значит, что если SYN был установлен в 0 и было передано 200 байтов, то номер, установленный в следующем пакете, будет равен 201, а не 2.

Потоковый характер протокола и требование подтверждения получения данных порождают проблему скорости передачи данных. Для ее решения используется поле Window ( окно). Идея применения "окна" достаточно проста: передавать данные, не дожидаясь подтверждения об их получении. Это значит, что источник передает некоторое количество данных, равное Window , без ожидания подтверждения об их приеме, и только после этого останавливает передачу и ждет подтверждения. Если он получит подтверждение только на часть переданных данных, то начнет передачу новой порции с номера, следующего за подтвержденным.

В заключение приведем таблицу, содержащую сведения о соответствии прикладных протоколов и назначаемым им портам. В таблице отмечается также, какой из транспортных протоколов при этом используется.

TCP/IP

Протокол TCP/IP – это целая сетевая модель, описывающая способ передачи данных в цифровом виде. На правилах, включенных в нее, базируется работа интернета и локальных сетей независимо от их назначения и структуры.

Что такое TCP/IP

Произошло наименование протокола от сокращения двух английских понятий – Transmission Control Protocol и Internet Protocol. Набор правил, входящий в него, позволяет обрабатывать как сквозную передачу данных, так и другие детали этого механизма. Сюда входит формирование пакетов, способ их отправки, получения, маршрутизации, распаковки для передачи программному обеспечению.

Что такое TCP/IP

Стек протоколов TCP/IP был создан в 1972 году на базе NCP (Network Control Protocol), в январе 1983 года он стал официальным стандартом для всего интернета. Техническая спецификация уровней взаимодействия описана в документе RFC 1122.

В составе стека есть и другие известные протоколы передачи данных – UDP, FTP, ICMP, IGMP, SMTP. Они представляют собой частные случаи применения технологии: например, у SMTP единственное предназначение заключается в отправке электронных писем.

Уровни модели TCP/IP

Протокол TCP/IP основан на OSI и так же, как предшественник, имеет несколько уровней, которые и составляют его архитектуру. Всего выделяют 4 уровня – канальный (интерфейсный), межсетевой, транспортный и прикладной.

Уровни модели TCP/IP

Канальный (сетевой интерфейс)

Аппаратный уровень обеспечивает взаимодействие сетевого оборудования Ethernet и Wi-Fi. Он соответствует физическому из предыдущего стандарта OSI. Здесь задача состоит в кодировании информации, ее делению на пакеты и отправке по нужному каналу. Также измеряются параметры сигнала вроде задержки ответа и расстояния между хостами.

Межсетевой (Internet Layer)

Интернет состоит из множества локальных сетей, объединенных между собой как раз за счет протокола связи TCP/IP. Межсетевой уровень регламентирует взаимодействие между отдельными подсетями. Маршрутизация осуществляется путем обращения к определенному IP-адресу с использованием маски.

Транспортный уровень (Transport Layer)

Следующий уровень отвечает за контроль доставки, чтобы не возникало дублей пакетов данных. В случае обнаружения потерь или ошибок информация запрашивается повторно. Такой подход дает возможность полностью автоматизировать процессы независимо от скорости и качества связи между отдельными участками интернета или внутри конкретной подсети.

Протокол TCP отличается большей достоверностью передачи данных по сравнению с тем же UDP, который подходит только для передачи потокового видео и игровой графики. Там некритичны потери части пакетов, чего нельзя сказать о копировании программных файлов и документов. На этом уровне данные не интерпретируются.

Прикладной уровень (Application Layer)

Здесь объединены 3 уровня модели OSI – сеансовый, представления и прикладной. На него ложатся задачи по поддержанию сеанса связи, преобразованию данных, взаимодействию с пользователем и сетью. На этом уровне применяются стандарты интерфейса API, позволяющего передавать команды на выполнение определенных задач.

Порты и сокеты – что это и зачем они нужны

Комбинация IP-адреса и порта называется сокетом и используется при идентификации компьютера. Если первый критерий уникален для каждого хоста, второй обычно фиксирован для определенного типа приложений. Так, получение электронной почты проходит через 110 порт, передача данных по протоколу FTP – по 21, открытие сайтов – по 80.

Преобразование IP-адресов в символьные адреса

Технология активно используется для назначения буквенно-цифровых названий веб-ресурсов. При вводе домена в адресной строке браузера сначала происходит обращение к специальному серверу DNS. Он всегда прослушивает порт 53 у всех компьютеров, которые подключены к интернету, и по запросу преобразует введенное название в стандартный IP-адрес.

После определения точного местонахождения файлов сайта включается обычная схема работы – от прикладного уровня с кодированием данных до обращения к физическому оборудованию на уровне сетевых интерфейсов. Процесс называется инкапсуляцией информации. На принимающей стороне происходит обратная процедура – декапсуляция.

· Сетевой уровень является самым низким уровнем модели TCP / IP.

· Сетевой уровень - это комбинация физического уровня и уровня канала передачи данных, определенных в эталонной модели OSI.

· Он определяет, как данные должны передаваться физически через сеть.

· Этот уровень в основном отвечает за передачу данных между двумя устройствами в одной сети.

· Функции, выполняемые этим уровнем, включают инкапсуляцию IP-дейтаграммы в кадры, передаваемые сетью, и отображение IP-адресов в физические адреса.

· Протоколы, используемые этим уровнем: Ethernet, Token Ring, FDDI, X.25, Frame Relay.

Интернет-слой

Интернет-уровень - это второй уровень модели TCP / IP.

Уровень Интернета также известен как сетевой уровень.

Основная ответственность интернет-уровня - отправлять пакеты из любой сети, и они прибывают в пункт назначения независимо от маршрута, который они выбирают.

Ниже приведены протоколы, используемые на этом уровне:

Протокол IP : протокол IP используется на этом уровне, и он является наиболее важной частью всего пакета TCP / IP.

Ниже приведены обязанности этого протокола:

1) IP-адресация: этот протокол реализует логические адреса узлов, известные как IP-адреса. IP-адреса используются Интернетом и более высокими уровнями для идентификации устройства и обеспечения межсетевой маршрутизации.

2) Связь между хостами: определяет путь, по которому должны передаваться данные.

3) Инкапсуляция и форматирование данных.

5) Маршрутизация: когда IP-дейтаграмма отправляется по одной и той же локальной сети, такой как LAN, MAN, WAN, это называется прямой доставкой. Когда источник и пункт назначения находятся в удаленной сети, IP-дейтаграмма отправляется косвенно. Это может быть достигнуто путем маршрутизации дейтаграммы IP через различные устройства, такие как маршрутизаторы.

Протокол ARP

· ARP означает Протокол разрешения адресов.

· ARP - это протокол сетевого уровня, который используется для поиска физического адреса по IP-адресу.

Два термина в основном связаны с протоколом ARP:

· Запрос ARP: когда отправитель хочет узнать физический адрес устройства, он передает запрос ARP в сеть.

· Ответ ARP: Каждое устройство, подключенное к сети, будет принимать запрос ARP и обрабатывать запрос, но только получатель распознает IP-адрес и отправляет обратно свой физический адрес в форме ответа ARP. Получатель добавляет физический адрес как в кэш-память, так и в заголовок дейтаграммы.

Протокол ICMP

ICMP расшифровывается как Internet Control Message Protocol.

Это механизм, используемый хостами или маршрутизаторами для отправки уведомлений о проблемах с дейтаграммой обратно отправителю.

Дейтаграмма перемещается от маршрутизатора к маршрутизатору, пока не достигнет своего пункта назначения. Если маршрутизатор не может маршрутизировать данные из-за каких-то необычных условий, таких как отключенные каналы горит свитч или перегружена сеть, то протокол ICMP используется для информирования отправителя о невозможности доставки дейтаграммы.

Протокол ICMP в основном использует два термина:

· Тест ICMP: Тест ICMP используется для проверки доступности пункта назначения или нет.

· ICMP Reply: ICMP Reply используется для проверки, отвечает ли целевое устройство или нет.

Основная обязанность протокола ICMP - сообщать о проблемах, а не исправлять их. Ответственность за исправление лежит на отправителе.

Транспортный уровень

Транспортный уровень отвечает за надежность, управление потоком и исправление данных, которые передаются по сети.

На транспортном уровне используются два протокола: протокол дейтаграмм пользователя и протокол управления передачей.

Протокол пользовательских дейтаграмм (UDP)

Это обеспечивает обслуживание без установления соединения и сквозную доставку передачи.

Это ненадежный протокол, поскольку он обнаруживает ошибки, но не указывает на ошибку.

Протокол пользовательских дейтаграмм обнаруживает ошибку, а протокол ICMP сообщает об ошибке отправителю о том, что дейтаграмма пользователя была повреждена.

· Общая длина: определяет общее количество байтов пользовательской дейтаграммы в байтах.

· Контрольная сумма: контрольная сумма - это 16-битное поле, используемое для обнаружения ошибок.

UDP не указывает, какой пакет потерян. UDP содержит только контрольную сумму; он не содержит никакого идентификатора сегмента данных.

Протокол управления передачей (TCP)

· Предоставляет приложениям полный сервис транспортного уровня.

· Создает виртуальный канал между отправителем и получателем и активен на время передачи.

TCP является надежным протоколом, так как он обнаруживает ошибку и повторно передает поврежденные кадры. Следовательно, он гарантирует, что все сегменты должны быть приняты и подтверждены до того, как считается, что передача завершена, и виртуальный канал сброшен.

На принимающей стороне TCP собирает все сегменты и упорядочивает их на основе порядковых номеров.

Уровень приложений

Прикладной уровень является самым верхним уровнем в модели TCP / IP.

Он отвечает за обработку протоколов высокого уровня.

Этот уровень позволяет пользователю взаимодействовать с приложением.

Когда один протокол прикладного уровня хочет установить связь с другим прикладным уровнем, он передает свои данные на транспортный уровень.

Ниже приведены основные протоколы, используемые на уровне приложений:

2) SNMP: SNMP означает простой протокол управления сетью. Это платформа, используемая для управления устройствами в Интернете с помощью набора протоколов TCP / IP.

3) SMTP: SMTP означает простой протокол пересылки почты. Протокол TCP / IP, поддерживающий электронную почту, называется протоколом простой передачи почты. Этот протокол используется для отправки данных на другой адрес электронной почты.

4) DNS: DNS обозначает систему доменных имен. IP-адрес используется для уникальной идентификации подключения хоста к Интернету. Но люди предпочитают использовать имена вместо адресов. Поэтому система, которая сопоставляет имя с адресом, называется Системой доменных имен.

5) Телнет: это сокращение от терминальной сети. Он устанавливает соединение между локальным компьютером и удаленным компьютером таким образом, чтобы локальный терминал представлял собой терминал в удаленной системе.

6) FTP: FTP означает протокол передачи файлов. FTP - это стандартный интернет-протокол, используемый для передачи файлов с одного компьютера на другой.

Примечание . Строго говоря, задачи выполняют не сами протоколы, а соответствующие программы. Протоколы же представляют собой всего-навсего форматы представления данных того или иного уровня. А программы, выполняющие обработку (синтаксический анализ) данных в соответствии с уровнем, должны осуществлять ее в соответствии с правилами протокола этого уровня.

Существует модель OSI (Open System Interface или модель открытых систем), содержащая 7 уровней протоколов:

Несмотря на, казалось бы, избитость этой темы, все же, некоторые моменты изложены в книгах, интернетных ресурсах как-то туманно. Мы в этой статье постараемся немного прояснить ситуацию.

Модель OSI: схема

Модель OSI является семиуровневой. Однако, зачастую, на практике используются не все семь уровней, а меньше. Например, как правило, протоколы сеансового и представительского уровня, в силу небольшого объема выполняемых задач, объединяются с транспортным или прикладным уровнями. Поэтому, фактически, на практике используется 3…5 уровней протоколов.

Что часто интересует программиста, занимающегося сетевыми технологиями?

Надо сказать, что сетевые технологии в настоящее время, на самом деле, уже давно разделились, как минимум, на три отдельных, не особенно сильно пересекающихся, очень условных области:

Физический уровень

Так как этот уровень имеет дело с электрическими сигналами в виде битов, соответственно, их источником и адресатом являются соответствующие физические сетевые устройства (например, модемы и/или сетевые карты). Эти физические устройства могут быть связаны друг с другом посредством той или иной среды передачи – USB-кабель, оптоволокно, радиоканал и т.п. На физическом уровне вообще не идет речи об IP-адресах, доменах, URL и т.п. Эти абстракции появляются на более высоких уровнях модели OSI.

Здесь играет роль правильность составления кадра из битов, для чего используются различные способы низкоуровневого или физического кодирования: манчестерский код, дифференциальное, потенциальное кодирование, NRZ, БВН и многие другие способы. Физическое кодирование осуществляется в рамках соответствующих стандартов, например, IEEE 802.3 .

Для чего используется физическое кодирование? Для того, чтобы как-то подстраховать сетевую передачу битов (в составе кадра) от ошибок. Вследствие заторов в сети, а также ее возможной неисправности, наличия помех, не все биты кадра могут дойти до адресата. Предположим, клиент (источник) передал в сеть следующие биты:

Если все будет хорошо, то эти и именно эти биты должен бы принять приемник (сервер), находящийся на другом конце сетевого соединения. Но, зачастую, практика вносит свои коррективы. Например, вместо указанной последовательности битов может прийти:

1101100001 0 011

Некоторые биты могут попросту затеряться, а некоторые – добавиться дополнительно взамен потерянных. В итоге - серверу придет не тот кадр, который был отправлен клиентом (источником). Так вот, физическое кодирование и служит для того, чтобы если не полностью избавиться от ошибок передачи кадров битов, то, по крайней мере, свести такие ошибки к минимуму. Если в процессе передачи возникла ошибка (по крайней мере, один бит передан неверно), то передачу кадра, содержащего этот бит, придется повторять – до тех пор, пока не будет передан правильный кадр или до тех пор, пока сетевое соединение не будет прервано.

Канальный уровень

На этом уровне происходит контроль правильности составления кадров (фреймов). Типичный размер фрейма – 1 кБ. При разработке стеков протоколов на канальном уровне осуществляется помехоустойчивое кодирование. К таким способам кодирования относится код Хемминга, блочное кодирование, код Рида-Соломона. В программировании этот уровень представляет драйвер сетевой платы, в операционных системах имеется программный интерфейс взаимодействия канального и сетевого уровней между собой. Это не новый уровень, а просто реализация модели для конкретной операционной системы. Здесь, как и на физическом уровне, также пока нет ни байтов, ни файлов, ни т.п.

Однако, средств контроля правильности кадров, предоставляемых канальным уровнем, не застраховывает ото всех ошибок передачи. Поэтому дополнительные средства контроля используются в сетевых передачах на более вышележащем (транспортном) уровне. Только канального уровня для контроля правильности сетевой передачи недостаточно.

Взаимодействие на канальном уровне осуществляется, также как и на физическом, естественно, между физическими устройствами. Однако, для адресации используются так называемые МАС-адреса (аппаратные адреса). Они имеют следующий примерный вид (в шестнадцатеричном представлении):

Каждый компьютер в сети интернет имеет СВОЙ уникальный аппаратный адрес. МАС-адрес источника и адресата входят в состав кадра, формирующегося на канальном уровне. Отметим, что и здесь никаких IP-адресов, доменных имен и др. нет в помине. Речь идет просто о передаче битовых кадров от сетевого устройства с одним МАС-адресом другому устройству (с другим MAC-адресом). Именно так работает современный интернет в подавляющем большинстве случаев.

Следует иметь в виду, что сервер (компьютер-адресат), получая пакеты от клиента (например, от браузера), естественно, получает и МАС-адрес компьютера, на котором запущен. браузер. Так же, как и его IP-адрес. И если IP-адрес несложно подменить, например, путем соединения с сервером-адресатом через прокси-сервер, то подмена МАС-адреса представляет собой куда более сложное занятие. Ранние версии операционных систем Linux, как правило, позволяли делать такую подмену на пользовательском уровне. Тогда как современные версии это запрещают (надеемся, понятно, почему). Впрочем, конечно, никто никому не мешает заново собрать и перекомпилировать ядро операционной системы, в котором уже предусмотреть такую замену. Однако, сделать это способен далеко не каждый программист. Или же можно использовать такой прокси-сервер, который будет парсить заголовки протоколов канального уровня и записывать в них какой-нибудь другой МАС-адрес.

Поэтому КАЖДЫЙ, кто выходит в интернет со своего компьютера, на котором установлена стандартная операционная система, типа Windows, Linux, MacOS, Android и т.п., неважно, через прокси-сервер или напрямую, должен ясно понимать, что МАС-адрес его компьютера может быть известен серверу-адресату . Если только, повторимся, он не использует такой прокси-сервер, который способен сделать подмену МАС-адреса. В общем же случае ЛЮБОЙ сервер способен точно идентифицировать пользователя - именно по его MAC-адресу. Кстати, этот аргумент когда-нибудь вполне сможет использовать Раскомнадзор, если ему будет дана команда - заблокировать интернет. Тут же в СМИ возникнут статьи на тему: "А Вы знаете, что любой сервер знает о ВАС ВСЁ?". Вот, мол, Раскомнадзор стал настолько заботлив о пользователях интернета, что решил защитить их от него. Причем, отметим, что Яндекс- и Google-метрики - это сущий пустяк по сравнению с этим. Ни Google, ни Яндекс не собирают информацию о МАС-адресах посетителей сайтов. Ну, по крайней мере, с их слов.

Аналогию можно привести в отношении сотовых телефонов. Ведь любой сотовый телефон представляет собой устройство, подключенное к внешней сети (через ближайшую вышку сотовой связи). КАЖДЫЙ сотовый телефон имеет уникальный МАС-адрес, как и компьютер, ноутбук и т.д. Поэтому ЛЮБОЙ сотовый оператор способен в течение нескольких секунд идентифицировать, с какого именно телефона производится звонок (вызов) на конкретную вышку. А телефонный номер здесь, по идее, и не столь важен, сим-карта может быть вообще любая, это не имеет значения. Может возникнуть вопрос: почему же тогда так называемые "правоохранительные" органы зачастую утверждают, что, якобы, "не могут найти" краденые сотовые телефоны? Ответ: потому, что не хотят или не имеют полномочий. Впрочем, может и хотят, и имеют полномочия, но кто-то вышестоящий запрещает им это делать. Другое дело, что ряд сотовых телефонов можно перепрошить, т.е. подменить в них МАС-адрес. Но, разве те, кто воруют телефоны, а также те, кто покупает краденые телефоны - это всегда делают? Как правило, нет. Ибо и те, и другие прекрасно осведомлены о том, что ни с какими такими МАС-адресами никто дела иметь не будет. Ну, за исключением особо важных случаев, конечно (точнее, "особо важных персон"). Там-то, да, будут смотреть не только МАС-адреса, а и многое другое.

Сетевой уровень

На этом уровне протоколов появляется такая сетевая абстракция, как IP-адрес узла сети. Придумана она исключительно для того, чтобы компьютерам (точнее, пользователям компьютеров) проще было взаимодействовать друг с другом. Чтобы на основе IP-адресов можно было выделять классы сетей, осуществлять защиту от доступа и т.п. Хотя, повторимся, все это вполне можно было бы осуществить, используя исключительно МАС-адреса, не пользуясь технологией IP-адресов.

Т.е. еще раз следует подчеркнуть: фактически, связь осуществляется на основе МАС-адресов. Тогда как IP-адреса используются больше для организации сетевого взаимодействия, понятного не только для компьютеров, но и для людей.

Транспортный уровень

На транспортном уровне появляется также такое понятие, как порт (точнее, логический порт). Которого не существовало на нижележащих уровнях. Порт в данном случае – это просто некое целое число из определенного диапазона значений, при помощи которого (а также при помощи IP-адреса узла) происходит адресация между узлами в сетевых соединениях. Наличие конкретного порта, а также IP-адреса – необходимо и достаточно для того, чтобы однозначно адресовать сетевой интерфейс и, соответственно, запрос к нему. Открытый порт на конкретном узле сети соответствует сокету, который находится в режиме прослушивания или, наоборот, приема сетевых запросов.

Итак, на транспортном уровне для облегчения управления взаимодействием узлов сети добавляется порт сокета, открытого на прием или передачу данных.

Прикладной уровень

В общем, дело обстоит следующим образом:

Клиент (например, браузер) начинает открывать страницу, URL которой введен, к примеру, в его адресной строке. Для начала, браузер будет делать запрос в сеть на предмет того – какому IP-адресу соответствует сервер с доменными именем, содержащимся в открываемом URL. Далее, делается запрос (см. выше) о том, каков МАС-адрес узла сети, соответствующий этому IP-адресу. И только после этого, когда браузер получает в свое распоряжение MAC-адрес искомого узла, он и может выполнить запрос к нему.

Строго говоря, описание сетевого взаимодействия немного упрощено и не учитывает, например, прохождение запроса в локальных сетях, роутерах, маршрутизаторах.

Типичная схема передачи сетевого запроса

Инкапсуляция протоколов

Кадр протокола канального уровня

В связи с этим предлагаем взглянуть на схему инкапсуляции протоколов:

или, отображая в виде рисунка:

Схема инкапсуляции сетевых протоколов (предварительно)

Для большей полноты изображения, покажем место IPv4-протокола в кадре канального протокола:

Схема инкапсуляции сетевых протоколов (полностью)

Если данные, содержащиеся в поле данных протокола IPv4, имеют достаточно большой размер (нередко так и бывает, когда по сети передаются большие объемы информации), тогда формируются не один, а несколько кадров в формате канального протокола.

Гриша, если еще актуально: данные протокола НТТР вложены внутрь ТСР-пакетов. Порты разные у НТТР и ТСР и независимые друг от друга.

* тогда на какой МАС-адрес будет отправлять ответ адресат? Для ответа нам не нужен МАК отправителя для этого у нас есть его IP. Мы отправляем ответ в дефолтный шлюз (если для сети отправителя нет особых маршрутов).

Читайте также: