Что такое гидрофон на судах промысловых

Обновлено: 17.05.2024

В своем блоге буду описывать основы технологии судоремонта, методы дефектоскопии, восстановления и упрочнения деталей, виды и методы ремонта судов и механизмов.Будет приведена технологическая документация на ремонт и изготовление деталей.

Оглавление

ПРОМЫСЛОВЫЕ УСТРОЙСТВА ДЛЯ ТРАЛОВОГО ЛОВА

На рыболовных траулерах применяется бортовое и кормовое траление. Различные способы буксировки трала, его спуска и подъема обусловливают различное расположение на'палубе и конструктивные особенности промысловых механизмов и устройств на рыболовных судах бортового и кормового траления.
В настоящей главе рассматриваются наиболее распространенные в отечественном рыболовном флоте схемы расположения промысловых устройств и механизмов на РТ (рыболовном траулере) бортового траления и на БМРТ (большом морозильном рыболовном траулере) кормового траления. Здесь же помещено описание одного из отечественных проектов промыслового устройства для РТМ (рыболовного траулера морозильного) с раздельными лебедками для выборки ваеров и для подъема трала на палубу.
На рис. 1 приведена схема промыслового устройства РТ бортового траления, типовая для РТ всех серий. Расположение промысловых устройств для тралового лова на СРТ (среднем рыболовном траулере) аналогично приведенному, причем на большинстве СРТ траление производится только с правого борта. Это упрощает их промысловое устройство. На главной палубе, у надстройки, установлена траловая лебедка 15, обслуживающая все операции по спуску и подъему трала. Пост управления расположен позади лебедки и дублируется по бортам для удобства работы с тралом правого и левого борта. Управляющий лебедкой может видеть всю палубу и людей, работающих у механизмов.
Ваера с барабанов лебедки идут на центральные ролики 13. Ролики спарены на двух станинах: одна пара для правого, другая — для левого ваера. Каждая из них расположена так, что ролик, находящийся у борта, установлен сзади ролика у диаметральной плоскости судна. Эти ролики снижают до минимума усилия, действующие на каретки ваероукладчиков. Кроме центральных, У бортов на фундаментах расположены бортовые ролики 12.


Диаметр роликов должен быть равным 15 4-20 диаметрам ваера, а высота ролика и ширина прохода для ваера — такими, чтобы через него свободно прошли скобы (чекели) и вертлюги.
С каждого борта на палубе на фундаментах устанавливаются носовая 9 и кормовая 3 траловые дуги, которые обычно изготавливаются из двутавровой стали. На фундаментах дуг поставлены коренные ролики 11 и 4, а к вершинам дуг при помощи скоб крепятся на вертлюгах обоймы с подвесными роликами 10. Ваер от носового центрального ролика нерабочего борта идет к коренному ролику носовой дуги и через подвесной ролик уходит за борт. От кормового центрального ролика борта, с которого производится траление, ваер идет к бортовому ролику, а от него через коренной и подвесной ролики кормовой дуги уходит за борт. На рис. 1 показана проводка ваеров при работе тралом с правого борта.
Дуги устанавливаются под некоторым углом, и их вершины несколько выходят за край фальшборта. Это необходимо для подъема грунтропа на борт. Высота дуги рассчитывается так, чтобы между подвесным роликом и планширем свободно могла пройти траловая доска, которая при переходах лежит между дугой и бортом. Из этого следует, что расстояние между подвесным роликом дуги и планширем должно быть не менее половины высоты траловой доски, а расстояние между дугой и планширем — не менее толщины траловой доски со сложенными дужками. Расстояние между дугами определяется длиной траулера и расположением его надстроек. Для устойчивости дуги укрепляются стальными тягами, которые идут к надстройке от кормовой, а к козырьку и полубаку — от носовой дуги. К дугам за рымы крепятся цепные стопоры для выключения траловых досок из линии ваер — кабель и их подвешивания. К носовым дугам за рымы крепятся стальные концы — вожжи, которые другими концами прикрепляются к стойкам на фальшборте около квартропной тумбы. Середину вожжей горденем, пропущенным через блок, приподнимают над планширем. Вожжи предохраняют куток трала от раскачивания при волнении во время его подъема.
Сзади кормовых дуг с каждого борта установлены стопор-блоки 2, которыми ваера, сведенные вместе перед началом траления, удерживаются у фальшборта в районе кормы судна. Стопор-блок сводит ваера; у кормы судна в одну точку, что придает симметричность ходу трала, исключает возможность попадания ваеров на гребной винт и создает постоянное плечо момента от усилия на ваерах, разворачивающего траулер в сторону рабочего борта. Для этой цели раньше пользовались цепными стопор-блоками, представляющими собой глаголь-гак на цепи. Опасности работы с ними и значительного истирания ваеров, особенно при выравнивании их длины, можно избегнуть благодаря применению полуавтоматических стопор-блоков. Ваера сводят мессенжером, для направления которого на планшире за стопор-блоком устанавливают кип 1 с двумя вертикальными и горизонтальным роликами.





На рис. 5 показана схема расположения промысловых механизмов и устройств для одного из отечественных проектов РТМ с кормовым тралением, раздельными ваерными лебедками и лебедками для подъема и спуска трала. Промысловая палуба 5 расположена на корме судна за надстройкой, в средней части ее кормовая оконечность переходит в слип 16. Как обычно, промысловая палуба в районе, предназначенном для работы с тралом, и слип ограждены фальшбортом, имеются слиповые ворота. У кормовой оконечности судна над слипом находится переходной мостик 13.
По обеим сторонам слипа на промысловой палубе у бортов установлены ваерные лебедки 11, общий пост управления которыми находится в рубке, расположенной у основания П-образной мачты 9, причем управляющий лебедками хорошо видит промысловую палубу и слип. Ваера от барабанов лебедок идут через подвесные ролики 14 за корму. Для промера ваеров на переходном мостике 13 имеется ваерная вьюшка 15.
В носовой оконечности промысловой палубы у стенки надстройки расположены две вытяжные лебедки 4, служащие для выборки кабелей и вытяжных концов 3. Причем кабели выбирают на барабаны концами 2. Над слипом на переходном мостике имеется канифас-блок 12, через который проводится трос /, спускающий трал в воду.
В средней части горизонтальной балки П-образной мачты расположены два блока 8, которые используются при выливке улова.
Из рис. 5 ясна также и схема грузового устройства РТМ. На стойках П-образной мачты установлены две кормовые стрелы 10 и две носовые стрелы 6. Шкентели кормовых стрел выбирают грузовыми барабанами ваерных лебедок 11, а шкентели носовых стрел — барабанами грузовых лебедок 7. Детали тралового и грузового устройств РТМ аналогичны соответствующим деталям тех. же устройств БМРТ.


Примечания: I. Под номинальным суммарным тяговым усилием лебедки следует понимать тяговое усилие, развиваемое на обоих ваерных барабанах при намотке ваеров на средних витках при номинальной мощности привода.
2. Принятые скорости выбирания ваера при номинальном тяговом усилии являются средними скоростями, которых достигают траловые лебедки на средних витках намотки ваера.
3. Для ваера принят стальной канат типа ЛК-Р.
4. Рекомендуется тяговое усилие турачки на ваерном валу траловой лебедки около 160 % от номинального тягового усилия одного ваерного барабана пря скорости выбирания троса 25—50 м/мин.
5. Тяговое усилие турачки на вспомогательном валу траловой лебедки исчисляется примерно в 50 % от номинального тягового усилия одного ваерного барабана при скорости выбирания троса 50—70 м/мин.
6. Тяговое усилие одного вспомогательного барабана лебедки следует предусмотреть не менее 150 % от номинального тягового усилия одного ваерного барабана при скорости выбирания вытяжного конца 15—25 м/мин.
7. Траловые лебедки типов V—VIII с электрическим и гидравлическим приводами обеспечивают травление ваеров с ваерных барабанов при включенных двигателях со скоростью, равной 120—180 м/мин.

Примечания 4, 5 и 6 предусматривают определенную схему подъема-спуска трала. При изменении промысловой схемы возможны и другие рекомендации усилий и скоростей на турачках и вспомогательных барабанах.

В отечественном промысловом флоте применяются траловые лебедки самых разнообразных типов и параметров. Конструкция большинства лебедок, особенно прежних выпусков, уже достаточно подробно описана в технической литературе. Настоящий раздел посвящен в основном конструкции траловых лебедок новых, наиболее прогрессивных судов, которыми пополняется промысловый флот, и Некоторым интересным проектным разработкам, имеющим перспективу. Здесь же помещен материал о некоторых лебедках прежних выпусков, имеющих широкое распространение во флоте или не получивших достаточного освещения в технической литературе. Описание конструкций траловых лебедок в настоящем разделе сгруппировано в зависимости от их привода.

В последние годы отечественный промысловый флот пополнился наиболее прогрессивными судами типа БМРТ, имеющим наряду с траловыми и грузовые лебедки.

Трюмными называют группу судовых систем, предназначенных для удаления за борт воды, скапливающейся в корпусе судна в процессе нормальной эксплуатации, а также воды, попавшей в него в результате аварии. К ним относятся:

  • осушительная
  • водоотливная
  • перепускная система
  • система нефтесодержащих трюмных вод
  • вспомогательные устройства, обслуживающие трюмные пространства (воздушные и измерительные трубы, трюмная сигнализация и пр.).

Осушительная система

Осушительная система предназначена для повседневного удаления воды, скапливающейся в нижних частях корпуса судна при нормальных условиях эксплуатации (подразумевается вода, проникающая внутрь через неплотности в соединениях корпуса или образующаяся в результате отпотевания деталей, а также забортная вода и атмосферные осадки, проникающие через иллюминаторы, люки и неплотности в донной арматуре и трубопроводах). С помощью осушительной системы откачивают также остатки воды, оставшейся в отсеке после работы водоотливной, балластной или пожарной систем.

Осушительную систему (рис. 8.11) предусматривают на всех судах независимо от их назначения и района плавания.

Она состоит из всасывающего трубопровода, приемников и отливного трубопровода, снабженных невозвратными или невозвратно-запорными клапанами. Приемники имеют защитные сетки и устанавливаются в местах наиболее вероятного скопления воды: в сборных колодцах двойного дна по бортам, в льялах у кормовых переборок водонепроницаемых отсеков, а также в ДП на судах, имеющих уклон второго дна к ДП. На отростках осушительной системы в МКО и на магистральных трубопроводах устанавливают дополнительные грязевые фильтры — так называемые грязевые коробки. Защитные сетки приемников и грязевые коробки предотвращают попадание грязи, ветоши, щепок и т. п. в насосы, арматуру и трубы.

Согласно требованиям Международной конвенции по предотвращению загрязнения с судов 1973 г., содержание остатков нефтепродуктов в выбрасываемой за борт воде допускается не более 15 мг/л, поэтому откачиваемые за борт трюмные воды предварительно очищаются в сепараторе трюмных вод.

Правила Регистра требуют, чтобы на каждом судне было установлено не менее двух осушительных насосов с механическими приводами, способных осушить любой отсек и создать в магистральных трубопроводах скорость движения воды не менее 2 м/с. На пассажирских судах дальнего плавания, в зависимости от их размеров и количества пассажиров, должно быть не менее трех-четырех насосов.

В качестве осушительных на судах применяют центробежные самовсасывающие или поршневые насосы производительностью 15—400 м 3 при напоре 10—30 м вод. ст. с высотой всасывания 5— 6 м.

Осушительные насосы размещают в разных водонепроницаемых отсеках.

В удаленных от МКО отсеках, а также в отсеках с небольшой кубатурой (цепной ящик, коффердамы, румпельное отделение) для осушения используют автономные средства — ручные поршневые насосы, эжекторы, работающие от пожарной магистрали или предусматривают спускные и перепускные трубопроводы.

Осушительный трубопровод изготовляют из стальных цельнотянутых труб, имеющих внутри защитное покрытие (оцинковку, футеровку и т. д.). Диаметр труб определяют в зависимости от главных размерений судна и длины осушаемого отсека. Осушительный трубопровод выводят из каждого отсека к клапанным коробкам с невозвратно-запорными клапанами, которые установлены в МКО и соединены с осушительным насосом, откачивающим воду через отливной трубопровод за борт. Перекрывая соответствующим образом клапаны клапанной коробки, можно осушить любой отсек.

Водоотливная система

Водоотливная система предназначена для удаления из корпуса судна больших количеств воды, попавшей в него в результате аварии (пробоины в наружной обшивке, затопления отсека через разрушенные трубопроводы систем или при тушении пожара водой и т. п.). В отличие от осушительной водоотливная система снабжена погружными насосами (или эжекторами) более высокой производительности — до 1000 м 3 /ч, а ее трубопроводы имеют больший диаметр. Управление арматурой системы осуществляется дистанционно с поста управления, расположенного выше палубы водонепроницаемых переборок.

Водоотливная система должна обладать большой живучестью, поэтому ее выполняют по автономной или комбинированной схеме и предусматривают только на судах с особыми условиями плавания (ледоколах, буксирах, спасателях). На обычных судах функции водоотливной системы частично выполняет осушительная система, а при больших авариях — водоотливные системы буксиров-спасателей.

Перепускная система

Перепускная система необходима для перепуска и спуска воды из помещений, в которых отсутствуют осушительные или водоотливные средства, в соседние и нижние помещения, имеющие приемники осушения или водоотлива. Перепускной трубопровод оборудуют также между бортовыми междудонными отсеками (на пассажирских судах, промысловых базах, научно-исследовательских судах и т. п.) для выравнивания крена судна при затоплении отсеков одного борта. Эта система не имеет насосов и управляется дистанционно или автоматически с помощью перепускной или спускной арматуры. Автоматическое управление основано на автоматическом открывании клапанов при достижении заданного уровня жидкости в отсеке.

Система нефтесодержащих трюмных вод

Система нефтесодержащих трюмных вод предназначена для их сбора с целью последующей очистки этих вод перед откачкой за борт либо для передачи в береговые емкости—сборники. Суда, имеющие достаточные емкости для сбора грязной трюмной воды в течение всего рейса, а также суда, на которые не распространяется действие Конвенции МАРПОЛ 73/78, этой системой не оборудуют. Система состоит из сборных емкостей, сепараторов, насосов, трубопроводов, контрольно-измерительных приборов и средств управления.


Гидрофон может улавливать звуки в воздухе, но он будет нечувствителен, потому что он разработан с учетом акустический импеданс воды, более плотной жидкости, чем воздух. Звук в воде распространяется в 4,3 раза быстрее, чем в воздухе, а звуковая волна в воде оказывает давление в 60 раз больше, чем волна той же амплитуды в воздухе. Точно так же стандартный микрофон можно закопать в землю или погрузить в воду, если он помещен в водонепроницаемый контейнер, но его характеристики будут плохими из-за такого же плохого согласования акустического импеданса. Также считается датчиком.

Содержание

История


Первые гидрофоны состояли из трубки с тонкой мембраной, закрывающей погруженный конец, и ухо наблюдателя на другом конце. [1] При проектировании эффективных гидрофонов необходимо учитывать акустическое сопротивление воды, которое в 3750 раз больше, чем у воздуха; следовательно, давление, создаваемое волной той же интенсивности в воздухе, увеличивается в воде в 3750 раз. Компания American Submarine Signaling Company разработала гидрофон для обнаружения подводных звонков с маяков и плавучих маяков. [2] Корпус представлял собой толстый полый латунный диск диаметром 35 сантиметров (14 дюймов). На одной стороне была латунная диафрагма толщиной 1 миллиметр (0,039 дюйма), которая была соединена коротким латунным стержнем с угольный микрофон.

Первая Мировая Война

В начале войны президент Франции Раймон Пуанкаре, сам физик, при условии Поль Ланжевен со средствами, необходимыми для работы над методом обнаружения подводных лодок по эхам от звуковых импульсов. Они разработали пьезоэлектрический гидрофон за счет увеличения мощности сигнала с вакуумная труба усилитель мощности; высота акустический импеданс пьезоэлектрических материалов облегчили их использование в качестве подводных преобразователей. Та же самая пьезоэлектрическая пластина может вибрировать с помощью электрического генератора для создания звуковых импульсов. [3]

Первой подводной лодкой, обнаруженной и потопленной с помощью примитивного гидрофона, была немецкая подводная лодка. UC-3 23 апреля 1916 г. УК-3 обнаружен противолодочным траулером. Cheerio как Cheerio находился прямо над UC-3, затем UC-3 был пойман в стальную сеть, которую тащил траулер, и затонул после большого подводного взрыва. [4] [5]


Позже во время войны Британское Адмиралтейство с опозданием созвало научную комиссию, чтобы посоветовать, как бороться с подводными лодками. В его состав входил австралийский физик. Уильям Генри Брэгг и новозеландский физик сэр Эрнест Резерфорд. Они пришли к выводу, что лучшая надежда - использовать гидрофоны для прослушивания подводных лодок. В результате исследования Резерфорда был получен единственный патент на гидрофон. Брэгг взял на себя инициативу в июле 1916 года и перешел в исследовательский центр Адмиралтейского гидрофона в г. Hawkcraig на Ферт-оф-Форт. [6]

Ученые поставили две цели: разработать гидрофон, который мог бы слышать подводную лодку, несмотря на шум, производимый патрульным кораблем, несущим гидрофон, и разработать гидрофон, который мог бы определять пеленг подводной лодки. Двунаправленный гидрофон был изобретен в Колледж Восточного Лондона. Они установили микрофон на каждой стороне диафрагмы в цилиндрическом корпусе; когда звуки, издаваемые обоими микрофонами, имеют одинаковую интенсивность, микрофон находится на одной линии с источником звука. [7]

Лаборатория Брэгга сделала такой гидрофон направленным, установив перегородку перед одной из сторон диафрагмы. Потребовались месяцы, чтобы обнаружить, что эффективные перегородки должны содержать слой воздуха. [8] В 1918 году дирижабли Королевской военно-морской авиации занимались противолодочная война экспериментировал с подводными гидрофонами ближнего света. [9] Брэгг испытал гидрофон на захваченной немецкой подводной лодке и обнаружил, что он уступает британским моделям. К концу войны у британцев было 38 гидрофонистов и 200 квалифицированных слушателей, доплаченных 4.d в день. [10]

С конца Первой мировой войны до введения активных сонар в начале 1920-х годов гидрофоны были единственным методом подводных лодок для обнаружения целей в подводном положении; они остаются полезными и сегодня.

Направленные гидрофоны

Небольшой одиночный цилиндрический керамический преобразователь можно добиться почти идеального всенаправленного приема. Направленные гидрофоны увеличивают чувствительность в одном направлении, используя два основных метода:

Сфокусированные преобразователи

В этом устройстве используется один преобразователь элемент с тарелкой или коническим отражателем звука для фокусировки сигналов аналогично отражающему телескопу. Этот тип гидрофона может быть изготовлен из недорогого всенаправленного типа, но его следует использовать в неподвижном состоянии, поскольку отражатель препятствует его движению в воде. Новый способ управления - использование сферического тела вокруг гидрофона. Преимущество сфер направленности заключается в том, что гидрофон можно перемещать в воде, избавляя его от помех, создаваемых элементом конической формы.

Массивы

СОСУС гидрофоны, укладываемые на морское дно и соединенные подводными кабелями, использовались с 1950-х гг. ВМС США отслеживать движение Советский подводные лодки во время Холодная война по линии от Гренландия, Исландия и объединенное Королевство известный как ГИУК разрыв. [12] Они способны четко записывать чрезвычайно низкие частоты. инфразвук, в том числе многие необъяснимые звуки океана.

Kursk

Состояние противолодочной обороны России таково, что ВМФ не может обеспечить безопасность территории РФ от атак иностранных подводных лодок (ПЛ) с баллистическими и высокоточными крылатыми ракетами большой дальности, а также безопасность морской составляющей ядерного сдерживания (МСЯС) ракетных подводных крейсеров стратегического назначения (РПК СН).

Ущерб РФ минимален от иностранных подводных лодок с крылатыми ракетами (КР), если они будут находиться вне 1000-километрового рубежа от побережья РФ, а внутри его будет обеспечен полный и непрерывный контроль за ними. Сокращенный состав ВМФ сегодня решать эту задачу не способен не по причине неготовности, а из-за крайне отсталых средств гидроакустического обнаружения и освещения подводной обстановки.

Программа строительства ЕГСОНПО сформирована без преодоления кризиса военной гидроакустики, что предрекает неэффективность государственных вложений, продолжение бесконтрольности плавания иностранных ПЛ вблизи побережья РФ и не гарантирует безопасность страны со стороны моря.

Наши подводные лодки с ядерными ракетами на борту являются фактором сдерживания агрессии и потенциальным ударом возмездия. Но лишь в том случае, если их место в море известно только их командирам, а не подводному противнику. Скрытность плавания в море – основа существования российских МСЯС и фактор мощи РФ, с которым должны считаться и на который должно опираться политическое руководство страны. Признание кризиса военной гидроакустики позволит скорректировать план создания ЕГСОНПО в нужном направлении.

Кризис военной гидроакустики имеет три главные причины: 1) ошибочность путей развития военной гидроакустики, избранных в 70–80-х годах прошлого века; 2) умышленный технологический и технический саботаж традиционных монопольных поставщиков гидроакустической техники для ВМФ; 3) упущения руководства ВМФ.

Все вместе это нанесло колоссальный ущерб обороноспособности государства.

Домашняя работа

Ошибочность путей развития была определена поручением Совету по гидрофизике АН СССР (РАН) во главе с академиком Андреем Гапоновым-Греховым заниматься комплексной программой развития ВМФ, в том числе и гидроакустикой. Ошибка в том, что гидроакустика как раздел физики не знает, как обнаруживать слабые сигналы. Это удел совершенно других научно-технических направлений. А вот элементарные вопросы теорий обнаружения и адаптивной обработки сигналов оказались в стороне от внимания академика и до сих пор плохо внедрены в существующие гидроакустические комплексы.

В 70-х годах Андрей Гапонов-Грехов остановил на физическом факультете МГУ работы по векторно-фазовым приемникам. Первый заместитель главкома ВМФ адмирал флота Николай Смирнов желал создать на физическом факультете МГУ специальную лабораторию по этому научному направлению. Гапонов-Грехов сорвал это начинание. Теперь новейшие лодки ВМС США класса Virginia полностью укомплектованы векторно-фазовыми гидрофонами.

Векторно-фазовый гидрофон гидроакустической антенны ПЛ дополнительно подавляет пространственную помеху, например от волнения моря, что для штатного гидроакустического комплекса поднимает его потенциал обнаружения подводных лодок еще минимум на 10 дБ (или в три раза).

Упущения руководства ВМФ и Морского научного комитета в том, что за последние 20 лет они не проводили активную научно-техническую политику модернизации гидроакустической техники для повышения эффективности ее работы по малошумным ПЛ.

Руководство ВМФ не реагировало на доклады разведки о развитии аналогичных средств противника. Не смогло распознать кризисность гидроакустики как фактора, снижающего боеготовность ВМФ. В 2006 году главком ВМФ Владимир Масорин и начальник Военно-морской академии Юрий Сысуев уверяли начальника Генштаба ВС РФ Юрия Балуевского о полном паритете гидроакустических средств ВМФ с американскими. Бездействие командования ВМФ того времени и введение в заблуждение руководства МО РФ о состоянии военной гидроакустики способствовали снижению боевой готовности ВМФ и обороноспособности страны.

Кризис в научной отрасли и зарубежный опыт

Противоборство русским ракетоносцам в подводной среде с помощью гидроакустики стало комплексной гидроакустической задачей реального времени всего ВМС США, а не одной многоцелевой лодки или противолодочного самолета, как до сих пор считают в ВМФ РФ. С 70-х годов начался новый этап развития гидроакустических средств ВМС США, которые осознанно встали в центре не только ядерного сдерживания СССР, но и объектом ядерного преимущества над СССР на море.

Понадобилось около пяти лет сбора данных по спектральным характеристикам русских ракетоносцев, чтобы признать факт эффективной совместной тактики их обнаружения и слежения за ними, а с началом конфликта – практически полной нейтрализации. В 1999 году появилась информация, что с 1974 года до последнего похода русских лодок проекта 667А все они были скрытно отслежены и могли быть уничтожены раньше, чем выпустили бы свои ракеты.

Советское командование ВМФ к 1972 году и к середине 70-х располагало данными о преимуществе американцев по отслеживанию советских лодок вблизи американских берегов. И сделало только один важный, своевременный, разумный вывод о необходимости строительства лодок (667Б, 667БД, 667БДРМ) – носителей ракет с увеличенной дальностью полета от 7000 до 9000 км, чтобы лодки оставались как можно ближе к своим берегам, чтобы их вывести из зон обнаружения системы SOSUS. Но и тогда советское командование ВМФ совершенно не задумывалось над качеством своих гидроакустических средств и системном, интегрированном их использовании.

Мировой океан под контролем

Анализ технических параметров гидроакустических средств ВМС США и тактика использования интегрированных гидроакустических систем IUSS и направления их развития говорят о том, что российские МСЯС из-за своей слабой гидроакустики сегодня не защищены, как никогда. Командование ВМФ самостоятельно разобраться в гидроакустическом тупике не способно, поэтому и молчит – ему нужна помощь. Вне всякого сомнения, Россия обладает огромным научно-техническим потенциалом, и она быстро решит эту проблему, если будет привлечено внимание к ней общественности и руководства страны.

Встраиваемая компьютерная COTS-технология – это унифицированная цифровая аппаратура всей радиоэлектроники Вооруженных сил США и НАТО, а также всех других стран, поддерживающих свою боеспособность на современном уровне. Везде – кроме России.

Военные проекты ведущих стран-производителей, прежде всего США, с точки зрения боевых компьютерных технологий объединяют главное – для их создания использованы готовые компьютерные технологии открытого типа, широко апробированного на рынке общепромышленных гражданских приложений. Это COTS (Commercial Off-The-Shelf) – готовая к использованию технология. В России пока, наоборот, поставщик радиоэлектроники для ВС РФ считает за доблесть разрабатывать все с нуля.

COTS-технология – это та технология, львиная доля инвестиций в которую вкладывается не военным, а офисным и общепромышленным гражданским рынком, который обогнал военный на 15 лет. Техническая возможность модернизации существующих гидроакустических систем самолетов, кораблей и подводных лодок ВМФ – с целью повышения их эффективности по малошумным подводным лодкам – просматривалась еще с начала 80-х годов. Почему командование ВМФ РФ не предпринимало активных мер по модернизации гидроакустики флота – остается загадкой. Вероятный противник, напротив, активно проводит (не разрабатывает новую) модернизацию своей гидроакустики по программе ARCI ВМС США. Текущее состояние гидроакустических средств ВМФ, повлекшее возможность намеренных акций со стороны иностранных ПЛ, ничем, кроме халатностью, объяснить нельзя.

В технологиях повторенье - не ученье

«Исходя из замысла ЕГСОНПО, во исполнение указа президента РФ, в ВМФ был разработан проект Концепции создания и обеспечения функционирования ЕГСОНПО. В 2005 году проект распоряжения правительства РФ по утверждению Концепции был представлен для согласования в федеральные органы исполнительной власти. Процесс согласования был остановлен на предпоследнем этапе усилиями тогдашнего Минэкономразвития по нелепому поводу – якобы в соответствии с ранее принятым постановлением правительства РФ все вопросы ЕГСОНПО должны решаться в рамках Единой системы информации о Мировом океане (головной федеральный орган – Росгидромет).

Таким образом, не было определено основание для совместной работы и требуемого для этой работы объединения ресурсов всех субъектов морской деятельности. Тем не менее в рамках ГОЗ выделялись немалые средства, предназначенные для развития ЕГСОНПО, при отсутствии соответствующих нормативных и распорядительных актов эти средства были потрачены впустую. Можно было бы списать эту абсурдную ситуацию на чиновничье головотяпство, однако анализ показывает, что это не так. Слишком многие структуры были заинтересованы в срыве целенаправленной деятельности по созданию ЕГСОНПО.

Создание системы потребовало бы тщательной инвентаризации всех существующих ресурсов – от материальных (в том числе систем, развернутых в море, многие из которых были в некондиционном состоянии) до интеллектуальных (требуемых для создания полноценной и эффективной системы, которые к тому времени были уже утрачены возможными предприятиями-исполнителями). И жалко не упомянутых денег, жаль уже потерянные семь-восемь лет, на этот срок было задержано создание ЕГСОНПО.

Сегодня определено, что в системе обеспечения военной безопасности страны существует огромная брешь. Ее наличие будет оказывать значительное (а во многих случаях – решающее) влияние на ход и исход наиболее важных сценариев военно-морской деятельности на всех уровнях – от тактического до стратегического. Против такой оценки никто не возражает – эти проблемы просто упорно замалчиваются.

Коррективы и дополнения

Создание ЕГСОНПО РФ является важной и актуальной задачей. Вместе с тем предлагаемые в соответствии с Концепцией технические и организационные подходы к ее созданию имеют некоторые недостатки и нуждаются в дополнении.

1. Принципы, заложенные в основу построения технических средств ЕГСОНПО, давно устарели и к прорыву в этой области не привели и не приведут.

2. Стационарные системы не обладают боевой устойчивостью, экономически не выгодны и лишают флот возможности маневра по концентрации усилий наращивания информационного поля при изменении политической, военной и экономической обстановки. В условиях военного времени легко могут быть выведены из строя без возможности быстрого восстановления после боевого воздействия.

3. Концепция ЕГСОНПО в направлении освещения подводной обстановки сегодня устарела и является только лозунгом, так как ее функциональные требования и ограничения для районов Мирового океана строго математически не промоделированы и не обоснованы.

4. Концепция определяет только централизованное отображение информации от существующих разнородных систем освещения обстановки на разных физических принципах, в том числе от СОПО ВМФ, но не организации добычи информации в море по подводным объектам.

5. В Концепции следует перенести упор на развитие мобильно развертываемых автономных систем освещения подводной обстановки в любом районе Мирового океана, где есть интересы России, в том числе и в Арктике.

6. Мобильные системы более устойчивы, более дешевые, чем стационарные системы, они могут скрытно и внезапно разворачиваться и обладают большим мобилизационным потенциалом.

7. Концепция ЕГСОНПО в части освещения подводной обстановки сегодня не обеспечивает сетецентричность (информационного преимущества) даже в прибрежных районах России, так как сегодня подводные лодки ВМС США беспрепятственно могут развернуть мобильную систему освещения подводной обстановки DADS прямо у баз наших подводных лодок.

8. Наличие мобильных систем освещения подводной остановки ЕГСОНПО – это прежде дополнительный мощный политический рычаг при решении всех международных вопросов касательно морской деятельности России в любых районах Мирового океана.

Взяв пример с программы малого бизнеса SBIR-ARCI США, американский ВМС сегодня выполняет программу CANES (программа полного объединения всех сетей связи ВМС США в единое сетецентрическое целое) с помощью малого бизнеса. Кстати сказать, ARCI снизила расходы ВМС на гидроакустику в восемь раз. Сегодня гидроакустический комплекс новейшей атомной подводной лодки ВМС США Virginia – это сверхмощный гражданский COTS-компьютер, встроенный в систему боевого управления подводной лодки.

Мне как военному пенсионеру-подводнику хотелось бы спросить у наших военных руководителей: привлечение малого бизнеса для решения проблем американского подводного флота – хорошо или плохо для налогоплательщиков США?

В своих выступлениях уважаемый мною Дмитрий Рогозин приманивает молодежь в военную науку увеличенной зарплатой в 2,5 раза и скорым получением квартир. Но нигде не упомянул, какие бюрократические барьеры надо преодолевать российской молодежи в направлении военной науки, чтобы стать ее основой и нашей надеждой в военном деле, как основного и главного фактора становления российской военной науки и удешевления военных поставок.

Виктор Курышев

Права на данный материал принадлежат Независимое военное обозрение
Материал размещён правообладателем в открытом доступе

Читайте также: