С какой целью проводят проверку полярности и согласования обмоток машин постоянного тока

Обновлено: 11.05.2024

а) Генератор размагничен (потерял остаточный магнетизм)
б) Неправильное соединение параллельной обмотки возбуждения с якорем
в) Обрыв или плохой контакт в цепи обмотки возбуждения
г) Щетки смещены с нейтрального положения
д) Большое переходное сопротивление между коллектором и щетками
е) Неправильное чередование полярности главных полюсов вследствие неправильного соединения катушек
ж) Параллельная обмотка имеет соединение с обмоткой дополнительных полюсов или с последовательной обмоткой; параллельная обмотка зашунтирована
з) Межвитковое соединение в секции обмотки якоря, короткое замыкание одной или нескольких секций, соединение обмотки якоря с корпусом в двух местах
и) Шунтовой регулятор неправильно включен в цепь возбуждения
к) Обрыв или плохой контакт в цепи возбуждения, загрязнение контактов регулятора

Принимаемые меры:

Причина неисправности:

Принимаемые меры:

а) Довести частоту вращения первичного двигателя до номинальной
б) Установить маховичок регулятора возбуждения в нужное положение
в) Проверить вольтметром напряжение на зажимах отдельных катушек. Неисправные катушки заменить
г) Осмотреть пайку соединений обмотки якоря с пластинами коллектора. Плохие пайки перепаять. В случае обрыва проводов внутри обмотки якоря найти поврежденную секцию и отсоединить ее; при первой возможности заменить
д) Установить траверсу на нейтраль
е) Проверить чередование полярности катушек параллельной обмотки и при необходимости пересоединить их
ж) Установить правильный зазор по формуляру машины

3. Генератор на холостом ходу дает напряжение ниже номинального

Причина неисправности:

а) Последовательная включена встречно
б) Генератор перегружен
в) Щетки сдвинуты с нейтрали

Принимаемые меры:

а) Проверить правильность включения последовательной обмотки. Неправильно соединенные концы обмотки пересоединить
б) Проверить нагрузку и довести ее до номинальной
в) Установить траверсу на нейтраль


4. Генератор на холостом ходу дает напряжение выше номинального

Причина неисправности:

а) Частота вращения первичного двигателя выше номинальной в том числе регулятора, неисправна нейтраль по формуляру
б) Сопротивление цепи возбуждения мало вследствие имеющихся в ней неисправностей
в) Щетки сдвинуты с нейтрали
г) Уменьшен зазор под главными полюсами

Принимаемые меры:

а) Довести частоту вращения первичного двигателя до номинальной
б) Проверить сопротивление внешней части цепи возбуждения, сопротивление шунтового регулятора, устранить обнаруженные неисправности
в) Установить траверсу
г) Установить зазор электрической машины

5. Электродвигатель не работает при пуске

Причина неисправности:

а) Отключен выключатель цепи управления либо аварийный выключатель электропривода
б) Перегорели предохранители
в) Напряжение сети ниже номинального
г) Электродвигатель чрезмерно перегружен при пуске
д) Неисправность отдельных элементов магнитной станции
е) Обрыв в пусковом реостате или во внешних проводах цепи якоря
ж) Обрыв в обмотке якоря

Принимаемые меры:

а) Проверить состояние выключателей
б) Поставить новые предохранители
в) Установить номинальное напряжение
г) Устранить причины перегрузки
д) Проверить и устранить выявленную неисправность
е) Найти место обрыва и устранить его
ж) Проверить состояние присоединений обмотки якоря к потемневшим коллекторным пластинам и при необходимости перепаять эти соединения

6. Электродвигатель потребляет большой ток при пуске

Причина неисправности:

а) Чрезмерная нагрузка электродвигателя при пуске
б) Неисправность контакторов ускорения, мала выдержка времени на пусковых ступенях
обмотка
в) Параллельная обмотка включена после пускового реостата (недостаточен ток возбуждения)
г) Последовательная включена встречно

Принимаемые меры:

а) Выяснить причины перегрузки электродвигателя (состояние механической части) и устранить их
б) Проверить контакторы и реле, устранить неисправности; отрегулировать выдержки времени реле ускорения
в) Проверить схему включения пускового реостата и правильность включения параллельной обмотки; устранить неисправность
г) Пересоединить обмотку возбуждения

7. Частота вращения электродвигателя ниже номинальной

Причина неисправности:

а) Электродвигатель перегружен
б) Напряжение сети ниже номинального
в) Ненормально большой ток возбуждения (малое сопротивление в цепи возбуждения)
г) Неисправность контакторов или реле контакторов ускорения

Принимаемые меры:

а) Устранить перегрузку
б) Установить номинальное напряжение
в) Проверить сопротивление параллельной обмотки. Обнаруженные неисправности устранить
г) Проверить и устранить неисправности

8. Частота вращения электродвигателя выше номинальной

Причина неисправности:

а) Установить номинальное напряжение
б) Установить траверсу на нейтраль
в) Сопротивление регулятора возбуждения слишком велико
г) Встречное включение последовательной обмотки

Принимаемые меры:

а) Напряжение сети выше номинального
б) Щетки сдвинуты с нейтрального положения против направления вращения электродвигателя
в) Уменьшить или полностью вывести сопротивление регулятора в цепи возбуждения
г) Пересоединить последовательную обмотку.

Причина неисправности:

Нарушена цепь блок-контактов контактора, шунтирующих пусковую кнопку

Принимаемые меры:

Проверить цепь, шунтирующую пусковую кнопку; устранить неисправность

10. Перегрев обмотки якоря

Причина неисправности:

а) Недостаточная вентиляция
б) Межвитковое соединение, короткое замыкание обмотки якоря, соединение обмотки якоря с корпусом в двух местах

Принимаемые меры:

11. Перегрев коллектора

Причина неисправности:

а) Чрезмерное нажатие щеток
б) Искрение на коллекторе
в) Перегрузка машины

Принимаемые меры:

а) Проверить нажатие щеток и отрегулировать
б) Устранить искрение щеток
в) Выяснить и устранить причину перегрузки обмотки возбуждения

12. Перегрев обмотки возбуждения

Причина неисправности:

а) Большой ток возбуждения, добавочное сопротивление в цепи возбуждения слишком мало или отсутствует, неправильное соединение катушек полюсов
б) Замыкание между параллельной и последовательной обмотками
в) Межвитковое замыкание обмотки возбуждения

Принимаемые меры:

а) Отрегулировать добавочное сопротивление так, чтобы скорость вращения электродвигателя при номинальных нагрузках и напряжении соответствовала указанной на заводском щитке машины; в случае необходимости увеличить добавочное сопротивление; проверить правильность соединения катушек
б) Устранить замыкание
в) Заменить поврежденную катушку возбуждения новой

13. Искрение под щетками у генератора или электродвигателей

Причина неисправности:

а) Неправильное положение щеток относительно нейтрали
б) Коллектор загрязнен
в) Коллектор изношен больше допустимого предела
г) Недопустимая неравномерность воздушного зазора (междужелезного пространства)
д) Неисправности щеток или щеточного аппарата
е) Обрыв цепи резисторов, шунтирующих обмотку дополнительных полюсов ЭМУ

Принимаемые меры:

а) Проверить правильность установки щеток и установить их на нейтраль
б) Очистить коллектор
в) Проточить коллектор
г) Проверить состояние подшипников. Отрегулировать зазоры по формуляру машины
д) Проверить щетки и щеточный аппарат
е) Найти место обрыва и устранить неисправность

14. Круговой огонь по коллектору

Причина неисправности:

а) Обрыв обмотки якоря
б) Неправильное положение щеток
в) Неправильная полярность полюсов
г) Чрезмерное загрязнение коллектора

Принимаемые меры:

а) Проверить состояние мест присоединения обмотки якоря к потемневшим коллекторным пластинам и в случае необходимости перепаять эти соединения. При обрыве провода внутри самой обмотки найти и отключить поврежденную секцию. Если невозможно выполнить ремонт в судовых условиях, заменить якорь
б) Проверить и установить щетки на нейтраль
в) Проверить чередование полюсов
г) Очистить коллектор

15. Сильное искрение и выгорание изоляции между отдельными коллекторными пластинами, потемнение отдельных пластин

Причина неисправности:

а) Ослабло крепление коллекторных пластин, появились выступающие или запавшие коллекторные пластины
б) Обрыв в обмотке якоря (чаще всего в местах присоединения к коллекторным пластинам)

Принимаемые меры:

а) Подтянуть крепление коллектора, продорожить изоляцию между пластинами, проточить и отшлифовать коллектор
б) Проверить состояние мест присоединения обмотки якоря к потемневшим коллекторным пластинам и в случае необходимости перепаять эти соединения. При обрыве провода внутри самой обмотки найти и отключить поврежденную секцию. Если невозможно выполнить ремонт в судовых условиях, заменить якорь

16. Щетки одного полюса искрят сильнее щеток других полюсов

Причина неисправности:

а) Неодинаковые расстояния по окружности коллектора между щетками разных пальцев
Примечание. Следует иметь в виду, что для некоторых специальных машин заводом предусматриваются неодинаковые расстояния между щетками отдельных пальцев
б) Междувитковое замыкание одной или нескольких катушек в цепи параллельной обмотки, последовательной обмотки или обмотки дополнительных полюсов; замыкание на корпус в двух местах цепи одной из этих обмоток
в) Замыкание параллельной обмотки с последовательной или обмоткой дополнительных полюсов, вследствие чего часть параллельной обмотки шунтируется и ток в ней увеличивается

Принимаемые меры:

а) Проверить расстояние по коллектору и установить щетки разных пальцев на одинаковом расстоянии друг от друга
б) Найти поврежденную катушку, отремонтировать либо заменить ее
в) Отсоединить концы параллельной обмотки на клеммном щитке, проверить наличие замыкания параллельной обмотки с другими обмотками. Разъединить отдельные катушки параллельной обмотки; определить, какая катушка имеет замыкание, и устранить его. Если место замыкания обмоток доступно, изолировать его, а если недоступно, заменить катушку

17. Самовозбуждение ЭМУ

Причина неисправности:

а) Обрыв цепи резисторов, шунтирующих компенсационную обмотку
б) Сдвиг траверсы по отношению к нейтрали против направления вращения
в) Сопротивление цепи обмотки самовозбуждения ЭМУ продольного поля менее критического значения

Принимаемые меры:

а) Найти место обрыва и устранить неисправность
б) Установить траверсу в нейтральное положение
в) Принять меры к увеличению сопротивления цепи; установить при необходимости дополнительный балластный резистор

18. ЭМУ не возбуждается

Причина неисправности:

а) Обрыв цепи обмотки поперечного подмагничивания ЭМУ поперечного поля
б) Обрыв цепи задающей обмотки управления
в) Обрыв цепи якоря

Принимаемые меры:

а) Найти место обрыва и устранить неисправность
б) Найти место обрыва и устранить неисправность
в) Найти место обрыва и устранить неисправность

19. Напряжение на выходе ЭМУ при нагрузке меньше номинального при номинальном токе в задающей обмотке управления

Причина неисправности:

а) Неправильная регулировка степени компенсации реакции якоря
б) Сдвиг траверсы по отношению к нейтрали по направлению вращения обрыва и устранить
в) Обрыв в обмотке самовозбуждения ЭМУ продольного поля

Принимаемые меры:

а) Проверить и произвести регулировку степени компенсации реакции якоря посредством подстроечных резисторов в нагретом состоянии ЭМУ
б) Установить траверсу в нейтральное положение
в) Найти место неисправность

МАШИНЫ ЭЛЕКТРИЧЕСКИЕ ВРАЩАЮЩИЕСЯ КОЛЛЕКТОРНЫЕ

Rotating electrical commutator machines.
Test methods

Дата введения 1980-07-01

ВВЕДЕН В ДЕЙСТВИЕ постановлением Государственного комитета СССР по стандартам от 23 июля 1979 г. N 2700

Ограничение срока действия снято по протоколу N 5-94 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 11-12-94)

ПЕРЕИЗДАНИЕ (ноябрь 1998 г.) с Изменениями N 1, 2, утвержденными в июле 1985 г., октябре 1986 г. (ИУС 10-85, 1-87)

Настоящий стандарт распространяется на машины постоянного тока (генераторы и двигатели) с номинальной мощностью свыше 50 Вт.

Стандарт не распространяется на электрические машины, предназначенные для применения в бортовых системах подвижных средств наземного, водного и воздушного транспорта, а также на специальные электрические машины.

Стандарт полностью соответствует СТ СЭВ 5392-85.

Стандарт устанавливает следующие методы испытаний:

измерение сопротивления изоляции обмоток относительно корпуса машины и между обмотками (п.2);

измерение сопротивления обмоток при постоянном токе в практически холодном состоянии (п.3);

испытание при повышенной частоте вращения (п.4);

испытание изоляции обмоток на электрическую прочность относительно корпуса машины и между обмотками (п.5);

испытание электрической прочности междувитковой изоляции обмоток якоря (п.6);

определение тока возбуждения генератора или частоты вращения электродвигателя при холостом ходе (п.7);

определение характеристики холостого хода (п.8);

определение рабочей характеристики электродвигателя (п.9);

определение механической характеристики электродвигателя (п.9а);

определение внешней характеристики генератора (п.10);

определение регулировочной характеристики генератора и электродвигателя (п.11);

испытание на нагревание (п.12);

проверка коммутации при номинальной нагрузке и кратковременной перегрузке по току (п.13);

определение области безыскровой работы (для машин с добавочными полюсами) (п.14);

определение потерь и коэффициента полезного действия (п.15);

проверка номинальных данных машины (п.16);

измерение биения коллектора (п.17);

измерение уровня вибрации (п.18);

определение уровня радиопомех (п.19);

определение уровня шума (п.20);

определение момента инерции якоря (п.21);

определение расхода охлаждающего газа (п.22);

проверка степени защиты (п.23).

1. ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ И ПОДГОТОВКА К ИСПЫТАНИЯМ

1.2. Проверка качества сборки машины

1.2.1. Перед испытанием проверяют основные установочные размеры и качество сборки машины, равномерность воздушного зазора между главными и добавочными полюсами и якорем, равномерность расстановки полюсов по окружности магнитной системы и щеток по окружности коллектора, силу нажатия на щетки, расстояние нижней кромки щеткодержателей от рабочей поверхности коллектора, аксиальную симметрию сердечников якоря и полюсов, правильность маркировки выводов.

1.2.2. Измерение зазора производят под серединой каждого полюса. При длине сердечника якоря 300 мм и более измерение зазора проводят с обоих торцов машины.

Для машин мощностью до 100 кВт, а при применении стеклобандажа на якоре для машин до 1000 кВт разрешается производить измерение зазора по разности диаметров полюсной системы и якоря.

На машинах, выполненных с эксцентричным зазором, измерению подвергается только минимальный зазор под каждым полюсом.

1.2.3. Определение формы наружной поверхности якоря необходимо производить измерением зазора под одним и тем же полюсом, поворачивая якорь каждый раз на равные доли оборота. Определение формы внутренней поверхности магнитной системы следует производить измерением зазора в одной и той же точке якоря, поворачивая якорь каждый раз на одно полюсное деление. Обе эти операции могут быть совмещены. Если многократный поворот якоря на одно полюсное деление трудно осуществим, допускается измерять зазор под всеми полюсами при двух диаметрально противоположных положениях якоря относительно магнитной системы.

1.3. Установка щеток в положение, соответствующее нейтрали

1.3.1. Установку щеток в положение, соответствующее нейтрали, производят либо индуктивным методом при неподвижном якоре, либо методом реверсирования при работе машины под нагрузкой после проверки готовности машины к испытанию, притирки и пришлифовки щеток к поверхности коллектора. Окончательное положение, соответствующее нейтрали щеток, должно быть проверено после приработки их к контактной поверхности.

1.3.2. Индуктивный метод. При неподвижном якоре к щеткам разной полярности подключают чувствительный магнитоэлектрический прибор (предпочтительно с нулем посередине шкалы), а в обмотку главных полюсов подают импульсами питание от постороннего источника постоянного тока.

При положении щеток, соответствующем нейтрали, прибор не должен давать отклонений или эти отклонения должны быть минимальными и направленными в разные стороны. Опыт повторяют при установке якоря в различные положения по отношению к полюсам. При отсутствии напряжения постоянного тока в обмотку главных полюсов подают напряжение переменного тока. При положении щеток, соответствующем нейтрали, чувствительный вольтметр переменного тока, присоединенный к щеткам разной полярности, покажет минимальное напряжение.

1.3.3. Метод реверсирования. При работе машины под нагрузкой положение щеток, соответствующее нейтрали, определяют, изменяя направление вращения машины, при этом соблюдают следующие условия:

у электродвигателя при неизменных значениях напряжения, тока нагрузки и тока возбуждения при положении щеток, соответствующем нейтрали, практически не изменяется частота вращения. Опыт рекомендуется проводить при номинальной частоте вращения;

у генератора при неизменных значениях частоты вращения, тока нагрузки и тока возбуждения при положении щеток, соответствующем нейтрали, практически не изменяется напряжение на зажимах. При этом питание обмотки возбуждения должно быть независимым.

Для машин со смешанным возбуждением как при правом, так и при левом направлении вращения система возбуждения (т.е. согласное или встречное включение обмоток) должна сохраняться неизменной.

Допускается отключать последовательную обмотку возбуждения.

1.3.4. Кроме перечисленных методов, установку щеток в положение, соответствующее нейтрали, допускается производить иными методами, дающими необходимую точность.

2. ИЗМЕРЕНИЕ СОПРОТИВЛЕНИЯ ИЗОЛЯЦИИ ОБМОТОК
ОТНОСИТЕЛЬНО КОРПУСА МАШИНЫ И МЕЖДУ ОБМОТКАМИ

3. ИЗМЕРЕНИЕ СОПРОТИВЛЕНИЯ ОБМОТОК ПРИ ПОСТОЯННОМ ТОКЕ
В ПРАКТИЧЕСКИ ХОЛОДНОМ СОСТОЯНИИ

3.2. Измерение сопротивления обмотки якоря при простых волновых и простых петлевых обмотках с полным числом уравнительных соединений следует производить между коллекторными пластинами, отстоящими друг от друга на пластин (- число коллекторных пластин, - число полюсов). Если отношение окажется дробным числом, то его необходимо округлить до ближайшего целого.

При других схемах обмоток указанный метод измерения сопротивления должен быть изменен с учетом типа обмотки и конструкции машины.

Если можно быстро и легко поднять или изолировать щетки, то измерение сопротивления обмотки якоря следует производить при поднятых или изолированных щетках. В остальных случаях допускается измерять сопротивление обмотки якоря при опущенных щетках.

Измерительные приборы при этом рекомендуется подключать к коллекторным пластинам, находящимся под щетками вблизи оси щеток.


Измерение сопротивления обмотки якоря с целью определения ее температуры при испытаниях на нагревание следует проводить между произвольными коллекторными пластинами, удаленными друг от друга не менее чем на выбранными так, чтобы измеряемое значение сопротивления было наибольшим.

Если это измерение производят с опущенными щетками, то расстояние меду пластинами следует выбирать так, чтобы искажающее влияние щеток на результат измерения при данном типе обмотки было возможно малым. Измерение производят на одних и тех же коллекторных пластинах до и после испытаний на нагревание, по возможности, при одном и том же положении коллектора относительно щеток.

4. ИСПЫТАНИЕ ПРИ ПОВЫШЕННОЙ ЧАСТОТЕ ВРАЩЕНИЯ

5. ИСПЫТАНИЕ ИЗОЛЯЦИИ ОБМОТОК НА ЭЛЕКТРИЧЕСКУЮ ПРОЧНОСТЬ
ОТНОСИТЕЛЬНО КОРПУСА МАШИНЫ И МЕЖДУ ОБМОТКАМИ

6. ИСПЫТАНИЕ ЭЛЕКТРИЧЕСКОЙ ПРОЧНОСТИ МЕЖДУВИТКОВОЙ ИЗОЛЯЦИИ ОБМОТОК

6.1. Испытание электрической прочности междувитковой изоляции обмоток якоря - по ГОСТ 183-74.

Испытание электрической прочности междувитковой изоляции обмоток якоря следует проводить непосредственно после испытаний по п.4.1. Допускается совмещать это испытание с испытанием по п.4.1.

У машин мощностью свыше 1000 кВт испытание электрической прочности междувитковой изоляции допускается проводить с сокращенным числом щеток таким образом, чтобы на один щеткодержательный брикет приходилась одна щетка.

Для двигателей с последовательным возбуждением испытание проводят при нагрузке или при независимом возбуждении.

7. ОПРЕДЕЛЕНИЕ ТОКА ВОЗБУЖДЕНИЯ ГЕНЕРАТОРА ИЛИ ЧАСТОТЫ ВРАЩЕНИЯ ЭЛЕКТРОДВИГАТЕЛЯ ПРИ ХОЛОСТОМ ХОДЕ

7.1. Определение тока возбуждения генератора проводят на ненагруженном генераторе при номинальном напряжении на якоре и номинальной частоте вращения, а для генераторов с самовозбуждением также при температуре, близкой к рабочей.

7.2. Определение частоты вращения электродвигателя при холостом ходе проводят при номинальном напряжении в цепи якоря и номинальном токе возбуждения. При этом температура обмотки возбуждения и подшипников должна быть близкой к рабочей.

Если электродвигатель предназначен для работы от источника с изменяющимся напряжением, то опыт проводят для максимального напряжения, указанного на щитке.

Для электродвигателей с последовательным возбуждением опыт проводят при независимом возбуждении и токе возбуждения, равном номинальному.

8. ОПРЕДЕЛЕНИЕ ХАРАКТЕРИСТИКИ ХОЛОСТОГО ХОДА

8.1. Характеристику холостого хода определяют при независимом возбуждении или при самовозбуждении. Во втором случае обмотка последовательного возбуждения, если она имеется, не должна быть нагружена током обмотки параллельного возбуждения. Характеристику холостого хода машины с последовательным возбуждением определяют только при независимом возбуждении.

Испытываемую машину приводят во вращение двигателем любого вида и частоту вращения поддерживают постоянной.

Если при определении характеристики холостого хода частота вращения отличается от номинальной (), то одновременно с отсчетом показаний по амперметру и вольтметру измеряют частоту вращения якоря. Напряжение холостого хода () вычисляют по измеренным значениям частоты вращения и напряжения () по формуле

Трансформаторы тока

Вопрос-ответ

В трехфазных сетях из-за значительных токовых нагрузок для приведения измеряемого сигнала к приемлемому уровню применяются трансформаторы тока или ТТ. При монтаже этих приборов должна соблюдаться полярность, зависящая от направления, выбранного при намотке катушек, а также от их взаимного положения на самом сердечнике. Определение одноименных выводов, указывающих на правильную полярность данного трансформатора тока, является обязательной процедурой, предшествующей его монтажу.

Что это такое?

Под полярностью ТТ понимается определенный порядок расположения выводов его вторичной обмотки, обеспечивающий условия для передачи токового сигнала в нужной фазе. Имеющаяся на корпусе маркировка указывает на выводы, в которых выходной И1-И2 и входной Л1-Л2 сигналы действуют синфазно (имеют одну и ту же полярность). То есть они в этих точках должны достигать своих максимумов и минимумов одновременно.

Важно! От правильности включения катушек зависит корректность показаний подключенного к вторичной обмотке измерителя (счетчика электроэнергии, в частности).

При нарушении этого порядка они будут сильно отличаться от реальных значений.

Для чего проверяется полярность обмоток трансформатора тока

Несмотря на то, что на промышленных образцах ТТ полярность вторичной катушки указывается на самом изделии – возможны следующие непредвиденные ситуации:

  • Эти обозначения по каким-либо причинам отсутствуют (стерлись, например).
  • На корпусе ТТ и на встроенной в него катушке маркировки не совпадают.

Если спутан порядок включения вторичной (понижающей) катушки – в ней будет наводиться смещенный на 180 градусов переменный сигнал. В этом случае подключенный к ней электрический счетчик начнет учитывать реактивную нагрузку, а его показания будут заниженными. Любой представитель энергосетей в данной ситуации имеет право применить к нарушителю штрафные санкции.

Как проверить полярность?

Для проверки синфазности включения обмоток ТТ в измерительную цепь могут применяться как простейшие способы с использованием миллиамперметра и батарейки, так и профессиональные методы, основанные на применении специальных измерительных приборов.

С помощью батарейки и миллиамперметра

В ней источником является элемент питания с заявленным напряжением от 2-х до 6 Вольт. Типовая батарейка типа 3R12 на 4,5 Вольта с подпаянными к клеммам проводами вполне сгодится для этого.

Функцию измерителя выполняет миллиамперметр, имеющий пределы от 10-ти до 100 мА.

Обратите внимание: Следует выбрать индикатор с нулем по центру шкалы, что позволит отслеживать изменения любой полярности.

Если же стрелка при измерении отклонилась влево – это означает противоположность процессов. Когда в первичной обмотке ток возрастает, то одновременно во вторичной его значение уменьшается. В данной ситуации контакты И1и И2 следует поменять местами.

С помощью РЕТОМ-21

Выход прибора со звездочкой подключается к началу катушки Л1, а без обозначения – к ее концу Л2.

В меню прибора РЕТОМ-21 выбирается значение параметра первичной обмотки, а ток во вторичной цепи измеряется встроенным модулем РА. При этом на дисплее регистрируются его значение и фазный сдвиг. Если прибор показывает нулевую разницу фаз – катушки включены правильно (синфазно). В противном случае он будет показывать значение, близкое к 180-ти градусам.

С использованием ВАФ

Измерение этим прибором аналогично уже описанному выше способу, согласно которому в первичную обмотку поступает токовый импульс заданной величины. Вместе с тем на дисплее индицируется значение вторичного тока и его фаза по отношению к первичному. При нулевых фазных показаниях следует считать, что катушки включены правильно. В противном случае (разница фаз – 180 градусов) контакты второй обмотки придется поменять местами.

Техника безопасности

При проведении измерений специальными приборами должны соблюдаться следующие меры предосторожности:

  • К работе допускаются лица, освоившие правила работы с измерительным оборудованием.
  • Они должны пройти обязательный инструктаж, касающийся безопасных приемов работы с ТТ.
  • При определении полярности вторичной обмотки измеритель присоединяется к ее зажимам до момента подачи импульса в первичную цепь.

Лишь при условии соблюдения указанных правил удается обезопасить себя от потенциальных угроз.

Автор: Евгений Живоглядов.
Дата публикации: 28 апреля 2015 .
Категория: Статьи.

Замыкание обмотки якоря на корпус

Такого рода замыкание происходит из-за механических повреждений изоляции. Причинами механических повреждений являются: наличие в пазах выступающих листов активной стали и заусенцев, тугое заполнение паза, неплотная укладка обмотки в пазы, отчего провода под действием центробежных сил при вращении перемещаются в пазу, ослабление бандажей и другое.

Кроме механических повреждений изоляции, причинами замыкания на корпус могут явиться увлажнение изоляции, попадание в пазы и лобовые части припоя, сильный и длительный перегрев машины, распайка соединений и другое.

Замыкание обмотки якоря на корпус можно обнаружить контрольной лампой (рисунок 1, а). При проверке лампу присоединяют одним концом к сети, а другим к коллектору. Второй (свободный) конец сети присоединяют к валу якоря. Загорание лампочки свидетельствует о замыкании обмотки на корпус. Для такой проверки можно пользоваться также мегомметром.

Рисунок 1. Проверка замыкания обмоток на корпус.
а – контрольной лампой; б – мегомметром: 1 – мегомметр; 2 – коллектор; 3 – вал; 4 – подставка

Место замыкания обмотки на корпус можно определить по схеме, приведенной на рисунке 2.

Рисунок 2. Определение места замыкания обмотки на корпус.
а – по падению напряжения; б – показания прибора при отыскании замыканий (для петлевой обмотки); в - прослушиванием

В схеме, приведенной на рисунке 2, а, питание от источника постоянного тока подключают к щеткам через предохранитель П. Ток регулируют реостатом R. Щуп одного из проводов от милливольтметра mV присоединяют к сердечнику или валу якоря, а другим касаются любой пластины коллектора. Источником тока может служить аккумуляторная батарея или сеть постоянного тока напряжением 220 или 110 В. При отыскании повреждения достаточен ток 6 – 8 А. Милливольтметр берут со шкалой до 50 мВ.

При петлевой обмотке присоединение к коллектору производят в двух диаметрально противоположных точках. При волновой обмотке соединение к пластинам производят на расстоянии половины шага по коллектору.

При замыкании на корпус в петлевой обмотке стрелка прибора покажет отклонение, равное сумме падений напряжений в секциях, оказавшихся между секцией, замкнутой на корпус, и той, к которой присоединен щуп (рисунок 2, б, положение I – сплошная стрелка). Щуп, присоединенный к коллектору, передвигают в одну и другую стороны. При его приближении к замкнутой на корпус секции показания прибора будут уменьшаться (положение II – пунктирная стрелка), так как будет уменьшаться число секций, на которых измеряется падение напряжения. Когда щуп будет соединен с секцией, которая замкнута на корпус, стрелка милливольтметра станет на нуль (положение III). Если двигать щуп дальше, то стрелка прибора отклонится в обратную сторону (положение IV).

При проверке волновой обмотки наименьшие показания будут давать пластины коллектора, либо непосредственно замкнутые на корпус, либо замкнутые на корпус через секции обмотки.

Если указанные выше способы не дают положительных результатов, то приходится путем распайки делить обмотку на части и проверять мегомметром каждую часть в отдельности. При обнаружении замыкания в одной из частей обмотки ее продолжают делить на части до тех пор, пока не будет обнаружена секция, замкнутая на корпус.

Замыкания на корпус устраняют следующим образом:

  1. если замыкание произошло в местах выхода секций из пазов, то вгоняют под секцию небольшие клинья из фибры, бука или другого изоляционного материала;
  2. если замыкание произошло в пазовой части секции, то секцию переизолируют или заменяют новой;
  3. при отсыревании обмотки ее прослушивают;
  4. если обнаружено замыкание пластин на корпус, то следует произвести ремонт коллектора с разборкой.

Межвитковые замыкания

Такой вид замыканий представляет собой соединение витков внутри обмотки вследствие повреждения изоляции обмоточных проводов. Чаще всего межвитковые замыкания происходят при повреждении изоляции проводников во время рихтовки и осадки катушек, при укладке обмотки, из-за попадания припоя или стружки между витками, при пробое обмотки на корпус, вследствие перекрещивания проводов в пазовой части при всыпной обмотке и тому подобное.

Межвитковые замыкания могут быть в одной или нескольких секциях якоря или между секциями вследствие замыкания смежных пластин коллектора. При замыкании между концами секции или между пластинами коллектора, а также при соединении между собой отдельных витков секции в обмотке якоря образуются замкнутые контуры.

В петлевой обмотке замыкание между двумя смежными пластинами вызывает замыкание только секции, которая присоединена к этим пластинам, и число действующих в обмотке витков уменьшается на число витков, заключающихся в одной секции.

В волновой обмотке замыкание между двумя смежными пластинами вызывает замыкание ряда секций, которые заключены в одном полном обходе вокруг якоря. Число их равно числу пар полюсов машины.

В короткозамкнутых контурах при вращении их в магнитном поле индуктируется электродвижущая сила (ЭДС), которая вызывает большие токи короткого замыкания вследствие малого сопротивления этих контуров. Короткозамкнутые витки, появившиеся во время работы машины, сильно разогреваются проходящим через обмотку током и обычно сгорают.

Как определить межвитковое замыкание электродвигателя? У якорей с волновой обмоткой, а также в обмотках, имеющих уравнительные соединения при значительном числе замкнутых секций, невозможно по нагреву определить короткозамкнутую ветвь, так как нагревается весь якорь. Иногда место витковых замыканий может быть обнаружено при внешнем осмотре по обуглившейся и сгоревшей изоляции секции.

Наиболее простые и часто встречающиеся случаи (например, замыкания витков одной секции, между соседними коллекторными пластинами или же между соседними секциями, находящимися в одном слое обмотки) обнаруживаются по падению напряжения, прослушиванием и другими способами.

Способ определения повреждений по падению напряжения

Проверка отсутствия замыкания между витками якоря по падению напряжения
Рисунок 3. Проверка отсутствия замыкания между витками якоря по падению напряжения

Такой способ (рисунок 3) заключается в следующем. К паре коллекторных пластин 1 подводится постоянный ток с помощью щупов 3. Щупами 2 измеряют падение напряжения на этой же паре пластин. При замыкании в секции, которая присоединена к проверяемой паре пластин, получается меньшее падение напряжения при одном и том же токе, чем на другой паре пластин, между которыми нет замыкания. Чем больше короткозамкнутых витков, тем меньше падение напряжения. Наименьшее падение напряжения (или равное нулю) будет при замыкании между самими коллекторными пластинами.

Таким образом проверяется весь якорь и производится сравнение результатов измерений. Проверку якоря следует производить при поднятых щетках. Параметры схемы такие же, как и на рисунке 2, а.

Чтобы предупредить повреждение милливольтметра (рисунок 3), необходимо сначала прикладывать к коллектору щупы 3, а затем щупы 2; отнимать щупы нужно в обратном порядке.

Хорошие результаты этот способ дает при определении замыканий между витками в секции с небольшим количеством витков (стержневые обмотки). В многовитковых секциях при замыкании одного-двух витков разница в показаниях милливольтметра на коллекторных пластинах исправной секции и поврежденной может оказаться незначительной.

На рисунке 4 показаны схемы для определения межвитковых замыканий с помощью телефона и стальной пластины. Испытательная установка состоит из электромагнита 1, питаемого переменным током повышенной частоты. Якорь 3 устанавливают над электромагнитом. При межвитковом замыкании в какой-либо секции в ней будет проходить большой ток, что обнаружится по нагреву. С помощью телефона 2 и электромагнита 4 можно быстро определить паз с поврежденной секцией. При исправных секциях обмотки в телефоне 2 слышен слабый, одинаковой силы звук. Если же одна из секций имеет межвитковое замыкание, то звук в телефоне заметно усиливается.

Проверка якоря на межвитковое замыкание

Рисунок 4. Проверка якоря на межвитковое замыкание.
а – с помощью телефона; б – с помощью стальной пластины

Для полной проверки обмотки нужно переставлять электромагнит 4 по зубцам якоря, пока последний не будет обойден кругом. Если к зубцам сердечника, охватывающим неисправную секцию, поднести тонкую стальную пластину 5 (рисунок 4, б), то она начнет дребезжать. Этим способом обнаруживается замыкание смежных пластин коллектора, которое вызывает те же явления, что и межвитковое замыкание.

Для определения межвитковых замыканий может быть использована схема, показанная на рисунке 2, в. Для этого второй проводник присоединяют не к валу, как показано на рисунке, а к коллекторной пластине. Провода от телефона 1 присоединяют к двум смежным пластинам.

Секцию, имеющую витковое замыкание, обычно заменяют новой. Переизолировкой одного лишь места замыкания можно ограничится только в случае неполного контакта в месте замыкания, да и то при отсутствии иных повреждений изоляции.

В случае необходимости (в качестве временной меры) при небольшом числе коллекторных пластин производят выключение из работы поврежденных секций. Выключение одной секции не отражается заметным образом на коммутации машины.

Обрывы в обмотке якоря

Обрывы в обмотке возникают вследствие выплавления припоя из-за перегрева обмоток при перегрузках, короткого замыкания, надлома от частых изгибаний лобовых частей обмотки и тому подобного. Обрывы чаще всего происходят в обмотках из тонкого провода из-за его малой механической прочности. Обрыв обмотки или плохой контакт сильно ухудшает коммутацию машины и может вызвать значительное искрение на коллекторе и его подгорание. Если якорь работает длительное время с обрывом, то образующаяся в месте обрыва дуга может постепенно прожечь изоляцию и привести к замыканию обмотки на корпус.

В петлевой обмотке обрыв сопровождается искрением на коллекторе и подгоранием двух смежных пластин, к которым присоединена поврежденная секция. При волновой обмотке подгорает несколько пар соседних пластин (по числу полюсов), к которым присоединены секции одной последовательной цепи этой обмотки. При этом подгорают обращенные друг к другу края соседних пластин.

Как при плохом контакте, так и при обрыве при наличии уравнительных соединений могут подгореть, кроме пластин, относящиеся к неисправным секциям, и коллекторные пластины, отстоящие от них на двойное полюсное деление и связанные с ними уравнительными соединениями. Место обрыва можно определить по падению напряжения.

При обрыве какой-либо секции (рисунок 5, а) не будет тока во всей половине обмотки, в которой находится неисправная секция, поэтому прибор везде покажет нуль (положения II и III), кроме случая, когда провода прибора будут присоединены к концам оборванной секции. При этом цепь будет замкнута через прибор и стрелка его отклонится так же, как если бы провода прибора были присоединены непосредственно к источнику тока (положение I).

Отыскание одного и двух обрывов в петлевой обмотке

Рисунок 5. Отыскание одного (а) и двух (б) обрывов в петлевой обмотке

При обрывах в волновой обмотке наибольшее отклонение будет иметь место на нескольких парах пластин, находящихся попарно на расстоянии шага по коллектору друг от друга. Обрывы в якоре, имеющем параллельные ветви, могут быть также определены измерением их сопротивления. При обрыве одной из секций сопротивление обмотки резко возрастает.

Установка для проверки правильности соединения обмотки якоря с пластинами коллектора
Рисунок 6. Установка для проверки правильности соединения обмотки якоря с пластинами коллектора

После укладки обмотки якоря в пазы сердечника она должна быть проверена на правильность соединения с пластинами коллектора. Эту проверку производят после того, как концы секций обмотки зачищены до металлического блеска и заложены в прорези коллекторных пластин. На рисунке 6 показана схема установки, необходимой для этой цели. На деревянных стойках, привернутых к деревянному основанию 3, устанавливается якорь 2. Под якорем помещен электромагнит 5, сердечник которого изготовлен из П-образных листов электротехнической стали. Обмотка электромагнита 8 состоит из двух катушек, которые соединены так, что при прохождении по ним тока возникают два разноименных магнитных полюса С и Ю. Катушки получают питание от выпрямителя 4 через реостат 7. Выключателем служит ножная педаль 1. Вилкой 9 милливольтметр 6 соединяется с двумя смежными пластинами. В момент размыкания контактов педалью 1 в обмотке якоря индуктируются импульсы. При правильном соединении обмотки и положении вилки 9 на любых смежных пластинах коллектора стрелка милливольтметра 6 должна отклоняться в одну и ту же сторону и приблизительно до одного и того же деления шкалы.

Неисправности в обмотках полюсов и устранение их

Катушки полюсов меньше подвергаются повреждениям, так как они неподвижно закреплены на полюсах. Чаще всего катушки повреждаются на углах внутри катушки, у места выхода внутреннего выводного конца вследствие неправильной установки его вначале намотки и тому подобное. К причинам повреждения можно отнести нарушение изоляции из-за того, что она плохо натянута, неравномерную укладку изоляции, выступы и заусенцы металлического каркаса и другое. Наиболее часто встречаются следующие неисправности обмоток полюсов: обрыв или плохой контакт, межвитковые замыкания и замыкание обмоток на корпус.

Межвитковое замыкание в катушках полюсов

Поврежденная катушка со значительным числом замкнутых витков имеет уменьшенное сопротивление. Ее можно легко обнаружить, если измерить сопротивления всех катушек измерительным мостом, тестером, методом амперметра и вольтметра (постоянным током) и другими. При измерении сопротивления методом амперметра и вольтметра испытуемая катушка включается в сеть через сопротивление, которым может регулироваться ток в катушке. По показаниям амперметра и вольтметра находят по закону Ома сопротивление катушки. Сопротивление всех катушек, не имеющих витковых замыканий, одинаково. В катушках с замкнутыми витками будет меньше сопротивление, чем в катушках, не имеющих замкнутых витков.

Замыкания в обмотках полюсов, если они находятся не на выводных концах, устраняют частичной или полной перемоткой. С катушки отматывают витки и одновременно производят осмотр. Если витковые замыкания вызваны увлажнением изоляции, то катушку следует просушить.

Обрывы в обмотках полюсов

Обрывы в обмотках полюсов бывают только в катушках, которые изготовлены из проволоки небольшого сечения. Место обрыва можно определить вольтметром, которым измеряют напряжение на всех катушках (рисунок 7, а). При обрыве в катушке вольтметр, подключенный к зажимам поврежденной катушки, покажет полное напряжение сети. На исправных катушках вольтметр не даст отклонений. Обрыв можно также обнаружить контрольной лампой или мегомметром. Обрыв, а также плохой контакт в доступных местах устраняют пайкой.

Определение места обрыва и замыкания на корпус в обмотках полюсов

Рисунок 7. Определение места обрыва (а) и замыкания на корпус (б) в обмотках полюсов

Замыкание обмотки полюсов на корпус

Замыкание обмотки полюсов на корпус можно определить, если через всю обмотку пропустить постоянный ток. Один конец вольтметра (рисунок 7, б) присоединяют к корпусу машины, а другой (свободный) – к выводу катушки. Вольтметр покажет наименьшее напряжение на выводах катушки, замкнутой на корпус.

Проверка последовательной обмотки или обмотки добавочных полюсов производится при пониженном напряжении, величина которого регулируется включенным последовательно реостатом. Вместо вольтметра для измерения напряжения применяют милливольтметр.

Проверка полярности полюсов
Рисунок 8. Проверка полярности полюсов

Замкнутую на корпус катушку можно обнаружить контрольной лампой или мегомметром. Для этого катушки разъединяют и проверяют отдельно. Для устранения замыкания на корпус снимают катушку с сердечника полюса и осматривают места соприкосновения ее как с корпусом, так и со станиной. Замыкания на корпус устраняют переизолировкой катушек, установкой изоляционных прокладок, сушкой при увлажнении и другими способами.

Правильность соединения катушек полюсов проверяется компасом или намагниченной стрелкой (рисунок 8). Для этого по обмоткам полюсов пропускают постоянный ток и к каждой катушке подносят компас или стрелку. Если чередование полярности полюсов правильное, то при перемещении, например, компаса внутри машины (при вынутом якоре) от полюса к полюсу стрелка компаса будет поочередно притягиваться к полюсам то одним, то другим концом.

Источник: Логачев И. С., Родин Г. Г., "Ремонт обмоток машин постоянного тока" - Москва: Энергия, 1968 - 128 с.

Читайте также: