Альтернативная энергетика на судах виды и способы получения альтернативной энергии

Обновлено: 28.06.2024

В течение всего периода развития цивилизации происходила борьба за обретение новых, более эффективных форм энергии. За тысячи лет был пройден путь от овладения огня до применения управляемой ядерной реакции в атомных электростанциях. Поэтому в истории человечества принято выделять несколько энергетических революций, которые заключались в переходе от одного доминирующего первичного источника энергии к другому. Результаты этих изменений затрагивали не только сферу энергетики и экономики, но и меняли социальный и культурный облик цивилизации.

В настоящее время Мировая энергетика находится на перепутье. С увеличением народонаселения Земли экономика требует все больше энергии, а запасы ископаемого топлива, на котором основана традиционная энергетика, не безграничны. Рост стоимости ископаемого топлива усугубляется и тем, что достигшее колоссальных размеров использование углеводородов наносит ощутимый вред окружающей среде, что отражается на качестве жизни населения. А это означает, что в будущем потребности в энергии, а значит и в новых способах её получения, будут только увеличиваться. На смену эре углеводородов (нефти и газа), придет эра использования альтернативной, чистой энергии.

Основные причины, указывающие на важность скорейшего перехода к АИЭ:

Глобально-экологический: сегодня общеизвестен и доказан факт пагубного влияния на окружающую среду традиционных энергодобывающих технологий (в т.ч. ядерных и термоядерных), их применение неизбежно ведет к катастрофическому изменению климата уже в первых десятилетиях XXI веке.

Политический: та страна, которая первой в полной мере освоит альтернативную энергетику, способна претендовать на мировое первенство и фактически диктовать цены на топливные ресурсы.

Экономический: переход на альтернативные технологии в энергетике позволит сохранить топливные ресурсы страны для переработки в химической и других отраслях промышленности. Кроме того, стоимость энергии, производимой многими альтернативными источниками, уже сегодня ниже стоимости энергии из традиционных источников, да и сроки окупаемости строительства альтернативных электростанций существенно короче. Цены на альтернативную энергию снижаются, а на традиционную — постоянно растут.

Социальный: численность и плотность населения постоянно растут. При этом трудно найти районы строительства АЭС, ГРЭС, где производство энергии было бы рентабельно и безопасно для окружающей среды. Общеизвестны факты роста онкологических и других тяжелых заболеваний в районах расположения АЭС, крупных ГРЭС, предприятий топливно-энергетического комплекса, хорошо известен вред, наносимый гигантскими равнинными ГЭС, – всё это увеличивает социальную напряженность.

Эволюционно-исторический: в связи с ограниченностью топливных ресурсов на Земле, а также экспоненциальным нарастанием катастрофических изменений в атмосфере и биосфере планеты существующая традиционная энергетика представляется тупиковой; для эволюционного развития общества необходимо немедленно начать постепенный переход на альтернативные источники энергии.

Именно с нетрадиционными возобновляемыми источниками энергии (ВИЭ) связывают будущее энергетики. Усилиями мировой науки было обнаружено множество таких источников, большинство из них уже используется более или менее широко. В настоящее время общий вклад ВИЭ в мировой энергобаланс пока невелик, около 20 % конечного потребления энергии. При этом на долю биотоплива и гидроэнергии, используемых традиционными способами, приходится основная часть – около 17 %, на долю нетрадиционных ВИЭ всего около 3 %.

Наиболее известны и частично применяются следующие виды энергии:

— энергия Солнца;
— энергия ветра;
— биоэнергетика;
— энергия приливов и волн;
— тепловая энергия Земли.
— энергия атмосферного электричества и грозовая энергетика.

Из всех существующих видов альтернативной энергетики самыми востребованными являются солнечная, ветро- и гидроэнергетика.

Энергия солнца

Всевозможные гелиоустановки используют солнечное излучение как альтернативный источник энергии. Излучение Солнца можно использовать как для нужд теплоснабжения, так и для получения электричества.

Существуют разные способы преобразования солнечного излучения в тепловую и электроэнергию и, соответственно, различные типы солнечных электростанций. Наиболее распространены станции, использующие фотоэлектрические преобразователи (фотоэлементы), объединенные в солнечные батареи.

Солнечные электростанции активно используются более чем в 80 странах мира. Большинство крупнейших фотоэлектрических установок мира находятся в США.

К преимуществам солнечной энергии можно отнести возобновляемость данного источника энергии, бесшумность, отсутствие вредных выбросов в атмосферу при переработке солнечного излучения в другие виды энергии.

Недостатками в использовании солнечной энергии являются дороговизна оборудования, зависимость интенсивности солнечного излучения от суточного и сезонного ритма, а также, необходимость больших площадей для строительства солнечных электростанций. Также серьёзной экологической проблемой является использование при изготовлении фотоэлектрических элементов для гелиосистем ядовитых и токсичных веществ, что создаёт проблему их утилизации.

Энергия ветра

Одним из перспективнейших источников энергии является ветер. Принцип работы ветрогенератора элементарен. Сила ветра, используется для того, чтобы привести в движение ветряное колесо. Это вращение в свою очередь передаётся ротору электрического генератора.

Ветроэнергетические установки (ветряные электростанции) широко используются в США, Китае, Индии, а также в некоторых западноевропейских странах (например в Дании, где 25% всей электроэнергии добывают именно таким способом). Ветроэнергетика является весьма перспективным источником альтернативной энергии, в настоящее время многие страны значительно расширяют использование электростанций данного типа.

Преимуществом ветряного генератора является, прежде всего, то, что в ветряных местах, ветер можно считать неисчерпаемым источником энергии. Кроме того, ветрогенераторы, производя энергию, не загрязняют атмосферу вредными выбросами.

К недостаткам устройств по производству ветряной энергии можно отнести непостоянство силы ветра и малую мощность единичного ветрогенератора. Также ветрогенераторы известны тем, что производят много шума (вследствие чего их стараются строить вдали от мест проживания людей), мешают перелетам птиц и насекомых, а также создают помехи в прохождении радиоволн и работе военных.

Биоэнергетика

Биоэнергетика позволяет из биотоплива разного вида получать энергию и тепло. Биоэнергетика сейчас находится в стадии активного развития. Крупные промышленные и сельскохозяйственные предприятия активно переходят на биотопливо, что дает им получать электроэнергию и тепло из органического мусора.

К альтернативным источникам энергии относятся не все виды биотоплива: традиционные дрова тоже являются биотопливом, но не являются альтернативным источником энергии. Альтернативное биотопливо бывает твердым (отходы деревообработки и сельского хозяйства), жидким (биодизель и биомазут, а также метанол, этанол, бутанол) и газообразное (водород, метан, биогаз).


Основными преимуществами является утилизация органического мусора, снижение уровня загрязнения окружающей среды. Биотопливо изготавливается из различного сырья, такого как навоз, отходы сельскохозяйственных культур и растений, выращенных специально для топлива. Это возобновляемые ресурсы, которые, вероятно, не закончатся в ближайшее время. Биотопливо снижает выбросы парниковых газов. Кроме того, при выращивании культур для биотоплива они частично поглощают оксид углерода, что делает систему использования биотоплива ещё более устойчивой.

К недостаткам применения биотоплива относятся:

— ограничения региональной пригодности (в некоторых местностях просто невозможно выращивать биотопливные культуры, например, в местности с холодным или засушливым климатом).

— водопользование – чем меньше воды используется для выращивания сельскохозяйственной культуры, тем лучше, так как вода является ограниченным ресурсом.

— продовольственная безопасность (слишком активное выращивание биотоплива может привести к голоду). Проблема с выращиванием сельскохозяйственных культур для топлива заключается в том, что они займут землю, которую можно было бы использовать для выращивания продуктов питания.

— разрушение среды обитания животных и риск изменения окружающей среды, вследствие применения удобрений и пестицидов при выращивании биотопливных культур (чаще всего это монокультуры для удобства выращивания).

Энергия приливов и волн

Мировой океан аккумулирует энергию в разных видах: энергию биомассы, энергию приливов и отливов, энергию океанических течений, тепловую энергию и др. Проблема заключается в том, чтобы найти экономически и экологически приемлемые способы ее использования. По прогнозным оценкам доступная часть энергии Мирового океана во много раз превышает уровень потребления всех энергетических ресурсов в мире.

По оценкам Ocean Energy Systems, к 2050 г. с помощью подобных технологий можно будет вырабатывать 300 ГВт – это столько же, сколько бы производили 250 ядерных реакторов. А UK Carbon Trust прогнозирует, что к тому времени уже возникнет всемирный рынок приливной энергии стоимостью 126 млрд фунтов стерлингов.

В Японии протестировали устройство, которое генерирует электроэнергию из океанических течений. Испытание установки было проведено на юго-западе префектуры Кагошима. Течения у Кагошимы постоянны по силе и направлению. Турбина экспериментального генератора была установлена на уровне 20-50 м под поверхностью воды. Генератор развил мощность производства электроэнергии всего 30 кВт. Конечно, это немного, но главное – изобретение работает. Ученые полагают, что такой метод генерации электричества может быть более стабильным, чем солнечная энергетика. Организация по разработке новых энергетических и промышленных технологий NEDO надеется внедрить эту технологию в промышленное использование к 2020 г.

В США извлекают энергию из волн.

Исследователи Технологического института Джорджии разработали устройство, преобразующее в электричество энергию волн океана очень широкого диапазона частот. Энергия волн океана — самая слаборазвитая отрасль чистой энергетики. Хотя океан потенциально способен обеспечить энергией весь мир, пока что не существует экономически выгодного способа ее извлечения. Основная проблема в том, что океанские волны непостоянны и колеблются с низкой частотой, тогда как большинство генерирующих устройств лучше всего работают с постоянной амплитудой и высокой частотой.

В прошлом году в проливе Пентленд-Ферт на северном побережье Шотландии началась первая фаза строительства крупнейшей в мире приливной электростанции MeyGen, итоговая мощность которой может достичь 398 МВт. Станция способна обеспечить электричеством 175 тыс. домохозяйств. Возобновляемая энергия приливов стала одним из важнейших направлений новой энергетики, развиваемой в Шотландии. Шотландские приливы, одни из самых мощных в Европе, помогут развить эту многообещающую технологию и сократить выбросы углекислого газа. Шотландия планирует полностью (на 100%) перейти на возобновляемую электроэнергию уже в 2030 г. Достигнутый в 2016 г. уровень составил около 60%.

Аналогичные технологии применяются уже и в Северной Америке – на побережье Новой Шотландии. Эта провинция на северо-востоке Канады действительно напоминает Шотландию — и не в последнюю очередь благодаря высоким приливам.

В ноябре прошлого года там, в заливе Фанди начал работу первый в Северной Америке приливной электрогенератор. Он занимает пять этажей и весит тысячу тонн, его мощность – 2 МВт, что достаточно для питания 500 домов.

В области разработки новейших решений для использования энергии приливов лидирует Великобритания. Этому способствует идеальная схема приливов и благоприятная регулятивная среда. Канада, Китай и Южная Корея также демонстрируют устойчивый прогресс. США также являются одним из основных центров инноваций в данной сфере.

Основные плюсы – высокая экологичность и низкая себестоимость получения энергии.

К главным минусам приливных электростанций относятся высокая стоимость их строительства и суточные изменения мощности, из-за которых электростанции этого типа целесообразно использовать только в составе энергосистем, использующих также и другие источники энергии.

Тепловая энергия Земли

Огромное количество тепловой энергии хранится в глубинах Земли. Это обусловлено тем, что температура ядра Земли чрезвычайно высока. В некоторых местах земного шара происходит прямой выход высокотемпературной магмы на поверхность Земли: вулканические области, горячие источники воды или пара. Энергию этих геотермальных источников и предлагают использовать в качестве альтернативного источника сторонники геотермальной энергетики. Используют геотермальные источники по-разному. Одни источники служат для теплоснабжения, другие – для получения электричества из тепловой энергии.

К преимуществам геотермальных источников энергии можно отнести неисчерпаемость и независимость от времени суток и времени года.

К негативным сторонам можно отнести тот факт, что термальные воды сильно минерализованы, а зачастую ещё и насыщены токсичными соединениями. Это делает невозможным сброс отработанных термальных вод в поверхностные водоёмы. Поэтому отработанную воду необходимо закачивать обратно в подземный водоносный горизонт. Кроме того, некоторые учёные-сейсмологи выступают против любого вмешательства в глубокие слои Земли, утверждая, что это может спровоцировать землетрясения.

Атмосферное электричество и грозовая энергетика

Атмосферное электричество может стать еще одним существенным источником экологически чистой энергии. В нижних слоях атмосферы Земли идут интенсивные процессы испарения, переноса тепла и влаги, образования облаков, сопровождающиеся явлениями электризации. В результате, у поверхности Земли напряженность электростатического поля достигает 100…150 В/м летом и до 300 В/м зимой, значительно изменяясь от погодных условий. В атмосфере постоянно висит положительный объемный заряд величиной около 0,57 млн. кулонов. Энергетический ресурс заряженной атмосферы оценивается величиной около 107 ГВт, что не менее чем в 250 раз превышает потребности человеческой цивилизации в энергии.

Вопросы формирования электрической энергии в атмосфере и использования электричества, сформированного естественным путем, тревожили умы многих ученых на протяжении столетий. Все началось со знаменитого опыта Бенджамина Франклина в июне 1752 года, когда он поднял воздушного змея перед грозовым облаком, и экспериментально доказал, что грозовые явления имеют электрическую природу. В 1850–1860-х годах получили патенты на изобретения в области атмосферного электричества Лумис и Уард в США, во Франции. Среди тех, кто мечтал завоевать и использовать атмосферное электричество в качестве практически неиссякаемого источника энергии был и знаменитый изобретатель Никола Тесла, предложивший способ преобразования высокого постоянного напряжения атмосферы в низкое переменное. В Финляндии Герман Плаусон провел эксперименты с аэростатами, изготовленными из тонких листов магниево-алюминиевого сплава, покрытого очень острыми, изготовленными электролитическим способом иглами. На свои устройства он в 1920-х годах получил патенты США, Великобритании и Германии.

Новые исследования, проведенные учеными из университета Кампинаса в Бразилии, позволили по-новому взглянуть на задачу получения энергии из атмосферного электричества. В результате этих исследований ученые точно определили, каким именно образом происходит процесс формирования и момент высвобождения электричества из капелек влаги скопившейся в воздухе, как создаются электрические заряды в атмосфере, как они распространяются и каким образом они могут быть преобразованы в электрический ток, пригодный для использования.

В качестве преимуществ атмосферных электростанций отмечаются следующие факторы:

— атмосферная электростанция способна вырабатывать энергию постоянно и не выбрасывает в окружающую среду никаких загрязнителей;

— в случае открытия способа хранения и создания суперконденсатора атмосферного электричества, он будет постоянно подзаряжается с помощью возобновляемых источников энергии – солнца и радиоактивных элементов земной коры;

— электроразрядное оборудование атмосферных станций не бросается в глаза. Оно находятся в верхних слоях атмосферы, слишком высоко для того, чтобы их увидеть невооруженным глазом.

Недостатки:

— атмосферное электричество, как и энергию солнца или ветра, трудно запасать. Его необходимо либо использовать сразу же, на месте получения, либо преобразовывать в любую другую форму, например в водород;

— значительная разрядка земельно-ионосферного суперконденсатора может нарушить баланс глобального электрического контура. В этом случае последствия для окружающей среды будут непредсказуемы;

— высокое напряжение в системах атмосферных электростанций может быть опасным для обслуживающего персонала;

— электроразрядное оборудование необходимого размера сложно обслуживать и поддерживать на необходимой высоте. Кроме того, они могут представлять опасность для авиации.

Список литературы

Картинки взяты с сайта по ссылке.

Король Раиса Александровна

Король Раиса Александровна

© Раиса Король, научный сотрудник лаборатории моделирования и минимизации антропогенных рисков


Сегодня все чаще звучит термин – альтернативные источники энергии. Разбираемся, что это такое, какие виды сегодня предлагает промышленность, насколько это эффективно, положительные и отрицательные стороны каждой разновидности.

Все об альтернативных источниках

Начнём с того, что под альтернативной энергией подразумевается энергия, которая досталась человеку от природы бесплатно. То есть получать её можно из окружающей среды. При этом ресурс этой энергии неисчерпаем.

Основная же наша задача – правильно её получить. А для этого надо знать, как это сделать грамотно.

Виды альтернативных источников

Для того чтобы жить в собственном доме комфортно, нам требуются два вида энергии: электрическая и тепловая. Получить обе разновидности из окружающей среды несложно. Из каких источников это можно получить, и какие приборы для этого используются:

  • солнечные батареи и коллекторы;
  • ветрогенераторы;
  • установки, использующие биогаз;
  • тепловые насосы.

Всеми этими устройствами и технологиями человечество пользуется давно. К примеру, вспомним ветряные или водяные мельницы. Сегодня наука, которая все время движется вперёд, предлагает большой ассортимент устройств, с помощью которых можно получить тепло и электричество.

Правда, для каждого дома требуется свои приборы, которые будут более эффективны в каждом случае. Специалисты же рекомендуют выбирать не одну разновидность, а сразу несколько. К примеру, солнечные батареи хорошо использовать в тёплое безоблачное время года. Ветрогенераторы прекрасно работают в ветряную погоду. То есть, если установить оба агрегата в доме, то можно гарантировать постоянное наличие электрического тока в независимости от погодных условий.

А теперь давайте рассмотрим по отдельности сами источники энергии и устройства, которые вырабатывают тепло и электрический ток.

Солнечные батареи

Скажем так, что эти приборы с годами становятся все более востребованными и популярными. Сегодня производители производят и реализуют их в двух вариациях:

  1. Готовые батареи, которые просто устанавливают на крышах домов, соединяя между собой в единый комплекс.
  2. Отдельные фотоэлементы. Такой вариант предлагается для мастеров, которые сами собирают их в панели, подгоняя под требуемый объем получаемой энергии.

Фотоэлементы, используемые в солнечных батареях, это также две разновидности:

  1. Монокристаллические. Отметим, что это более эффективные, то есть с большим коэффициентом полезного действия, и долговечные элементы. Соответственно они и дороже. Но их высокая эффективность достигается лишь в том случае, если небо ясное, и элементы получают стабильный солнечный поток.
  2. Поликристаллические. У этого типа пониже КПД и эксплуатационный ресурс. Но они могут работать даже в облачную погоду. И это большой плюс.

Фотоэлементы обычно помещают под прозрачный материал и обрамляют металлическим профилем. Всю конструкцию устанавливают на специальной подставке, которую можно поворачивать. Это делается для того, чтобы можно было бы поворачивать солнечные батареи, улавливая прямые солнечные лучи. А их угол наклона зависит от времени года.

Но солнечные панели – это всего лишь часть комплекса. Для сбора электрической энергии требуется аккумуляторы, которые соединяются с панелями через инверторную систему. Первые аккумулируют электричество, вторая превращает солнечный свет в электроэнергию.

Внимание! Грамотный выбор аккумуляторов и инверторной системы – максимальная эффективность работы всего комплекса. При этом специалист должен точно провести требуемые расчёты, которые обеспечат получить необходимый объем электрического тока для всего дома.

Сегодня производители предлагают отличающиеся от солнечных батарей устройства, которые работают по такому же принципу.

Итак, это все о солнечных батареях, переходим к другому виду нетрадиционного источника энергии – солнечным коллекторам.


Солнечные коллекторы

Все знакомы с летним душем, в состав которого входит металлическая бочка. В неё заливают воду, и она под действием солнца нагревается. Коллекторы работают точно по такому же принципу. Только у них большая площадь поглощения солнечных лучей.

И эта площадь ничто иное, как трубы, расположенные в виде змеевика. Трубы нагреваются и передают своё тепло воде, которая по ним и движется. При этом движение всегда происходит снизу вверх – таков закон физики. То есть, нагреваясь, вода или воздух всегда стремятся вверх.

В верхней части комплекса устанавливается бак, через который проходит водопроводная вода. Внутри бака располагается ещё один змеевик, соединённый с коллектором, то есть большим змеевиком. Получается так, что вода, движущаяся по трубам большого змеевика и нагревающаяся там, попадает в змеевик, расположенный внутри бака. Она отдаёт свою тепловую энергию воде в баке, остывает и спускается в нижнюю часть коллектора. И все повторяется заново.

Именно так и нагревается вода в баке, которую затем используют в быту. Самое главное, что естественная циркуляция воды даёт возможность не использовать в системе насосы.

Отметим, что изготовленные в условиях промышленного производства солнечные коллекторы – более сложные устройства. Но принцип работы у них тот же. Просто вместо воды в большой змеевик заливают фреон, который эффективно работает даже зимой.

Ветрогенераторы

Это ещё один часто используемый вид альтернативной энергетики. Чисто конструктивно эти приборы представляют собой обычные ветряки, в состав которых входит генератор. Вращение лопастей ветряка передаётся вращению ротора генератора. Так и образуется электроэнергия, которая собирается в аккумуляторных батареях.

Стандартного типа приборы – это корпус с лопастями, которые установлены на высокой опоре. Сегодня производители предлагают и другие конструктивные решения.

  1. Передвижная установка. Её за короткое время можно разложит и установить, и также быстро можно сложить и перевезти в другое место. установлен ветряк на автомобильной платформе.
  2. Летательная установка. По сути, это воздушный змей, на котором установлено несколько турбин. Его просто запускают в небо, где он летает под действием ветра.

Видео описание

В видео показан принцип работы ветрогенератора:


Тепловые насосы

В любой среде есть энергия. Это касается воды, воздуха и грунта. Правда, в них энергия находится в небольших количествах, плюс – у него невысокий потенциал. Так вот назначение тепловых насосов – собрать эти крохи энергии и передать в систему, где они аккумулируются и превращаются в тепло.

Для этого используют фреон, он же хладагент. Это вещество очень эффективно поглощает любую энергию, отчего нагревается, а затем поступает в компрессор. В этом агрегате нагретый фреон сильно сжимается и переходит в газообразное состояние, а дальше подаётся в теплообменник. Последний устанавливается в системе отопления, и через него вода в этой системе начинает нагреваться за счёт отдачи хладагентом своего тепла.

Фреон после передачи тепловой энергии охлаждается и обратно переходит в жидкое состояние. И все повторяется заново. Конечно, надо отметить, что этот альтернативный источник энергии для частного дома все же является энергозатратным. Потому что компрессор работает от электричества.

Отнести к этой категории можно так называемый геотермальный насос. Суть его работы заключается в том, что он забирает тепловую энергию из земли. Ведь всем известно, что даже в самые лютые морозы грунт промерзает на определённую глубину, а ниже он всегда имеет положительную температуру. Именно туда и закладывают испаритель в виде труб. Правда, для геотермального теплонасоса требуется достаточно большой участок свободной земли. Ведь чем больше площадь забора тепла из земли, тем эффективнее установка работает.

И хотя сами трубы испарителя укладывают в траншеи на определённую глубину, все равно использовать эту площадку можно не под любые нужды. Но этот вариант очень эффективен. К тому же он всегда будет работать безотказно. Точно такую же конструкцию можно использовать, уложив трубы испарителя в водоём, если таковой есть поблизости. Ведь даже подо льдом вода в нем будет всегда тёплой. И этого достаточно, чтобы обогреть дом.

Видео описание

В видео показано, как работает тепловой насос:

Внимание! Теплонасосы хорошо себя зарекомендовали в тех регионах, где зимой температура не опускается ниже -20 °C. То есть там они работают постоянно. Но и в северных районах их устанавливают и эксплуатируют летом. Зимой же рекомендуется использовать другие приборы альтернативных видов энергии. К примеру, ветряки.

Биогаз

Это ещё один вид альтернативных источников энергии, который сегодня стал использоваться во многих загородных домах. По сути, это газ, который образуется в результате гниения бытовых отходов. Сам процесс гниения – это переработка при помощи анаэробных бактерий. То есть тех, которым для жизнедеятельности не требуется кислород.

Следствие такой переработки несколько веществ. А именно: метан, углекислота, сероводород и другие. Смесь всех этих веществ и называют биогазом. Сразу надо оговориться, что эта разновидность топлива получается из отходов растительного и животного происхождения. Ни в коем случае не из канализационных отходов.


Сам процесс переработки производят в специальных ёмкостях. Они имеют прочные стенки и сами очень герметичны. Именно сюда и закладывают отходы, а также бактериальную культуру. Чтобы увеличить процесс гниения, в резервуар помещён шнек, который все время перемешивает образованную массу. Плюс – сюда же добавляется вода температурой +40 °C. Важный момент – влажность биомассы должна быть 90 %.

В верхней части ёмкости установлен патрубок, через который газ выходит в систему трубопроводов. По ним он поставляется по месту требования. А переработанная масса – это отличное удобрение.

Внимание! Биогаз имеет резкий неприятный запах. При этом если его вдохнуть, то можно отравиться. Поэтому с этим видом топлива надо обращаться аккуратно.

Видео описание

В видео показан принцип работы биогазовой установки:

Энергия вулканов

Разрушительная мощь вулканов всегда пугала людей. Со временем учёные, исследуя их, поняли, что это огромные запасы энергии, которыми, к сожалению, человечество не пользуется. Научно-технический прогресс преодолел и эту проблемы, поэтому сегодня во многих странах мира стали возводить электростанции около вулканов.

Технология получения электричества здесь достаточно проста.

  1. В слои грунта, расположенные около лавы, по трубам закачивается солёная вода.
  2. Она там нагревается до критических температур.
  3. Затем подаётся на генератор, который и вырабатывает электрический ток.

По сути, это технология гидроэлектростанции, где турбину генератора вращает падающая сверху на неё вода. Только здесь вода солёная и нагретая, поднимающаяся сама из недр земли.

Именно таким способом производят горячую воду, которую подают в дома и здания разного назначения. В Исландии эта технология применяется для организации горячего водоснабжения в системе теплиц. Эта страна уже давно ничего со стороны не завозит в плане овощей, фруктов, зелени и цветов. Правда, здесь горячую воду берут из гейзеров. Хотя последние нагреваются именно от спящих вулканов.


Ещё один интересный вариант вулканической технологии. Для этого в слоях земли рядом с вулканом находят водный резервуар. В нем жидкость находится в приграничном состоянии. То есть у неё определённая критическая температура, находится она под давлением, поэтому это уже не вода, но ещё не пар. В лабораторных условиях и на практике достичь такого результата очень сложно. Нужны большие финансовые вложения.

А здесь все это присутствует в природе. Так вот именно эту воду и используют, чтобы раскрутить турбину генератора.

Интересное инженерное решение

Альтернативные источники энергии – это в первую очередь оборудование. Так вот сегодня на рынке появляются интересные приборы, с помощью которых можно получать небольшое количество электрического тока. Один из таких – термогенератор. Хотя надо отметить, что этот аппарат известен ещё с середины прошлого столетия.

Собой он представляет электрический генератор компактного размера, выдающий до 200 Вт электроэнергии. Используют такое оборудование в основном в зимнее время, когда эксплуатируют нагревательные приборы. Именно в сочетании с ними и работает теплогенератор. К примеру, на фото ниже показан теплогенератор Иоффе, разработанный в пятидесятых годах.

Положительные и отрицательные стороны

Итак, мы разобрались, что альтернативная энергетика – это будущее человечества, которое не имеет ограничения в ресурсе. При этом сами источники бесплатны и не требуют больших вложений в их разработке в отличие от добычи нефти, газа, угля и прочих.

Но есть у этой технологии получения энергии один отрицательный момент. Это высокая цена самого оборудования и его монтажа. Ведь речь сейчас идёт о приборах, которые можно использовать в быту, то есть в собственном доме. Не каждый владелец недвижимости может вложить кругленькую сумму в альтернативный источник электроэнергии и энергии тепловой.

Проще подключиться к линейным электрическим сетям и оплачивать приходящие счета. Или приводить газ в баллонах. Здесь не требуется сложного и дорогого оборудования. Но время вносит свои коррективы. С каждым годом суммы в этих счетах растут. И велика вероятность, что придёт то время, когда не всем будет под силу их оплачивать. И вот тут придёт эра использования альтернативных источников энергии.


Коротко о главном

Любые виды источников энергии, не связанные с углеводородами, можно отнести к альтернативным. Исключаем также гидроэлектростанции и станции, работающие на приливах и отливах морей и океанов.

К ним отнесём ветрогенераторы, солнечные коллекторы и батареи, тепловые насосы.

Оптимально, если в доме установить две разновидности, перечисленные выше. К примеру, солнечную батарею и ветрогенератор.

Все эти технологии работают от бесплатных источников энергии. Но у них есть один большой минус – высокая цена оборудования.

Что такое альтернативная энергия?

К альтернативным источникам энергии относят нетрадиционные источники энергии — солнечную, ветровую, геотермальную энергетику и так далее.

Возобновляемые источники энергии не загрязняют окружающую среду, помогают снизить уровень выбросов парниковых газов в атмосферу, уменьшить последствия изменения климата. Они практически неисчерпаемы, в то время как ископаемое топливо рано или поздно закончится.

К возобновляемым источникам не относится атомная энергетика и природный газ, поскольку запасы этих ресурсов ограничены.

Альтернативные виды энергии

Существуют различные виды энергии и способы ее добычи.

Исходя из нашей трактовки, можно выделить следующие виды альтернативных источников: солнечная энергия, ветроэнергетика, гидроэнергия, волновая энергетика, энергия приливов и отливов, гидротермальная энергия, энергия жидкостной диффузии, геотермальная энергия и биотопливо.

Способы добычи и использования энергии отличаются в зависимости от вида альтернативных источников. Объединяет их то, что на сегодняшний день все они используются гораздо реже, чем ископаемое топливо, но при этом обладают большим потенциалом для развития.

Плюсы и минусы альтернативной энергии

В настоящее время производство альтернативной энергии, несмотря на ее высокую экологичность и перспективность, ограничено. Развитие технологий на ее основе имеет ряд издержек, с которыми приходится считаться.

1. Солнечная энергия

Когда вы устанавливаете солнечные панели на дом, вы генерируете свое собственное электричество, становитесь менее зависимыми от электрической сети и уменьшаете ежемесячный счет за электричество.

Недавние исследования показали, что стоимость недвижимости увеличивается после установки солнечных батарей. Сами солнечные панели при этом дешевеют.

Солнце светит повсюду на Земле, а это значит, что солнечная энергия является хорошим вариантом для каждой страны, хотя и существуют различия по регионам и в том, сколько они получают солнечного света. В России, например, самыми солнечными городами являются Улан-Удэ и Хабаровск.

Солнечные панели подходят не для всех типов крыш. Некоторые установленные в старых домах кровельные материалы, такие как шифер или кедровая черепица, могут не подойти для установки солнечных панелей.

Первоначальная стоимость установки и использования солнечной энергии очень высока, потому что человек должен заплатить за всю систему — батареи, провода, солнечные панели и так далее.

Как солнечные панели экономят плату за электричество

Как солнечные панели экономят плату за электричество

Пять выводов о частной солнечной энергетике в России

2. Ветроэнергетика

Ветряки, вырабатывающие большое количество электроэнергии при помощи ветра, практически столь же эффективны, как и солнечные батареи. Ветроэнергетика особенно привлекательна для рынка жилой недвижимости.

С 1980 года цены на нее снизились более чем на 80%. Благодаря технологическому прогрессу и возросшему спросу цены, как ожидается, будут снижаться в обозримом будущем.

Ветер — не самый надежный источник энергии, при его низкой силе турбины обычно работают примерно на 30% мощности. В безветренную погоду вы можете оказаться без электричества.

Энергия ветра может быть использована только в местах, где высокая скорость ветра. Поскольку сильные ветра в основном дуют в отдаленных незаселенных районах, необходимо строить линии электропередачи, чтобы обеспечить электроэнергией жилые дома в городе. А это требует дополнительных инвестиций.

Эксперт: Россия может перейти с угля и газа на ветер

Эксперт: Россия может перейти с угля и газа на ветер

Ветровая электроэнергия в стране уже сопоставима по стоимости с традиционной

3. Гидроэнергия

Большинство гидроэлектростанций — хранилища большого количества воды в резервуарах — почти всегда имеют запас, из которого можно извлекать энергию. В этом смысле гидроэлектростанции являются более надежным и стабильным источником энергии, чем ветровая и солнечная энергия.

Накопительные гидроэлектростанции способны генерировать электроэнергию по требованию, что позволяет гидроэлектростанциям заменить такие традиционные диспетчерские генераторы, как угольные и газовые установки.

Накопительные гидроэнергетические установки прерывают естественное течение речной системы. Это приводит к нарушению путей миграции животных и к проблемам с качеством воды.

Гидроэлектростанции представляют собой крупные инфраструктурные проекты, включающие строительство плотины, водохранилища и энергогенерирующих турбин, что требует значительных денежных вложений.

10 причин, почему крупные ГЭС опасны для экологии и общества

10 причин, почему крупные ГЭС опасны для экологии и общества

Что не так с большими гидроэлектростанциями

4. Волновая энергетика

Энергия волн предсказуема, и вы можете определить количество энергии, которое может быть произведено.

Волны имеют более высокую энергетическую мощность, чем, например, ветер, и это делает волновую энергетику более эффективной.

После установки соответствующих электростанций они имеют минимальные эксплуатационные расходы, что делает инвестиции в них более привлекательными.

Хотя это чистая энергия, ее использование создает опасность для морской флоры и фауны, меняет морское дно и среду обитания некоторых его жителей.

Волновая энергия приносит пользу только электростанциям, построенным в городах рядом с океаном.

5. Энергия приливов и отливов

Возникновение приливов очень предсказуемо, что облегчает строительство системы приливных электростанций с правильными размерами для эффективного производства электроэнергии.

Срок службы приливных электростанций составляет 75-100 лет. Они очень эффективны даже спустя много лет использования.

Приливные заграждения приводят к изменению уровня океана в прибрежных водах. Приливная установка также влияет на соленость воды в приливных бассейнах.

Приливные электростанции могут быть построены только на участках, отвечающих определенным критериям.

Хотя приливы и отливы предсказуемы, электростанции могут производить энергию только в течение 10 часов в сутки.

6. Гидротермальная энергия

Строительство станций для выработки гидротермальной энергии требует малых затрат. Эксплуатационные расходы также относительно низкие.

Температура воды выше температуры нагретого воздуха, что делает гидротермальную энергию более эффективной.

Солнце нагревает только верхние слои морей и океанов, поэтому возможных мест для построения станций не так много.

Технологии для выработки гидротермальной энергетики развиты слабо.

7. Энергия жидкостной диффузии

Осмотическая электростанция — новый перспективный метод выработки электроэнергии — устанавливается в устье реки и позволяет извлекать энергию из энтропии жидкостей.

Технологии добычи электроэнергии с помощью жидкостной диффузии развиты крайне слабо. В мире построена только одна осмотическая электростанция в Норвегии.

8. Геотермальная энергия

Геотермальная энергия известна тем, что оказывает наименьшее воздействие на окружающую среду.

Технологии, связанные с производством геотермальной энергии, являются одними из самых инновационных.

Использование геотермальной энергии предполагает высокие первоначальные затраты. Для дома среднего размера установка геотермальных тепловых насосов стоит от $10 тыс. до $20 тыс.

В некоторых ситуациях геотермальные энергетические объекты расположены далеко от населенных пунктов, что требует обширной сети распределительных систем.

9. Биотопливо

Одним из главных преимуществ биотоплива является его относительно низкая стоимость.

Исходные материалы для биотоплива не ограничены. В отличие от ископаемого топлива, ресурсы для биотоплива можно возобновлять.

Биотопливо производит гораздо меньше энергии, чем, например, ископаемое топливо.

Биотопливо нельзя назвать экологически чистым, поскольку оно производит выбросы CO2.

Возобновляемая энергия в мире

Возобновляемые источники энергии помогают бороться с климатическими изменениями, которые становятся более разрушительными. Ветер, солнце, вода и другие источники энергии в будущем станут хорошей заменой ископаемому топливу. Чем раньше это случится, тем лучше для нас и нашей планеты.

Растущий сектор создает рабочие места уже сегодня, делает электрические сети более устойчивыми, расширяет доступ к энергии в развивающихся странах и помогает снизить счета за электроэнергию. Эти факторы способствовали росту популярности возобновляемых источников энергии в последние годы. Преимущества каждого вида альтернативного источника энергии определенно перевешивают минусы.

Подписывайтесь на наш канал в Яндекс.Дзен.

альтернативые источники энергии

Некоторые виды возобновляемых источников энергии использовались людьми на протяжении многих веков. Но только к концу XX столетия развитие альтернативной энергетики приняло промышленные масштабы. Причиной этому стал курс на постепенный отказ от ископаемого, а в перспективе и атомного топлива. Исходя из того, что такое альтернативные источники энергии, выделяют семь основных направлений получения неиссякаемой и экологически чистой энергии. На каждом из них мы остановимся подробно.

1. Энергия солнца. Что это и как используется

Является наиболее быстро развивающимся видом возобновляемой энергетики. Такой интерес именно к этому направлению легко объясним. Солнце – наиболее мощный источник энергии на планете. Количество излучения, падающее на поверхность земли, в 6000 раз превосходит нужды всего человечества в энергопотреблении.

  • Солнечные коллекторы. В промышленном масштабе чаще всего конструктивно представляют собой башню с емкостью-водонагревателем, которая нагревается за счет фокусирования лучей от концентрической системы зеркал. Образовавшийся пар вращает турбины, чем способствует трансформации солнечной энергии в тепловую, а затем электрическую. Существуют и другие варианты термоэлектрических станций – в частности, параболоцилиндрические и солнечно-вакуумные. Вакуумные солнечные коллекторы – наиболее распространенный вариант для частного пользования с интеграцией их в системах отопления и теплоснабжения дома или квартиры.
  • Фотоэлектрические батареи. Создаются на базе полупроводниковых материалов, генерирующих электрический ток из электромагнитного потока света. В первых поколениях панелей использовался кристаллический кремний. Во втором появились редкоземельные металлы. Третье обещает стать наиболее дешевым и экологически безопасным, поскольку создается на основе органики и полимеров.

Сегодня СЭС активно устанавливаются в большинстве стран мира – от небольших станций на крышах частных домов до огромных гелио ферм, занимающих сотни гектаров. Крупнейшие из них, мощностью более 1 ГВт каждая, строятся в Китае, США, странах Африки и на Ближнем Востоке.

Солнечная электростанция - инфографика

Солнечная электростанция — инфографика

Где и как используется. Во всех сферах жизни – от обеспечения светом и теплом миллионов домохозяйств до потребностей автолюбителей и туристов во время многодневных походов.

Лидеры: Германия, КНР, ОАЭ, Марокко.

2.Энергия потока воды. Что это и как используется.

Гидроэнергетика – один из старейших альтернативных источников, используемых человеком. Мини ГЭС масштабно применялись в Древнем Риме, средневековой Европе и императорском Китае.

С первой половины 20 века по всему миру стали строиться гидроэлектростанции большой мощности, способные снабжать энергией целые города. В 2020 году энергия падающей воды обеспечивала более 20% всех энергетических потребностей планеты, и составляла около 75% всей альтернативной генерации. Общая мощность гидроустановок сегодня превышает 800 ГВт.

Конструктивно общий принцип работы таких станций предельно прост. Кинетическая энергия воды при падении на лопасти любых механизмов преобразовывается в механическую. Далее вращение колес или турбин позволяет совершать определенную работу или осуществлять дальнейшее преобразование в электрический ток.

Энергия потока воды - принцип действия

Энергия потока воды — принцип действия

Где и как используется. Наиболее широко применяется в местностях, изобилующих крупными и мелкими реками, а также водопадами. Это обуславливает и перечень стран, где ГЭС являются превалирующим, а иногда и единственным видом энергогенерации.

  • Парагвай – 100%;
  • Норвегия, Швеция – 98%;
  • Канада – 97%.

По числу мини ГЭС в первых рядах идут Германия, Австрия, Ирландия, Швеция и некоторые другие.

3. Энергия приливов и отливов. Что это и как используется.

Приливы и отливы – довольно экзотический, но абсолютно надежный и неисчерпаемый альтернативный источник энергии. Данное явление существует на нашей планете благодаря наличию у нее спутника – Луны. В одни и те же промежутки времени, дважды в сутки, ее притяжение заставляет гигантские массы воды отступать или наступать на побережья морей и океанов. Уровень колебаний составляет более 18 метров.

Энергия приливов и отливов - принцип действия

Энергия приливов и отливов — принцип действия

Для получения максимальной генерации необходимо строить вдоль берегов как можно более длинные плотины. Чемпионами среди приливных электростанций сегодня являются:

Общий объем генерации от этого альтернативного источника энергии уступает другим возобновляемым видам. Однако на океанских побережьях, особенно в устьях крупных рек, строительство ПЭТ чрезвычайно выгодно.

4. Энергия морских волн. Что это и как используется.

Очень мощный, но пока не получивший широкого применения способ получения электроэнергии. Основным препятствием его развития является сложность передачи генерации с морских платформ или специальных суден на берег.

Энергия морских волн - принцип действия

Энергия морских волн — принцип действия

По этой причине объем выработки в основном используется прямо на месте для следующих целей:

  • опреснения морской воды;
  • получения чистого водорода путем электролиза;
  • участия в производстве алюминия.

В перспективе ситуация может измениться, но для этого необходимы рост емкости и удешевление стоимости накопительных аккумуляторов.

Среди всех альтернативных источников энергия морских волн позволяет получить самый высокий КПД. Связано это с высокой удельной мощностью колеблющихся водяных масс, достигающей 80 кВт/м при высоте волн всего около двух метров. Поскольку вода намного плотнее воздуха, КПД преобразующих установок достигает 85%. Даже при незначительном количестве генерирующих платформ вдоль побережья такая страна как Германия получает около 5% объема общей выработки электроэнергии именно от них.

Лидеры: Таковыми сегодня выступают практически все развитые страны c большой протяженностью береговой океанской линии. Наибольшим числом волновых генераторов обладает Великобритания, Ирландия, Германия, Норвегия и Дания.

5.Энергия ветра. Что это и как используется.

Ветроэнергетика – третий по распространенности и объемам выработки альтернативный источник после ГЭС и СЭС. В древнейшие времена человек нашел первый способ использования кинетической энергии ветра, изобретя парус. Следующим шагом стало строительство ветряных мельниц. Но только в прошлом столетии появились возможности преобразования этой силы в электричество, что привело к строительству современных ВЭС.

Энергия ветра - принцип действия

Энергия ветра — принцип действия

Наиболее мощные ветряки устанавливаются вдоль морских побережий и в горах, достигают высоты 150-200 метров. КПД этих устройств достигает 40%, а эффективность при силе ветра от 10 м/с и выше превышает таковую у любых других энергогенерирующих установок.

К главным достоинствам ВЭС, как альтернативного источника энергии, относятся:

  • круглосуточное функционирование;
  • высокая производительность;
  • могут использоваться параллельно с сетью.

Из недостатков следует отметить:

  • высокие расходы на монтаж;
  • резкое снижение КПД при скорости ветра менее 3-4 м/с;
  • сравнительно небольшой срок эксплуатации без обслуживания и ремонта;
  • шумность;
  • необходимость замены смазки в холодное время года на незамерзающие модификации.

Лидеры – по доле полученного от ветра электричества первые места занимают:

  • Дания – 52%;
  • Ирландия – 36%;
  • Португалия – 30%;
  • Германия – 29%;
  • Великобритания – 24%.

По состоянию на 2020 год в отрасли занято около 1,2 млн. человек.

6. Геотермальная энергия. Что это и как используется.

Существует две разновидности установок, которые используют этот естественный альтернативный источник. Первые представляют собой грунтовые теплообменники, работающие за счет разницы температур на поверхности земли и достаточно большой глубине. Эффективность их невысока, но низкий КПД компенсируется минимальными затратами на оборудование и чрезвычайно длительным сроком его службы.

Геотермальная энергия - принцип дейтсвия

Геотермальная энергия — принцип дейтсвия

Более широко распространена вторая разновидность, где источником тепла являются высокотемпературные грунтовые термальные воды. В Центральной Америке и на Филиппинах с их помощью получают электричество, а в Японии и Исландии применяют для отопления.

Последняя из перечисленных стран является абсолютным мировым лидером по использованию горячих источников — гейзеров. При среднегодовой температуре воздуха этого островного государства около нуля, потребности в обогреве жилищ и промышленных предприятий покрываются геотермальной энергетикой на 99,8%.

Наконец, Исландия занимает второе место в рейтинге RISE мирового банка по доле альтернативной энергетики в общем энергобалансе страны в целом. ВИЭ в этом государстве обеспечивают более 85% потребностей промышленности и населения в энергии. Выше в рейтинге располагается только Дания – 87%. Для сравнения, высокотехнологичная Германия, идущая третьей, получает от солнца, ветра, энергии морских волн и биомассы лишь немногим более 52%.

7.Энергия биомассы. Что это и как используется.

Изначально сырьем для биомассы выступали преимущественно с/х культуры с большим содержанием жира, крахмала и сахара. Из них в результате переработки получали биодизель и этилированный спирт, которые становились вторичным источником энергии. Однако выращивание подобных культур наносило непоправимый ущерб почвам, и на сегодняшний день подобный путь получения биомассы практически не применяется.

Следующим поколением биологически чистого сырья стала древесина и жмых обычных культивируемых растений. К сожалению, удельная эффективность их использования в качестве альтернативного источника энергии была невелика. Кроме того, объем биомассы по-прежнему зависел от посевных площадей.

Сегодня все крупные мировые производители биомассы перешли на третье поколение – водяные водоросли. Этот вид растений характеризуется рядом важных преимуществ:

  • выращивание производится в специальных искусственных бассейнах, строительство которых возможно где угодно;
  • производство не требует выделения почв сельскохозяйственного назначения;
  • финансовые затраты минимальны, а скорость воспроизводства максимальна в сравнении с любым другим видом растительности;
  • удельная масса водорослей на единицу объема – а, значит, и конечный выход энергии – выше, чем у предыдущих поколений биомассы.

Значительно проигрывая по распространенности солнцу и ветру, биотопливо, тем не менее, занимает достойное место в перечне источников альтернативной энергии.

Альтернати́вная энерге́тика — совокупность перспективных способов получения, передачи и использования энергии (зачастую — из возобновляемых источников), которые распространены не так широко, как традиционные, однако представляют интерес из-за выгодности их использования при, как правило, низком риске причинения вреда окружающей среде.



Доли в % различных источников в мировом производстве электроэнергии в 2018 году (IEA, 2020)

Содержание

Направления альтернативной энергетики [ ]

Альтернативный источник энергии [ ]

Классификация источников [ ]

Источники энергии, используемые человеком
Способ использования Энергия, используемая человеком Первоначальный природный источник
Солнечные электростанции Электромагнитное излучение Солнца Солнечный ядерный синтез
Ветряные электростанции Кинетическая энергия ветра Солнечный ядерный синтез,

Движения Земли и Луны

Движения Земли и Луны

  1. Зелёным шрифтом обозначены нетрадиционные способы использования энергии.
  2. Зелёным цветом залиты возобновляемые источники энергии.

Ветроэнергетика [ ]

В последнее время многие страны расширяют использование ветроэнергетических установок (ВЭУ). Больше всего их используют в странах Западной Европы (Дания, ФРГ, Великобритания, Нидерланды), в США, в Индии, Китае.

Согласно Ассоциации ветроэнергетики Европы (WindEurope), по результатам 2019 года, в Европе лидерами в ветроэнергетике стали Дания (48 % электричества из ветра), Ирландия (33 %), Португалия (27 %), Германия (26 %) и Великобритания (22 %).

  • Автономные ветрогенераторы
  • Ветрогенераторы, работающие параллельно с сетью

Биотопливо [ ]

  • Жидкое: Биодизель, биоэтанол.
  • Твёрдое: древесные отходы и биомасса (щепа, гранулы (топливные пеллеты) из древесины, лузги, соломы и т. п., топливные брикеты)
  • Газообразное: биогаз, синтез-газ.

Гелиоэнергетика [ ]

Альтернативная гидроэнергетика [ ]

  • Приливные электростанции (ПЭС) пока имеются лишь в нескольких странах — Франции, Великобритании, Канаде, России, Индии, Китае, Южной Корее, Норвегии
  • Волновые электростанции.
  • Мини и микро ГЭС (устанавливаются в основном на малых реках).
  • Энергия температурного градиента морской воды
  • Аэро ГЭС (конденсация влаги из атмосферы, в том числе из облаков) — работают опытные установки.

Геотермальная энергетика [ ]

Используется как для нагрева воды для отопления, так и для производства электроэнергии. На геотермальных электростанциях вырабатывают немалую часть электроэнергии в странах Центральной Америки, на Филиппинах, в Исландии; Исландия также являет собой пример страны, где термальные воды широко используются для обогрева, отопления.

  • Тепловые электростанции (принцип отбора высокотемпературных грунтовых вод и использования их в цикле)
  • Грунтовые теплообменники (принцип отбора тепла от грунта посредством теплообмена)

Мускульная сила человека [ ]

Хотя мускульная сила является самым древним источником энергии, и человек всегда стремился заменить её чем-то другим, в настоящее время её значение растёт вместе с ростом использования транспортных средств на мускульной тяге — велосипед, самокат, веломобиль и т. п.

Грозовая энергетика [ ]

Грозовая энергетика — это способ использования энергии путём поимки и перенаправления энергии молний в электросеть. Компания Alternative Energy Holdings в 2006 году объявила о создании прототипа модели, которая может использовать энергию молнии. Предполагалось, что эта энергия окажется значительно дешевле энергии, полученной с помощью современных источников, окупаться такая установка будет за 4—7 лет.

Криоэнергетика [ ]

Криоэнергетика — это способ аккумулирования избыточной энергии посредством сжижения воздуха.

В промышленной зоне Слау построена первая в мире 300-киловаттная криогенная аккумулирующая электростанция.

В феврале 2011 года от Highview Power Storage отсоединился стартап Dearman Engine, занимающийся разработкой криогенных двигателей .

Гравитационная энергетика [ ]

Гравитационная энергетика — аккумулирование избыточной энергии посредством запасания её в виде потенциальной энергии гравитационного поля.

Компания Energy Vault разработала проект гравитационной аккумулирующей электростанции, представляющей собой подъёмный кран с шестью стрелами, электродвигатели которого работают как электрогенераторы при спуске блоков, и поставленные друг на друга блоки. Когда в электросеть поступает избыточная энергия, она тратится на поднятие блоков. А в часы-пик, при спуске блоков кранами, энергия возвращается в сеть.

Управляемый термоядерный синтез [ ]

Синтез более тяжёлых атомных ядер из более лёгких с целью получения энергии, который носит управляемый характер. До сих пор не применяется.

Направления альтернативной энергетики помимо использования нетрадиционных источников энергии [ ]

Распределённое производство энергии [ ]

Новая тенденция в энергетике, связанная с производством тепловой и электрической энергии.

Водородная энергетика [ ]

На сегодняшний день для производства водорода требуется больше энергии, чем возможно получить при его использовании, поэтому считать его источником энергии нельзя. Он является лишь средством хранения и доставки энергии.

  • Водородные двигатели (для получения механической энергии)
  • Топливные элементы (для получения электричества)
  • Биоводород

Согласно оценке HydrogenCouncil (ассоциация крупных международных компаний, куда входят Total, Toyota, BP, Shell и другие, в основном европейские и японские, корпорации), в 2050 году доля водорода в потреблении энергии составит 18 %.

Космическая энергетика [ ]

Получение электроэнергии в фотоэлектрических элементах, расположенных на околоземной орбите или на Луне. Электроэнергия будет передаваться на Землю в форме микроволнового излучения. Может способствовать глобальному потеплению. До сих пор не применяется.

Перспективы [ ]

Перспективы использования возобновляемых источников энергии связаны с их экологической чистотой, низкой стоимостью эксплуатации и ожидаемым топливным дефицитом в традиционной энергетике.

По оценкам Европейской комиссии к 2020 году в странах Евросоюза в индустрии возобновляемой энергетики будет создано 2,8 миллионов рабочих мест. Индустрия возобновляемой энергетики будет создавать 1,1 % ВВП.

По оценкам МЭА, для достижения нулевого суммарного выброса углекислого газа к 2050 г. с целью предотвращения потепления на Земле более чем на 1,5 градуса по Цельсию, две трети всей энергии и 90% электроэнергии на планете будет производить зелёная энергетика. К 2030 году развитие зеленой энергетики позволит создать 14 миллионов новых рабочих мест.

Инвестиции [ ]

Согласно отчёту ООН, в 2008 году во всём мире было инвестировано $140 млрд в проекты, связанные с альтернативной энергетикой, тогда как в добычу угля и нефти было инвестировано $110 млрд.

Во всём мире в 2008 году инвестировали $51,8 млрд в ветроэнергетику, $33,5 млрд в солнечную энергетику и $16,9 млрд в биотопливо. Страны Европы в 2008 году инвестировали в альтернативную энергетику $50 млрд, страны Америки — $30 млрд, Китай — $15,6 млрд, Индия — $4,1 млрд.

В 2018 году инвестиции в сектор возобновляемой энергетики достигли показателя $ 288,9 млрд. На глобальном уровне солнечная энергетика по-прежнему осталась основным направлением инвестиций с показателем $139,7 млрд в 2018 году (сокращение на 22 %). Инвестиции в сферу ветроэнергетики в 2018 году увеличились на 2 % и достигли показателя в $134,1 млрд. На остальные секторы пришёлся значительно меньший объём инвестиций, хотя инвестиции в биоэнергетику и производство энергии путём сжигания отходов увеличились на 54 % и составили $8,7 млрд. [источник не указан 608 дней]

Распространение [ ]

Согласно данным BP, в 2019 году доля альтернативных возобновляемых источников энергии (без крупных ГЭС) составила 10,4 % в мировой генерации электричества, впервые обойдя атомную энергию по этому показателю

В первичной энергии (общем энергобалансе) доля альтернативной энергетики выросла до 5 %, поднявшись с 4,5 % в 2018 году и также обойдя атомную энергию.

По состоянию на 2017 год альтернативные источники энергии выработали 9,6 % электроэнергии в США, включая 6,3 % из ветровых и 1,3 % из солнечных электростанций. С учётом больших ГЭС, вклад возобновляемых источников энергии составил 17,1 % от выработанного в США электричества.

За первую половину 2020 года в Германии возобновляемые источники энергии выработали рекордные 56 % электричества. Из них 4 % выработала традиционная гидроэнергетика, а 52 % — альтернативные источники. Ветер занял первое место среди источников электроэнергии, выработав 30,6 % электричества, а солнце дало 11,4 %.

Читайте также: