В компьютерах какого поколения появилась совместимость программного обеспечения

Обновлено: 30.06.2024

В соответствии с общепринятой методикой оценки развития вычислительной техники первым поколением считались ламповые компьютеры, вторым —транзисторные, третьим — компьютеры на интегральных схемах, а четвёртым — с использованием микропроцессоров.

Первое поколение ЭВМ (1948–1958) создавалось на основе вакуумных электроламп, машина управлялась с пульта и перфокарт с использованием машинных кодов. Эти ЭВМ размещались в нескольких больших металлических шкафах, занимавших целые залы.

ЭВМ первого поколения были значительных размеров, потребляли большую мощность, имели невысокую надежность работы и слабое программное обеспечение. Быстродействие их не превышало 2–3 тысячи операций в секунду, емкость оперативной памяти – 2 кб или 2048 машинных слов (1 кб = 1024) длиной 48 двоичных знаков.

Второе поколение ЭВМ (1959–1967) появилось в 60-е гг. ХХ века. Элементы ЭВМ выполнялись на основе полупроводниковых транзисторов (рис. 2.2, 2.3). Эти машины обрабатывали информацию под управлением программ на языке Ассемблер. Ввод данных и программ осуществлялся с перфокарт и перфолент.

Элементной базой машин этого поколения были полупроводниковые приборы. Машины предназначались для решения различных трудоемких научно-технических задач, а также для управления технологическими процессами в производстве. Появление полупроводниковых элементов в электронных схемах существенно увеличило емкость оперативной памяти, надежность и быстродействие ЭВМ. Уменьшились размеры, масса и потребляемая мощность. С появлением машин второго поколения значительно расширилась сфера использования электронной вычислительной техники, главным образом за счет развития ПО.

Третье поколение ЭВМ (1968–1973). Элементная база ЭВМ – малые интегральные схемы (МИС), содержавшие на одной пластинке сотни или тысячи транзисторов. Управление работой этих машин происходило с алфавитно-цифровых терминалов. Для управления использовались языки высокого уровня и Ассемблер. Данные и программы вводились как с терминала, так и с перфокарт и перфолент. Машины предназначались для широкого использования в различных областях науки и техники (проведение расчетов, управление производством, подвижными объектами и др.). Благодаря интегральным схемам удалось существенно улучшить технико-эксплуатационные характеристики ЭВМ и резко снизить цены на аппаратное обеспечение. Например, машины третьего поколения по сравнению с машинами второго поколения имеют больший объем оперативной памяти, увеличенное быстродействие, повышенную надежность, а потребляемая мощность, занимаемая площадь и масса уменьшились.

Четвертое поколение ЭВМ (1974–1982). Элементная база ЭВМ – большие интегральные схемы (БИС). Наиболее яркие представители четвертого поколения ЭВМ – персональные компьютеры (ПК). Связь с пользователем осуществлялась посредством цветного графического дисплея с применением языков высокого уровня.

Машины предназначались для резкого повышения производительности труда в науке, производстве, управлении, здравоохранении, обслуживании и быту. Высокая степень интеграции способствовала увеличению плотности компоновки электронной аппаратуры, повышению ее надежности, что привело к увеличению быстродействия ЭВМ и снижению ее стоимости. Все это оказывает существенное воздействие на логическую структуру (архитектуру) ЭВМ и на ее ПО. Более тесной становится связь структуры машины и ее программного обеспечения, особенно операционной системы (ОС) (или монитора) – набора программ, которые организуют непрерывную работу машины без вмешательства человека

Пятое поколение ЭВМ (1990 – настоящее время) создано на основе сверхбольших интегральных схем (СБИС), которые отличаются колоссальной плотностью размещения логических элементов на кристалле.

6. Организация компьютерных систем

Процессоры

На рис. 2.1 показана структура обычного компьютера с шинной организацией. Центральный процессор — это мозг компьютера. Его задача — выполнять программы, находящиеся в основной памяти. Он вызывает команды из памяти, определяет их тип, а затем выполняет одну за другой. Компоненты соединены шиной, представляющей собой набор параллельно связанных проводов, по которым передаются адреса, данные и сигналы управления. Шины могут быть внешними (связывающими процессор с памятью и устройствами ввода-вывода) и внутренними.


Рис. 2.1. Схема компьютера с одним центральным процессором и двумя устройствами ввода-вывода

Процессор состоит из нескольких частей. Блок управления отвечает за вызов команд из памяти и определение их типа. Арифметико-логическое устройство выполняет арифметические операции (например, сложение) и логические операции (например, логическое И).

Внутри центрального процессора находится память для хранения промежуточных результатов и некоторых команд управления. Эта память состоит из нескольких регистров, каждый из которых выполняет определенную функцию. Обычно размер всех регистров одинаков. Каждый регистр содержит одно число, которое ограничивается размером регистра. Регистры считываются и записываются очень быстро, поскольку они находятся внутри центрального процессора.

7. Программное обеспечение. Основная память.

Вся совокупность программ, хранящихся на всех устройствах долговременной памяти компьютера, составляет его программное обеспечение (ПО).

В $1946$ году американские ученые Джон Мокли и Джон Эккерт догадались заменить электромеханические реле на электронные вакуумные лампы. Так появился электронный вычислительный интегратор и калькулятор ЭНИАК. Лампы позволили увеличить его скорость работы в $1000$ раз в сравнении с Mark I. ЭНИАК помогал решать все те же баллистические и аэродинамические задачи. Длина ЭНИАКа составляла $30$м., объем – $85м^3$,вес-$30$ тонн.


Готовые работы на аналогичную тему

Первый компьютер, предназначенный для коммерческого использования, появился в $1951$ году в США. Назвали его УНИАК – универсальный автоматический компьютер.

Параллельно в СССР также велись независимые работы по созданию компьютеров. В начале $50$-х под руководством академика С.А.Лебедева были созданы МЭСМ (малая электронная счетная машина) и БЭСМ (большая электронная счетная машина).

Все эти вычислительные машины относятся к первому поколению. Они работали на радиодеталях и вакуумных лампах, в качестве запоминающих устройств использовали магнитные ленты и перфокарты. В каждой был свой собственный способ записи программ – машинный язык, который мог использоваться только для этой модели компьютера. Следовательно, программы написанные для одного компьютера, не могли повторно использоваться на другом.

Второе поколение компьютеров (1960-1970гг)

Базовым элементом этого поколения стали полупроводниковые приборы - диоды, биполярные транзисторы, тороидальные ферритовые микротрансформаторы.

Один транзистор заменял $40$ ламп, работал со скоростью в несколько десятков тысяч операций в секунду и потреблял мало электроэнергии. Применение транзисторов резко сократило габариты компьютеров и сделало их более дешевыми.


Более низкая стоимость расширила круг пользователей, поэтому именно в это время разработчики компьютеров заговорили о необходимости программной совместимости. Вскоре появились первые универсальные языки программирования – Фортран, Алгол, Кобол. Теперь уже компьютеры могли широко использоваться в промышленности и банковском деле для выполнения рутинных операций. В 1964 году появился первый монитор.

Третье поколение компьютеров (1970-1980гг)

В $1959$ году Джек Килби предложил технологию изготовления гибридных интегральных схем. Чуть позже Робертом Нойсом была запатентована технология изготовления монолитной интегральной схемы, которая позволяла разместить на площади $10 \ мм^2$ десятки тысяч транзисторов. Теперь один кристалл мог выполнять такую же работу, как и тридцатитонный ЭНИАК. С конца $60$-х эти технологии стали применяться при производстве компьютеров.


Четвертое поколение компьютеров (1980-1990гг)


Пятое поколение компьютеров (1990-…)

В начале $80$-х Япония объявила правительственную программу по разработке компьютеров нового типа. Разработчики делали ставку на параллельные вычисления, многопроцессорность и переход от процедурных языков программирования к языкам, основанным на логике. По мнению специалистов использование таких языков должно было бы сделать программы самообучаемыми и тем самым приблизить человечество на шаг к реализации искусственного интеллекта.

Однако, оказалось, что параллельная работа нескольких процессоров не дает той высокой производительности, которая ожидалась. Разработанные образцы быстро устаревали. Что же касается языков, основанных на логике, выяснилось, что они не позволяют создавать программы необходимого уровня сложности без использования обычных процедурных подходов.

Поэтому многие специалисты считают, что пятое поколение компьютеров не состоялось как таковое, а для дальнейшего совершенствования нужны принципиально новые технологии. Другие утверждают, что все-таки можно называть пятым поколением реализацию параллельных вычислений и облачных технологий.

Перспективы развития вычислительной техники

На сегодняшний день имеется несколько перспективных направлений, в которых ожидается развитие вычислительной техники:

  • оптический компьютер;
  • квантовый компьютер;
  • нейрокомпьютер;

Квантовый компьютер. Впервые идею квантовых вычислений теоретически описал в $1981$ году Пол Бениофф. Суть этой идеи состоит в следующем. Современные компьютеры реализуют теоретические принципы, при которых каждый бит памяти может быть равен либо нулю, либо единице. Если же рассматривать квантовое состояние, то каждый бит может быть и нулем и единицей одновременно. А это позволит вести несколько вычислений параллельно.

В $2007$ году канадская компания D-Wave System объявила о создании квантового компьютера. Компьютеры D-Wave рекламируются как квантовые компьютеры доступные для коммерческого использования. Однако, ряд ученых утверждают, что скорость вычислений D-Wave не отличается принципиально от скорости вычислений обычных компьютеров. Поэтому на сегодняшний день трудно уверенно утверждать, что идея квантового компьютера действительно реализована.

Нейрокомпьютеры. Пусковым механизмом к развитию идеи нейрокомпьютера стали биологические исследования нервной системы человека. Нервная система человека состоит из отдельных клеток – нейронов. Каждый нейрон имеет до $10000$ связей с другими нейронами и умеет выполнять некоторые элементарные действия. Слаженная работа всех нейронов с учетом их связей обеспечивает работу мозга, который умеет решать довольно сложные задачи.

По аналогии с человеческим мозгом огромное количество специальных вычислительных элементов - искусственных нейронов, связанных между собой, должно обеспечивать высокую скорость вычислений и самообучение всей системы.

Работы и исследования по всем перспективным направлениям вычислительной техники в настоящее время активно ведутся развитыми станами мира.

В компьютеры третьего поколения Это относится к компьютерным технологиям, основанным на интегральных схемах, которые использовались в период с 1963 по 1974 годы. Интегральные схемы объединяли в себе р

Содержание:

В компьютеры третьего поколения Это относится к компьютерным технологиям, основанным на интегральных схемах, которые использовались в период с 1963 по 1974 годы. Интегральные схемы объединяли в себе различные электронные компоненты, такие как транзисторы и конденсаторы, среди прочего.

Были произведены очень маленькие транзисторы, которые можно было разместить в одном полупроводнике, что резко улучшило общую производительность компьютерных систем.

Эти схемы превосходят электронные лампы и транзисторы как по стоимости, так и по производительности. Стоимость интегральных схем была очень низкой. Поэтому главной характерной особенностью компьютеров третьего поколения было то, что интегральные схемы стали использоваться в качестве вычислительных устройств, которые продолжали использоваться до нынешнего поколения.

Третье поколение стало поворотным моментом в жизни компьютеров. Перфокарты и принтеры были обменены на клавиатуры и мониторы, подключенные к операционной системе.

В это время компьютеры стали более доступными для массовой аудитории из-за их меньшего размера и более приемлемой стоимости.

Закон Мура

Реализация этих компьютеров также соответствовала закону Мура, раскрытому в 1965 году.

В этом законе говорилось, что из-за того, что размер транзистора так быстро уменьшался, в течение следующих десяти лет количество транзисторов, которые могут уместиться на новых микрочипах, будет удваиваться каждые два года. Через десять лет, в 1975 году, этот экспоненциальный рост был скорректирован на каждые пять лет.

В третьем поколении процессор был построен с использованием множества интегральных схем. В четвертом поколении весь процессор мог быть размещен на одном кремниевом чипе, размер которого был меньше почтовой марки.

Сегодня почти все электронные устройства используют какой-либо тип интегральной схемы, размещенной на печатных платах.

Происхождение и история третьего поколения

Транзисторы были огромным улучшением по сравнению с электронными лампами, но они по-прежнему выделяли много тепла, вызывая повреждение частей компьютера. Эта ситуация разрешилась с появлением кварца.

Транзисторы были уменьшены в размерах, чтобы их можно было разместить на кремниевых полупроводниках, также обычно называемых чипами. Таким образом, транзисторы были заменены интегральной схемой или микросхемой. Ученым удалось разместить на одном кристалле множество компонентов.

В результате компьютер становился все меньше и меньше по мере того, как все больше компонентов помещалось в один чип. Они также смогли увеличить скорость и эффективность компьютеров третьего поколения.

Интегральная схема

В третьем поколении основным флагманом стала технология интегральных схем или микроэлектроники.

Джек Килби из Texas Instruments и Роберт Нойс из Fairchild Semiconductor были первыми, кто разработал идею интегральной схемы в 1959 году.

Интегральная схема - это уникальное устройство, которое содержит внутри большое количество транзисторов, регистров и конденсаторов, которые собраны в едином тонком куске кремния.

Первая интегральная схема содержала всего шесть транзисторов. Становится трудно сравнивать с используемыми сегодня интегральными схемами, которые содержат до сотен миллионов транзисторов. Необычайное развитие менее чем за полвека.

Поэтому нельзя отрицать, что размер компьютера становился все меньше и меньше. Компьютеры этого поколения были маленькими, недорогими, с большой памятью и очень высокой скоростью обработки.

Характеристики компьютеров третьего поколения

Эти компьютеры были очень надежными, быстрыми и точными, с более низкой стоимостью, хотя они все еще были относительно дорогими. Были уменьшены не только его размеры, но также потребляемая мощность и выработка тепла.

Пользователи могли взаимодействовать с компьютером через клавиатуры и мониторы для ввода и вывода данных, а также взаимодействовать с операционной системой, достигая интеграции аппаратного и программного обеспечения.

Достигается возможность связи с другими компьютерами, что способствует передаче данных.

Компьютеры использовались в расчетах переписи, а также в военных, банковских и промышленных приложениях.

Используемая технология

Транзисторы были заменены на интегральную схему в своих электронных схемах. Интегральная схема представляла собой единый компонент, содержащий большое количество транзисторов.

Скорость обработки

Благодаря использованию интегральных схем компьютеры стали работать быстрее и точнее.

Его скорость была почти в 10 000 раз выше, чем у компьютеров первого поколения.

Место хранения

Объем памяти был больше, и можно было хранить сотни тысяч символов, ранее только десятки тысяч. Полупроводниковая память, такая как RAM и ROM, использовалась в качестве первичной памяти.

В качестве носителей использовались внешние диски, чей характер доступа к данным был случайным, с большой емкостью памяти в миллионы символов.

Улучшенное программное обеспечение

- Продолжалась разработка языков программирования высокого уровня. Для разработки программ используются языки высокого уровня, такие как FORTAN, BASIC и другие.

- Возможность делать многозадачность и многопроцессорность. Возможность одновременного выполнения нескольких операций была развита путем установки мультипрограммирования.

Оборудование

Заметно улучшилось взаимодействие с компьютерами. Появились видеотерминалы для вывода данных, заменившие принтеры.

Клавиатуры использовались для ввода данных вместо того, чтобы печатать перфокарты. Были введены новые операционные системы для автоматической обработки, а также для множественного программирования.

Что касается хранения, то для вспомогательных клемм магнитные диски начали заменять магнитные ленты.

Интегральная схема

В этом поколении компьютеров в качестве основного электронного компонента использовались интегральные схемы. Развитие интегральных схем дало начало новой области микроэлектроники.

С помощью интегральной схемы стремились решить сложные процедуры, использованные при проектировании транзистора. Подключение конденсаторов и диодов к транзисторам вручную занимало много времени и было не совсем надежно.

Помимо снижения стоимости, размещение нескольких транзисторов на одном кристалле значительно увеличило скорость и производительность любого компьютера.

Компоненты интегральной схемы могут быть гибридными или монолитными. Гибридная интегральная схема - это когда транзистор и диод размещаются отдельно, а монолитная - это когда транзистор и диод размещаются вместе на одной микросхеме.

программного обеспечения

Операционные системы

Компьютеры начали использовать программное обеспечение операционной системы для управления компьютерным оборудованием и ресурсами. Это позволяло системам запускать разные приложения одновременно. Кроме того, использовались операционные системы удаленной обработки.

IBM создала операционную систему OS / 360. Рост программного обеспечения был значительно улучшен за счет разделения, когда программное обеспечение продавалось отдельно от оборудования.

Языки высокого уровня

Хотя языки ассемблера оказались очень полезными в программировании, продолжались поиски лучших языков, которые были бы ближе к обычному английскому.

Это сделало обычного пользователя достаточно знакомым с компьютером, что стало главной причиной стремительного роста компьютерной индустрии. Эти языки были названы языками высокого уровня.

Языки третьего поколения носили процедурный характер. Поэтому они также известны как процедурно-ориентированные языки. Процедуры требуют, чтобы вы знали, как будет решена проблема.

Каждый язык высокого уровня был разработан для удовлетворения некоторых основных требований для определенного типа задач.

Пользователь мог использовать различные языки высокого уровня: FORTRAN, COBOL, BASIC, PASCAL, PL-1 и многие другие.

Исходная программа

Программа, написанная на языке высокого уровня, называется исходной программой. Это элемент, который программист вводит в компьютер для получения результатов.

Исходная программа должна быть преобразована в объектную программу, которая является языком нулей и единиц, понятным компьютеру. Это выполняется промежуточной программой, называемой компилятором. Компилятор зависит как от языка, так и от используемого компьютера.

Изобретения и их авторы

Интегральная схема

Это схема, состоящая из большого количества электронных компонентов, размещенных на одном кремниевом кристалле посредством фотолитографического процесса.

Впервые он был разработан в 1959 году Джеком Килби из Texas Instrument и Робертом Нойсом из Fairchild Corporation независимо друг от друга. Это было важное изобретение в области информатики.

Килби построил свою интегральную схему на германии, а Нойс построил ее на кремниевом кристалле. Первая интегральная схема была использована в 1961 году.

IBM 360

IBM изобрела этот компьютер в 1964 году. Он использовался в коммерческих и научных целях. IBM потратила около 5 миллиардов долларов на разработку System 360.

Это был не просто новый компьютер, а новый подход к компьютерному дизайну. Введена такая же архитектура для семейства устройств.

Другими словами, программа, предназначенная для работы на одной машине этого семейства, может также работать на всех остальных.

UNIX

Эта операционная система была изобретена в 1969 году Кеннетом Томпсоном и Деннисом Ричи. UNIX была одной из первых операционных систем для компьютеров, написанной на языке C. В конце концов, появилось много разных версий UNIX.

UNIX стала ведущей операционной системой для рабочих станций, но не пользовалась большой популярностью на рынке ПК.

Паскаль

Этот язык назван в честь Блеза Паскаля, французского математика 17 века, который построил одну из первых механических счетных машин. Впервые он был разработан как учебное пособие.

Никлаус Вирт разработал этот язык программирования в конце 1960-х гг. Паскаль - это язык с высокой структурой.

Рекомендуемые компьютеры

IBM 360

Третье поколение началось с появления семейства компьютеров IBM 360. Это была, возможно, самая важная машина, построенная в тот период.

У больших моделей было до 8 Мбайт оперативной памяти. Наименьшей емкостью была модель 20 с объемом памяти всего 4 Кбайт.

IBM поставила четырнадцать моделей компьютеров этой серии, включая редкие модели для НАСА.

Один член этого семейства, Model 50, мог выполнять 500 000 сумм в секунду. Этот компьютер был примерно в 263 раза быстрее, чем ENIAC.

Это был довольно успешный компьютер на рынке, поскольку он позволял выбирать между различными типами настроек. Однако все компьютеры серии IBM 360 использовали один и тот же набор инструкций.

Honeywell 6000

Различные типы моделей этой серии включают улучшенную функцию набора команд, которая добавляет к операциям десятичную арифметику.

ЦП в этих компьютерах работал с 32-битными словами. Модуль памяти содержал 128к слов. Система может поддерживать один или два модуля памяти максимум на 256 КБ. Они использовали различные операционные системы, такие как GCOS, Multics и CP-6.

PDP-8

Он был разработан в 1965 году компанией DEC. Это был коммерчески успешный миникомпьютер. В то время эти компьютеры были самыми продаваемыми компьютерами в истории. Они были доступны в настольных моделях и в креплениях на шасси.

У него был меньший набор инструкций. Он использовал 12 бит для размера слова.

У них было несколько характеристик, таких как низкая стоимость, простота и возможность расширения. Дизайн этих компьютеров облегчил программирование для программистов.

Преимущества и недостатки

Преимущество

- Основным преимуществом интегральных схем был не только их небольшой размер, но и их производительность и надежность, превосходящие предыдущие схемы. Энергопотребление было намного ниже.

- У компьютеров этого поколения была более высокая скорость вычислений. Благодаря своей скорости вычислений они были очень продуктивными. Они могли вычислять данные за наносекунды

- Компьютеры были меньше по размеру по сравнению с предыдущими поколениями. Поэтому их было легко транспортировать из одного места в другое из-за их меньшего размера. Их можно было установить очень легко, и для их установки требовалось меньше места.

- Они выделяли меньше тепла по сравнению с двумя предыдущими поколениями компьютеров. Был запущен внутренний вентилятор для отвода тепла, чтобы избежать повреждений.

- Они были намного надежнее и поэтому требовали менее частого технического обслуживания. Поэтому стоимость обслуживания была низкой.

- Менее дорогой. Значительно увеличилось коммерческое производство.

- У них была большая емкость для хранения.

- Его использовали для общих целей.

- Мышь и клавиатура стали использоваться для ввода команд и данных.

- Их можно было использовать с языками высокого уровня.

Недостатки

- Требовалось еще наличие кондиционера.

- Технология, необходимая для изготовления микросхем интегральных схем, была очень сложной.


Электронные вычислительные машины того времени представляли из себя массивные конструкции весом в несколько тонн. Каждый новый этап развития ЭВМ был связан не только с техническим прогрессом, но и с программным. Взять хотя бы Windows, который пришел на смену "бездушному" DOS.

Именно IBM, годом основания которой считается 1889 год, внесла огромный вклад в развитие компьютерной техники. Ее прародительница, корпорация CTR (Computing Tabulating Recording) включала в себя сразу три компании и выпускала самое различное электрическое оборудование: весы, сырорезки, приборы учета времени. После смены директора в 1914 году компания начала специализироваться на создании табуляционных машин (для обработки информации). Спустя 10 лет CTR поменяло свое название на International Business Machines или IBM.


Еще в 1888 году инженер Герман Холлерит, основатель IBM, создал первую электромеханическую счетную машину - табулятор, который мог считывать и сортировать данные, закодированные на перфокартах (бумажных карточках с отверстиями). Его даже использовали при переписи населения в 1890 году в США.

При этом история компьютеров IBM началась спустя более полувека, в 1941 году, когда был разработан и создан первый программируемый компьютер "Марк 1" весом порядка 4,5 тонн, 17 метров в длину, 2,5 метра – в высоту. Президент IBM вложил в него 500 тысяч долларов. Впервые "Марк 1" был запущен в Гарвардском университете в 1944 году. Чтобы понять, насколько сложна была конструкция машины, достаточно сказать, что общая длина проводов составила 800 км. При этом компьютер осуществлял три операции сложения и вычитания в секунду.

Первое поколение ЭВМ


Первая ЭВМ, основанная на ламповых усилителях, под названием "Эниак" была создана в США в 1946 году. По размерам она была больше, чем "Марк 1": 26 метров в длину, 6 метров в высоту, а ее вес составлял около 30 тонн. При этом по производительности "Эниак" в 1000 раз превышала "МАРК-1", а на ее создание ушло почти 500 тысяч долларов. Но у нее были существенные недостатки: очень мало памяти для хранения данных и долгое время перепрограммирования – от нескольких часов и до нескольких дней.

Кстати, среди создателей "Эниак" был ученый Джон фон Нейман, предложивший архитектуру ЭВМ, заложенную в компьютерах с конца 1940-х до середины 1950-х годов. Именно он осуществил переход к двоичной системе счисления и хранению полученной информации.

В 1951 году появился первый коммерческий компьютер UNIVAC, и уже в 1952 году вышел "IBM 701". Это был первый крупный ламповый научный коммерческий компьютер, причем создали его достаточно быстро – в течение двух лет. Его процессор работал значительно быстрее, чем у UNIVAC - 2200 операций в секунду против 455. В одну секунду процессор "IBM 701" мог выполнять почти 17 тысяч операций сложения и вычитания.

Второе поколение ЭВМ


Второе поколение ЭВМ использовало в своей основе транзисторы, созданные в 1947 году. Это была очередная революция, в результате которой существенно уменьшились размеры и энергопотребление компьютеров, так как сами биполярные транзисторы в разы меньше вакуумных ламп.

В 1959 году появились первые компьютеры IBM на транзисторах. Они были надежны, и ВВС США стали использовать их в системе раннего оповещения ПВО. А в 1960 году IBM разработала мощную систему Stretch или "IBM-7030". Она была и вправду сильна – создатели добились 100-кратного увеличения быстродействия. В течение трех лет он был самым быстрым компьютером в мире. Однако со временем IBM уменьшила его стоимость, а вскоре и вовсе сняла с производства.

Третье поколение ЭВМ


Третье поколение компьютеров связано с использованием интегральных схем (в которых используется от десятков до сотен миллионов транзисторов), впервые изготовленных в 1960 году американцем Робертом Нойсом.

В 1964 году IBM объявила о начале работы над целой линейкой IBM System/360.

System/360 хорошо продавалась даже спустя шесть лет после анонса системы. За 6 лет IBM выпустила более 30 тысяч машин. Однако затраты на разработку System/360 были очень велики - около пяти миллиардов долларов. Таким образом, System/360 заложила фундамент для следующих поколений, первым из которых был System/370.

Четвертое поколение ЭВМ


Четвертое поколение связано с использованием микропроцессоров. Первый такой микропроцессор под названием "Intel-4004" был создан в 1971 году компанией Intel, до сих пор остающейся в лидерах. Спустя 10 лет IBM выпустила первый персональный компьютер, который так и назывался IBM PC. Самая дорогая конфигурация стоила 3000 долларов и предназначалась для бизнеса, а конфигурация за 1500 долларов – для дома.

Процессор Intel 8088 работал на частоте 4,77 МГц (сейчас этот показатель в тысячи раз больше), а объем ОЗУ - 64 кбайта (сейчас – в миллионы раз больше). Для хранения информации использовались 5,25-дюймовые флоппи-дисководы. Жесткий диск нельзя было установить из-за недостаточной мощности блока питания.

Интересно, что разработкой компьютера занимались всего четыре человека. Причем IBM не запатентовала ни операционную систему DOS, ни BIOS, что породило огромное количество клонов. Уже в 1996 году IBM уступило первое место по продажам ПК на ею же основанном рынке.

Несмотря на то, что современные гаджеты сильно отличаются по характеристикам от своего предшественника, все они относятся к тому же поколению ЭВМ.

Основные толчки для развития компьютеров дала наука (появление ламп, а затем транзисторов). В настоящее время распространяется ввод информации с голоса, общения с машиной на человеческом языке (приложение Siri в iPhone) и активная работа над роботами. Основное мнение, что будущее – за квантовыми компьютерами, которые будут использовать в своей основе молекулы и нейрокомпьютерами, использующими центральную нервную систему человека и непосредственно его мозг. Однако для того, чтобы эти технологии появились, необходимо досконально изучить эти системы.


Электронные вычислительные машины того времени представляли из себя массивные конструкции весом в несколько тонн. Каждый новый этап развития ЭВМ был связан не только с техническим прогрессом, но и с программным. Взять хотя бы Windows, который пришел на смену "бездушному" DOS.

Именно IBM, годом основания которой считается 1889 год, внесла огромный вклад в развитие компьютерной техники. Ее прародительница, корпорация CTR (Computing Tabulating Recording) включала в себя сразу три компании и выпускала самое различное электрическое оборудование: весы, сырорезки, приборы учета времени. После смены директора в 1914 году компания начала специализироваться на создании табуляционных машин (для обработки информации). Спустя 10 лет CTR поменяло свое название на International Business Machines или IBM.


Еще в 1888 году инженер Герман Холлерит, основатель IBM, создал первую электромеханическую счетную машину - табулятор, который мог считывать и сортировать данные, закодированные на перфокартах (бумажных карточках с отверстиями). Его даже использовали при переписи населения в 1890 году в США.

При этом история компьютеров IBM началась спустя более полувека, в 1941 году, когда был разработан и создан первый программируемый компьютер "Марк 1" весом порядка 4,5 тонн, 17 метров в длину, 2,5 метра – в высоту. Президент IBM вложил в него 500 тысяч долларов. Впервые "Марк 1" был запущен в Гарвардском университете в 1944 году. Чтобы понять, насколько сложна была конструкция машины, достаточно сказать, что общая длина проводов составила 800 км. При этом компьютер осуществлял три операции сложения и вычитания в секунду.

Первое поколение ЭВМ


Первая ЭВМ, основанная на ламповых усилителях, под названием "Эниак" была создана в США в 1946 году. По размерам она была больше, чем "Марк 1": 26 метров в длину, 6 метров в высоту, а ее вес составлял около 30 тонн. При этом по производительности "Эниак" в 1000 раз превышала "МАРК-1", а на ее создание ушло почти 500 тысяч долларов. Но у нее были существенные недостатки: очень мало памяти для хранения данных и долгое время перепрограммирования – от нескольких часов и до нескольких дней.

Кстати, среди создателей "Эниак" был ученый Джон фон Нейман, предложивший архитектуру ЭВМ, заложенную в компьютерах с конца 1940-х до середины 1950-х годов. Именно он осуществил переход к двоичной системе счисления и хранению полученной информации.

В 1951 году появился первый коммерческий компьютер UNIVAC, и уже в 1952 году вышел "IBM 701". Это был первый крупный ламповый научный коммерческий компьютер, причем создали его достаточно быстро – в течение двух лет. Его процессор работал значительно быстрее, чем у UNIVAC - 2200 операций в секунду против 455. В одну секунду процессор "IBM 701" мог выполнять почти 17 тысяч операций сложения и вычитания.

Второе поколение ЭВМ


Второе поколение ЭВМ использовало в своей основе транзисторы, созданные в 1947 году. Это была очередная революция, в результате которой существенно уменьшились размеры и энергопотребление компьютеров, так как сами биполярные транзисторы в разы меньше вакуумных ламп.

В 1959 году появились первые компьютеры IBM на транзисторах. Они были надежны, и ВВС США стали использовать их в системе раннего оповещения ПВО. А в 1960 году IBM разработала мощную систему Stretch или "IBM-7030". Она была и вправду сильна – создатели добились 100-кратного увеличения быстродействия. В течение трех лет он был самым быстрым компьютером в мире. Однако со временем IBM уменьшила его стоимость, а вскоре и вовсе сняла с производства.

Третье поколение ЭВМ


Третье поколение компьютеров связано с использованием интегральных схем (в которых используется от десятков до сотен миллионов транзисторов), впервые изготовленных в 1960 году американцем Робертом Нойсом.

В 1964 году IBM объявила о начале работы над целой линейкой IBM System/360.

System/360 хорошо продавалась даже спустя шесть лет после анонса системы. За 6 лет IBM выпустила более 30 тысяч машин. Однако затраты на разработку System/360 были очень велики - около пяти миллиардов долларов. Таким образом, System/360 заложила фундамент для следующих поколений, первым из которых был System/370.

Четвертое поколение ЭВМ


Четвертое поколение связано с использованием микропроцессоров. Первый такой микропроцессор под названием "Intel-4004" был создан в 1971 году компанией Intel, до сих пор остающейся в лидерах. Спустя 10 лет IBM выпустила первый персональный компьютер, который так и назывался IBM PC. Самая дорогая конфигурация стоила 3000 долларов и предназначалась для бизнеса, а конфигурация за 1500 долларов – для дома.

Процессор Intel 8088 работал на частоте 4,77 МГц (сейчас этот показатель в тысячи раз больше), а объем ОЗУ - 64 кбайта (сейчас – в миллионы раз больше). Для хранения информации использовались 5,25-дюймовые флоппи-дисководы. Жесткий диск нельзя было установить из-за недостаточной мощности блока питания.

Интересно, что разработкой компьютера занимались всего четыре человека. Причем IBM не запатентовала ни операционную систему DOS, ни BIOS, что породило огромное количество клонов. Уже в 1996 году IBM уступило первое место по продажам ПК на ею же основанном рынке.

Несмотря на то, что современные гаджеты сильно отличаются по характеристикам от своего предшественника, все они относятся к тому же поколению ЭВМ.

Основные толчки для развития компьютеров дала наука (появление ламп, а затем транзисторов). В настоящее время распространяется ввод информации с голоса, общения с машиной на человеческом языке (приложение Siri в iPhone) и активная работа над роботами. Основное мнение, что будущее – за квантовыми компьютерами, которые будут использовать в своей основе молекулы и нейрокомпьютерами, использующими центральную нервную систему человека и непосредственно его мозг. Однако для того, чтобы эти технологии появились, необходимо досконально изучить эти системы.

Читайте также: