Почему идеальное согласование прибора и линии связи в общем случае недостижимо

Обновлено: 28.06.2024

Почти каждому приходилось пользоваться стандартными системами управления, например, программируемыми контроллерами автоматизации (ПКА) — утверждает Боб Нельсон, менеджер отдела контроллеров ввода/вывода и программного обеспечения в Siemens. Внутренняя работа контроллера — забота производителя, пользователю не нужно углубляться в нее. Переход на открытые программируемые системы — палка о двух концах: с одной стороны это недостижимая ранее гибкость, но и большая ответственность. Качественная работа системы теперь зависит от пользователя, во время связи компонентов в правильную структуру есть множество подводных камней. Так зачем же инженерам систем управления нужны эти дополнительные проблемы?

Все управляющие системы одинаковы

Почти каждая система автоматизации — от сушилки для белья до 2-х километрового ускорителя Tevatron в лаборатории Ферми в Женеве (Иллинойс, США), основана на одной схеме. Это стандартный цикл управления: сначала сенсоры собирают данные о системе, потом эта информация анализируется в программируемом контроллере и генерируются управляющие сигналы. Единственная связь контроллера с внешним миром — шина данных, поэтому входящие сигналы необходимо оцифровать: преобразовать в Слова, которые понимает шина. Это одна из задач плат сбора данных.

Установка PC-станции на DIN-рейку упрощает монтаж сигнальных проводов различных систем управления на базе PC и PLC/PAC

Установка PC-станции на DIN-рейку упрощает монтаж сигнальных проводов различных систем управления на базе PC и PLC/PAC

Но для платы сбора данных подойдет не каждый сигнал с выхода датчика.У разных типов сенсоров сигналы совершенно разные. У термопар, например, уровень сигнала не превышает нескольких милливольт, его нужно аккуратно передать и выделить нелинейную функцию температуры. Резистивные датчики температуры измеряют ту же самую величину, но им требуется стабилизированный управляемый источник постоянного тока, зато напряжение на выходе может быть на два порядка выше, чем у термопар. Термисторы — еще один тип резистивных датчиков, но наклон температурной характеристики у них отрицательный. То есть падение напряжения на термисторе с увеличением температуры уменьшается.

Все эти самые разные сигналы нужно согласовать с входом платы сбора данных это задача модулей согласования. Для преобразования каждого сигнала требуется свой, один из множества, прибор согласования. При создании системы сначала выбирается подходящий к измерениям сенсор, потом — устройство согласования.

На последней стадии требуется еще один прибор преобразования выходных сигналов шины в аналоговый сигнал нужной величины и силы тока.

Типичная архитектура системы управления

Устройства обработки сигналов — это интерфейс между множеством датчиков и приборами сбора данных, которые оцифровывают сигнал и передают его по шине контроллеру.

Одна из задач производителей ПЛК и ПКА — выбрать программные и аппаратные компоненты, чтобы прибор наилучшим образом выполнил свою функцию в управляющей системе. Как подчеркивает Нельсон, когда инженер систем управления выбирает в качестве основного вычислительного устройства системы персональный компьютер, этот выбор ему приходится делать самостоятельно.

У второго подхода есть отличия, которые в разных ситуациях могут стать как преимуществами, так и недостатками. Одно из неотъемлемых преимуществ — огромная гибкость в настройке системы под требования конкретного приложения.

Основы обработки сигналов

Общая структура прибора обработки сигнала

В состав устройства согласования сигнала входят модули изоляции, усиления, фильтрации и возбуждения, необходимые тому типу датчиков, для которого он предназначен.

Преимущественно (но не всегда) под обработкой понимают преобразование аналоговых сигналов с помощью аналоговой электроники. Три основные характеристики сигнала — амплитуда, частота и фаза. Цель обработки — изменить эти параметры, а, следовательно, и выходной сигнал датчика, чтобы его можно было оцифровать с помощью АЦП на первой стадии системы сбора данных.

Амплитуда — это характеристика величины сигнала. Если это напряжение или ток, то амплитуда равна максимальному значению напряжения или тока соответственно. Для постоянного тока амплитуда сигнала — это просто значение силы тока и напряжения. В этом случае аналоговая электроника обработки сигнала может усилить ее величину или ограничить динамическим диапазоном.

Частота тесно связана с таким понятием, как ширина полосы. Сигналы редко являются монохроматическими. Даже у частотно-модулированных сигналов, когда интересующее значение определяется сдвигом частоты сигнала, ширина полосы достаточно заметна. Также и у постоянного тока (нулевой частоты) есть компоненты с разными частотами, которые отражают вариации параметра во времени. Частотные характеристики сигнала изменяются с помощью фильтров.

В настоящее время доступны единые системы, включающие в себя обработку, регистрацию сигнала и другие функции. Эти системы предназначены для работы в режиме реального времени. Информация предоставления Keithley Instruments

В настоящее время доступны единые системы, включающие в себя обработку, регистрацию сигнала и другие функции. Эти системы предназначены для работы в режиме реального времени. Информация предоставления Keithley Instruments

Управляющие приложения, в которых интересна фаза сигнала, обычно связаны со сравнением двух действий в разных частях системы. При взаимодействии фазовых сдвигов, возникших в разных частях системы обработки сигнала, возникают колебания и другие динамические явления.

Однако не стоит забывать и о таких понятиях, как согласование импедансов, нулевой уровень и потенциал Земли.

Необходимо обратить внимание на линейность. Изменение параметров электрического сигнала датчиками основано на различных физических явлениях, например, изменении сопротивления проводов при их растяжении в датчиках нагрузки. Обычно эти явления линейны только в первом приближении. При современном уровне контрольных приложений этой точности недостаточно. В большинстве случаев требуется коррекция нелинейностей второго, а иногда и третьего порядка.

«Мне кажется, что преобразование единиц измерения очень важно, — говорит Чак Цимино (Chuck Cimino), директор по маркетингу устройств сбора данных в Keithley Instruments. — В управляющем приложении удобно работать с температурой, давлением или скоростью потока, а не с милливольтами. Как будет лучше: переводить в уме милливольты в градусы Цельсия или это должна делать система?

Итак, у подсистемы обработки сигналов должны быть следующие составляющие:

  • Электрическая изоляция — обычно оптоэлектронная, преобразующая напряжение в световые сигналы и обратно. Она разрывает контуры, замкнутые на землю и ограничивает напряжение.
  • Один или несколько усилителей, чтобы масштабировать (и линеаризовать) сигнал, согласовать импедансы, уровень нуля и потенциалы заземления.
  • Один или несколько фильтров для управления спектральными характеристиками
  • Источники возбуждения, если они необходимы.

Современные методы интеграции полупроводниковых приборов делают возможным производство компактных модулей обработки сигнала, которые устанавливаются на системную плату и позволяют подключиться кабелем к плате сбора данных. Информация предоставлена: Dataforth.

Современные методы интеграции полупроводниковых приборов делают возможным производство компактных модулей обработки сигнала, которые устанавливаются на системную плату и позволяют подключиться кабелем к плате сбора данных. Информация предоставлена: Dataforth.

Конструкция

Еще один надежный форм-фактор приборов предназначен для шасси или крейтов. В шасси есть не только разъемы, связывающие сменные модули с компьютером, но и охлаждение и питание. Различные промышленные стандарты, например, VXI, CompactPCI, PXI расширяют возможности архитектуры шины ПК и позволяют добавлять различные модули приборов. Сокращение XI в стандарте означает, что он основан на одной из шин ПК, но обладает дополнительными возможностями, например, линиями триггеров, которые обеспечивают дополнительную функциональность измерительных систем. VXI, например, это расширенная версия шины VME, a PXI — шины PCI.

Обычно у модулей обработки сигналов есть разъемы для заглушек на кабели, позволяющие не вынимать модуль из шасси.

Как ни удивительно старый стандарт КОП (Канал общего пользования, GPIB) до сих пор используется для связи до 90% продаваемых приборов. КОП, он же GPIB и IEEE-488, изначально был разработан в конце 1960-х фирмой Hewlett Packard и назывался HPIB. В 1975 году он был стандартизирован Институтом инженеров по электротехнике и электронике IEEE и стал международным.

Делаем выбор

Выбор системы согласования сигналов для управляющей системы на базе ПК начинается с датчиков.

Для каждого датчика нужно свое устройство обработки сигнала, его характеристики определяются датчиком. Есть модули для термопар различных типов, датчиков нагрузки и любых других сенсоров в любом форм-факторе.

Форм-фактор может быть произвольным, но иногда выбор определенного типа очевиден. Если часть ваших приборов, взаимодействующих с платами ПК, расположена на DIN рельсе, имеет смысл расположить устройство обработки сигнала там же. При работе в сети Profibus, тип подключения прибора обработки сигнала также очевиден. Выбор форм-фактора в основном определяется способом передачи данных в плату ПК.

Мощное излучение Большого адронного коллайдера, который строит ЦЕРН на границе Франции и Швейцарии, поджарит любую электронику, недостаточно удаленную от пучка и выбор форм-факторов остается не большой. Разработчику управляющих систем в ЦЕРН, Алессандро Маси (Alessandro Masi) пришлось тянуть 800 метровые кабели к приборам обработки сигналов в шасси PXI.


Под согласованием линии передачи с нагрузкой понимают мероприятия по обеспечению передачи возможно большей части передаваемой линией мощности от генератора в нагрузку в заданном диапазоне частот.

Идеальное согласование предусматривает передачу всей передаваемой от генератора мощности в нагрузку. В широкополосных системах связи рассогласование линии с нагрузкой может вызывать искажение передаваемой информации и значительному увеличению уровня шумов в тракте. Обычно коэффициент отражения в таких системах во всей рабочей полосе частот не должен превышать 0,02…0,05 (КСВН от 1,04…1,1).

Общие принципы согласования нагрузки с линией передачи.

Согласование может осуществляться как с преобразованием типа волны, так и без преобразования типа волны. Согласование с преобразованием типа волны также называют возбуждением. При согласовании необходимо выполнить следующие условия.

1. заключается в возможности существования требуемого типа волны в нагрузке. Для этого требуется правильно подобрать форму и рассчитать размеры нагрузки.

2. Заключается в возможно полном совпадении структуры поля в нагрузке и линии передач. Для его осуществления применяются преобразователи типов волн.

3. С точки зрения теории цепей заключается в равенстве выходного сопротивления передающей линией комплексно сопряженному входному сопротивлению нагрузки. Так как в случае режима бегущей волны в линии передачи и ее выходное сопротивление чисто активное, то необходимо для компенсации реактивной составляющей сопротивление нагрузки вводить в линию передачи реактивные элементы.

С точки зрения теории электромагнитного поля при отражении от нагрузки образующаяся отраженная волна компенсируется волной, отраженной от реактивного элемента, вводимого в линию передачи, если эти волны будут равны по амплитуде и противоположны по фазе, то есть используется явление интерференции волн.

В результате введения согласующего элемента часть волны от него отражается и в направлении нагрузки, а затем снова к устройству и так далее. При этом на участке между согласующим устройством и нагрузкой образуется, за счет этих переотражений, стоячая волна, запасающая энергию, которая в нагрузку уже не поступает. Величина этой запасенной энергии зависит и от расстояния между согласующим элементом и нагрузкой. Чем больше это расстояние, тем большая энергия запасается. Следовательно, согласующий элемент должен по возможности ближе располагаться к нагрузке.

При одном согласующем элементе при изменении частоты нарушаются фазовые соотношения между волной, отраженной от нагрузки и волной, отраженной от неоднородности и согласование нарушается. Поэтому такое согласование, при котором отражение от нагрузки устраняется полностью только на одной частоте называется узкополосным.

Методика узкополосного согласования заключается в следующем .

, где , с помощью отрезка линии длинной трансформируется в проводимость , активная часть которой равна волновой проводимости линии


.



Таким образом, если считать теперь за нагрузку отрезок линии длинной с нагрузкой, то в точках 1-1 активные составляющие волнового сопротивления линии и входного сопротивления окажутся равными.


Для компенсации реактивной составляющей к точкам 1-1 подключают реактивный шлейф с сопротивлением .


В качестве согласующих элементов для активных составляющих сопротивлений либо применяют отрезок линии длинной такой, чтобы в очках 1-1 входное сопротивление отрезка линии с нагрузкой имело активную составляющую по величине равную волновому сопротивлению линии, либо применяют четвертьволновый трансформатор, который представляет собой отрезок линии длинной с волновым сопротивлением, равным


.

В качестве компенсирующих элементов для реактивных составляющих применяются штыри, диафрагмы, а также короткозамкнутые отрезки линий (шлейфы).

Примеры узкополосного согласования

1. Согласование с помощью короткозамкнутого шлейфа


Известно, что входное сопротивление в сечении линии, где находится узел , а в сечении где находится пучность



Так как волновое сопротивление линии чисто активное, то и входное сопротивление линии в сечениях, соответствующих узлам и пучностям будет чисто активным.


В промежутках между узлами и пучностями активная составляющая будет изменятся в пределах от до . То есть между сечениями, соответствующими узлам и пучностям всегда есть такие, в которых , а реактивная составляющая имеет на спадающем от пучности в сторону генератора участке – емкостный характер, а на спадающем в сторону нагрузки участке – индуктивный характер.


В любительской практике крайне редко используются антенны, входное сопротивление которых равно волновому сопротивлению фидера, и в свою очередь, выходному сопротивлению передатчика (идеальный вариант согласования). Чаще всего такого соответствия нет и приходится применять специальные согласующие устройства. Антенну, фидер и выход передатчика следует рассматривать как единую систему, в которой передача энергии должна осуществляться без потерь.

Реализация этой непростой задачи потребует согласования в двух местах: в точке соединения антенны с фидером и фидера с выходом передатчика. Наиболее популярны различного рода трансформирующие устройства: от резонансных колебательных контуров до коаксиальных трансформаторов в виде отрезков коаксиального кабеля требуемой длины. Все они нужны для согласования сопротивлений, что в конечном итоге и приводит к минимизации потерь в линии передачи. И, самое главное, к снижению внеполосных излучений.

Как правило, стандартное выходное сопротивление современных широкополосных передатчиков (трансиверов) 500м. Большинство применяемых в качестве фидера коаксиальных кабелей также имеют стандартную величину волнового сопротивления 50 или 750м. Антенны в зависимости от типа и конструкции могут иметь входное сопротивление в очень широком интервале величин: от нескольких Ом до сотен Ом и больше.
Известно, что входное сопротивление одноэлементных антенн на резонансной частоте носит практически активный характер. И чем больше частота передатчика отличается от резонансной* частоты антенны в ту или другую сторону, тем больше во входном сопротивлении антенны появляется реактивная составляющая емкостного или индуктивного характера. В многоэлементных антеннах входное сопротивление на резонансной частоте имеет комплексный характер, так как свою лепту в образование реактивной составляющей вносят пассивные элементы.

В том случае, когда входное сопротивление антенны имеет чисто активный характер, согласовать его с сопротивлением фидера несложно с помощью любого из подходящих трансформирующих устройств. При этом потери совсем незначительны. Но, как только во входном сопротивлении образуется реактивная составляющая, то согласование усложняется, и требуется более сложное согласующее устройство, способное скомпенсировать нежелательную реактивность. И это устройство должно находиться в точке питания антенны. Не скомпенсированная реактивность ухудшает КСВ в фидере и увеличивает потери.
Попытка полной компенсации реактивности на нижнем конце фидера (у передатчика) безуспешна, так как ограничена параметрами самого фидера. Перестройка частоты передатчика в пределах узких участков любительских диапазонов не приводит к появлению значительной реактивной составляющей, поэтому в большинстве случаев нет необходимости компенсировать реактивность. Правильно спроектированные многоэлементные антенны также не имеют большой реактивной составляющей входного сопротивления, и обычно ее компенсации не требуется.

В эфире часто возникают споры о роли и назначении антенного согласующего устройства (антенного тюнера) при согласовании передатчика с антенной. Одни возлагают на него большие надежды, другие считают его ненужной игрушкой. Чем же на самом деле (на практике) может и чем не может помочь антенный тюнер?

В первую очередь тюнер — это высокочастотный трансформатор сопротивлений, способный при необходимости скомпенсировать реактивность емкостного или индуктивного характера.

Рассмотрим простой пример:
Разрезной вибратор (диполь), имеющий на резонансной частоте входное сопротивление активного характера около 700м, соединен 75-омным коаксиальным кабелем (фидером) с передатчиком, выходное сопротивление которого 500м. Тюнер установлен на выходе передатчика и в данном случае выполняет роль согласующего узла между фидером и передатчиком, с чем он легко справляется.
Если передатчик перестроить на частоту отличную от резонансной частоты антенны, то во входном сопротивлении антенны возникнет реактивность, которая тут же проявится на нижнем конце фидера. Тюнер также способен ее скомпенсировать, и передатчик опять будет согласован с фидером антенны.

Что будет на выходе фидера, в точке его соединения с антенной?
Используя тюнер только на выходе передатчика, полную компенсацию обеспечить не удастся, и в фидере возникнут потери из-за неточного согласования с антенной. В этом случае понадобится еще один тюнер, который придется подключить между фидером и антенной, тогда он исправит положение и скомпенсирует реактивность. В зтом примере фидер выполняет роль согласованной линии передачи произвольной длины.

Еще один пример:
Рамочную антенну, имеющую входное сопротивление активного характера приблизительно 1100м, необходимо согласовать с 50-омной линией передачи. Выход передатчика 500м. Здесь потребуется согласующее устройство, установленное в точке подключения фиДера к антенне. Обычно многие любители используют ВЧ трансформаторы разных типов с ферритовыми сердечниками, но удобнее изготовить четвертьволновый коаксиальный трансформатор из 75-омного кабеля.
Длина отрезка кабеля А/4 х 0.66, где
Я — длина волны,
0.66 — коэффициент укорочения для большинства известных коаксиальных кабелей.
Коаксиальный трансформатор включается между входом антенны и 50-омным фидером.
Если его свернуть в бухту диаметром 15…20см, то он будет выполнять и функцию симметрирующего устройства. Фидер с передатчиком согласуется автоматически, при равенстве их сопротивлений. В этом случае от услуг антенного тюнера можно вообще отказаться.

В более сложных случаях, когда входное сопротивление антенны не соответствует волновому сопротивлению фидера, а сопротивление фидера не соответствует выходному сопротивлению передатчика, необходимы два согласующих устройства. Одно вверху для согласования антенны с фидером, другое внизу — для согласования фидера с передатчиком. И обойтись только одним антенным фидером для согласования всей цепи: антенна — фидер — передатчик не представляется возможным.

Наличие реактивности еще больше осложняет ситуацию. Антенный тюнер в этом случае значительно улучшит согласование передатчика с фидером, облегчив тем самым работу оконечного каскада, но не более того. Из-за рассогласования фидера с антенной будут иметь место потери, и эффективность работы самой антенны будет пониженной. Включенный КСВ-метр между передатчиком и тюнером зафиксирует КСВ=1, а между тюнером и фидером этого не произойдет по причине рассогласоаания фидера с антенной.

Напрашивается вполне справедливый вывод: тюнер полезен тем, что поддерживает нормальный режим передатчика при работе на несогласованную нагрузку, но при этом не способен улучшить эффективность работы антенны при ее рассогласовании с фидером.

П-контур, используемый в выходном каскаде передатчика, также может выполнять роль антенного тюнера, но при условии оперативного изменения индуктивности и обеих емкостей.
Как правило, антенные тюнеры и ручные и автоматические — это резонансные контурные перестраиваемые устройства. Ручные имеют два- три регулирующих элемента и не оперативны в работе. Автоматические — дороги, а для работы на больших мощностях — очень дороги.

Давайте рассмотрим довольно простое широкополосное согласующее устройство (тюнер) на рис 1, удовлетворяющее большинству вариаций при согласовании передатчика с антенной. :


Он очень эффективен при работе с антеннами (рамки, диполи), используемыми на гармониках, когда фидер является полуволновым повторителем. В данном случае входное сопротивление антенны на разных диапазонах различно, но с помощью согласующего устройства легко согласуется с передатчиком. Предлагаемый тюнер может работать при мощностях передатчика до 1,5кВт в полосе частот от 1.5 до 30МГц.
Основные элементы тюнера — ВЧ автотрансформатор на феррито- вом кольце от отклоняющей системы телевизора УНТ-35 и переключатель на 17 положений. Возможно применение конусных колец от телевизоров УНТ-47/59 или других.

Обмотка содержит 12 витков, намотанных в два провода. Начало одной обмотки соединяется с концом другой. В таблице и на схеме нумерация витков сквозная. Сам провод — многожильный во фторопластовой изоляции. Диаметр провода 2,5мм по изоляции. Отводы сделаны от каждого витка, начиная с восьмого от заземленного конца.

Переключатель — керамический, галетного типа на 17 положений.

Автотрансформатор располагается максимально близко к переключателю, а соединительные проводники между ними должны быть минимальной длины. Возможно применение переключателя на 11 положений при сохранении конструкции трансформатора с меньшим количеством отводов, например, с 10 по 20 виток. Но в этом случае уменьшится и интервал трансформации сопротивлений.

Зная входное сопротивление антенны, можно воспользоваться таким трансформатором для согласовании антенны с фидером 50 или 750м, сделав только необходимые отводы. В этом случае он помещается во влагонепроницаемую коробку, заливается парафином и устанавливается в точке питания антенны.

Также это согласующее устройство может быть выполнено как самостоятельная конструкция или входить в состав антенно-коммутационного блока радиостанции.

Для наглядности метка на ручке переключателя (на лицевой панели) указывает на величину сопротивления, соответствующую данному положению. Для компенсации реактивной составляющей индуктивного характера возможно подключение переменного конденсатора С1, рис.2.


Зависимость сопротивления от количества витков приводится в таблице 1. Расчет производился исходя из соотношения сопротивлений, которое находится в квадратичной зависимости от количества витков.

Что будет, если в электронике каждый радиоэлемент будет враждовать с другим радиоэлементом? Или каскад будет воевать с каскадом? Тогда ни одна аппаратура не заработает. Поэтому, задача электронщика не просто подобрать радиоэлементы и спаять их, но и сделать так, чтобы все они дружили друг с другом и работали единой командой, выполняя определенную функцию.

Как раз для этих целей миротворцем в радиоэлектронике является самый простой и самый часто используемый радиоэлемент — резистор. Откройте любую схему или посмотрите на любую плату и увидите множество резисторов. Но почему именно резистор считается самым распространенным радиоэлементом на платах?

Все радиоэлементы имеют какое-то свое сопротивление, и у всех оно проявляется по разному. У некоторых радиоэлементов в состоянии покоя сопротивление может быть одно, а в рабочем состоянии — совсем другое. Некоторые радиоэлементы могут менять свое значение сопротивления в зависимости от напряжения, силы тока, температуры, солнечного света и тд. Для того, чтобы согласовать работу этих различных радиоэлементов как раз используют резисторы.

Как все это происходит? Дело в том, что один радиоэлемент обладает одним сопротивлением, а другой — другим сопротивлением. Чтобы правильно их подцепить к друг другу надо сделать согласование сопротивлений. По идее любой радиоэлемент или каскад имеет так называемое входное и выходное сопротивление. Обязательно читаем про входное и выходное сопротивление, иначе вы не поймете, о чем идет речь в этой статье. Суть согласования сопротивлений состоит в том, что мы должны согласовать выходное сопротивление одного каскада с входным сопротивлением другого каскада.

Почему надо согласовывать сопротивления

Давайте рассмотрим схему:

согласование сопротивлений

Если вы читали статью про входное и выходное сопротивление, то наверное помните, что любой источник сигнала имеет в своем составе внутреннее сопротивление (выходное сопротивление) и источник ЭДС, а любая нагрузка обладает входным сопротивлением.

Предположим, что у нас нет никакой нагрузки:

согласование сопротивлений

Что имеем в этом случае? Сила тока в цепи будет равняться нулю, так как у нас обрыв, а напряжение на клеммах будет равняться ЭДС. Или буквами: Iвх =0, Uвх=E. То есть в этом случае амплитуда сигнала будет такой, какой она должны быть.

Но что будет, если мы подсоединим нагрузку?

согласование сопротивлений

Для источника сигнала будет не айс. Ему придется поднатужиться, так как цепь стает замкнутой и в цепи начинает течь ток Iвх. Что же тогда случится с напряжением Uвх ? Оно будет больше или меньше, или вообще останется таким же? Ответ на этот вопрос прост: все зависит от входного сопротивления нагрузки Rвх . Если оно очень и очень большое, то сигнал почти не изменится. Он будет таким же, как и без нагрузки. Но если нагрузка будет обладать малым сопротивлением, в дело идет закон Ома для полной цепи:

Согласование сопротивлений

I — сила тока, в Амперах

E — ЭДС источника, в Вольтах

R — сопротивление нагрузки, Ом

r — внутреннее сопротивление, Ом

Так, теперь давайте будем мыслить логически. Смотрим на схему…

согласование сопротивлений

Что будет, если нагрузка будет обладает маленьким входным сопротивлением Rвх ?

Во-первых, увеличится сила тока в цепи Iвх.

Во-вторых, так как сила тока в цепи стала большой из-за маленького сопротивления Rвх, следовательно, увеличится падение напряжения на выходном сопротивлении Rвых .

В-третьих, так как падение напряжения на сопротивлении Rвых увеличилось, то следовательно, на сопротивлении Rвх оно уменьшилось:

Согласование сопротивлений

С законом Ома для полной цепи не поспоришь ;-) А что такое падение напряжения на Rвх? Это и есть Uвх. Значит делаем вывод: чем низкоомнее нагрузка, тем больше будет просаживаться сигнал напряжения. ]

Согласование сопротивлений для оптимальной передачи напряжения

Итак, из всего выше написанного делаем выводы. Что нам требуется для того, чтобы передать сигнал напряжения в нагрузку и чтобы он не просел? Ответ однозначный — как можно более высокоомную нагрузку. В идеале, чтобы был вообще обрыв). Ну а на практике стараются сделать так, чтобы Rвх > 10Rвых . Поэтому различные приборы, такие как генератор частоты, блок питания и различные источники питания делают как можно с меньшим выходным сопротивлением. Различные измеряющие приборы типа осциллографов и мультиметров делают как можно с бОльшим входным сопротивлением, чтобы не гасить амплитуду сигнала.

Согласование сопротивлений для оптимальной передачи тока

Смотрим внимательно на схему:

согласование сопротивлений

Так как мы не в состоянии поменять Rвых, то какое же надо подобрать сопротивление Rвх, чтобы сила тока в цепи была максимальной? Разумеется, как можно меньше. В идеале — ноль Ом. Этот метод согласования используется редко.

Согласование сопротивлений для оптимальной передачи мощности

Теперь вопрос ставится так: как передать максимальную мощность от источника нагрузке? Если вы не забыли, мощность выражается формулой: P=IU. Так и напрашивается ответ, что Rвх должна быть равна нулю. Но тогда у нас все напряжение упадет на Rвых ! Получается, что на сопротивлении Rвх =0 Ом у нас будет падать также 0 Вольт. То есть мощность, выделяемая на Rвх будет равна 0 Ватт.

Если поставить Rвх очень большим, то у нас сила тока в цепи будет крохотной, что в результате опять же мощность, выделяемая на Rвх будет минимальной.

Так как я не силен в дифференциалах и интегралах, за нас физики и математики уже все посчитали. Оказывается, чтобы передать максимальную мощность в нагрузку, надо чтобы выполнялось простое равенство:

Заключение

Как видите, ничего сложного в согласовании сопротивлений нет. Из всех трех видов согласования чаще всего используется именно согласование по напряжению. Согласование по мощности и по току следует использовать с большой осторожностью, так как в этом случае на сопротивлении Rвых будет падать большая мощность, что приведет к нагреву источника и даже к его выходу из строя.

Оптический рефлектометр (OTDR) – это измерительный прибор, предназначенный для определения расстояния до неоднородностей показателя преломления оптического волокна: сварных соединений, макро изгибов, коннекторов, обрывов и т д. Его работа основана на детектирование отраженных сигналов вследствие Релеевского рассеяния и Френелевского отражения.

В ходе диагностики оптического волокна, оптический рефлектометр посылает в него зондирующий импульс.

Зондирующий импульс – это световой импульс определенной амплитуды и длительности. Его характеристики во многом определяют максимальную протяженность измеряемой линии и разрешающую способность измерения.

Одновременно с запуском зондирующего импульса, рефлектометр начинает отсчет времени. Распространяясь по оптическому волокну, импульс сталкивается с различными препятствиями (повреждениями, неоднородностями), от которых происходит отражение части сигнала. Отраженный сигнал распространяется в обратном направлении и время его поступления на вход рефлектометра фиксируется.

Все неоднородности показателя преломления в рефлектометрии называются “События”. В свою очередь, события делятся на отражающие (вызванные Френелевским отражением) и неотражающие (вызванные Релеевским рассеянием)

Принцип работы оптического рефлектометра (OTDR)

Рисунок 1 – Структурная схема оптического рефлектометра

В результате, время распространения сигнала до повреждения вычисляется как разделенное на два время прохождения импульса до повреждения и обратно.

Расстояние до события вычисляется по формуле: L = T * V, где Где T – время распространения импульса до события; V - скорость распространения импульса

Скорость распространения импульса в волокне вычисляется из формулы


Рисунок 2 – Формула определения показателя преломления

Используя показатель преломления n (выставляется в рефлектометре) и скорость распространения света в вакууме C0 (константа).

Результат измерения рефлектометр представляет в виде графика, называемого рефлектограммой.

Результат измерения рефлектометр представляет в виде графика, называемого рефлектограммой

Рисунок 3 – Типичная рефлектограмма

Подведя курсор к какому-либо событию, на нижней оси можно увидеть на каком расстоянии от точки измерения оно находится.

Чаще всего, результаты измерений в численном виде приводятся и в таблице событий, в которой указываются для каждого события:

  • номер события
  • потери, дБ (на отражающих и не отражающих событиях)
  • отражение, дБ (на отражающих событиях)
  • расстояние до события, км

Рефлектограмма

Рисунок 4 – Оптическая рефлектограмма с таблицей событий

Однако в таблицу в автоматическом режиме попадают только идентифицированные рефлектометром события. Вместе с тем, в ряде случаев рефлектометр не способен идентифицировать сварное соединение с малыми потерями, и приходится находить его на рефлектограмме в ручном режиме. Программное обеспечение некоторых рефлектометров позволяет добавить в таблицу найденное в ручном режиме сварное соединение.

Пример

При измерении 12 волоконного кабеля, выяснилось, что 10 волокон имеют по 3 сварки ( на расстоянии 4км, 8 км и 12 км). В 2-х остальных волокнах в автоматическом режиме обнаружено только 2 сварных соединения (на расстоянии 4 км и 12 км). Это вызвано тем, что сварные соединения получились очень хорошими. Вместе с тем, соединения на расстоянии 8 км есть на всех волокнах и ее необходимо показать в отчете. В этом случае, в программном обеспечении открывается рефлектограмма, выставляется курсор на расстояние 8 км и добавляется событие. На этом событии появляется возможность в ручном режиме измерить потери. После добавления такого события, информация о нем появляется в таблице событий и отчете. Таким же способом можно удалить ошибочно найденное событие (Фантом), которое иногда появляется вследствие переотражения сигнала от некачественного или грязного коннектора на входе рефлектометра.

Для получения корректных результатов потерь на событиях, необходимо проводить двусторонние измерения с последующем вычислении среднего значения на каждом событии.

Определение сварного соединения (макро изгиба) оптического волокна при помощи рефлектометра (OTDR)

Как известно, сварное соединение и макро изгиб, относятся к не отражающим событиям, то есть от этих событий не происходит отражения сигнала. Соответственно, для определения их местоположения оптический рефлектометр производит измерение рассеяния света (Релеевского рассеяния) в каждой точке волокна. Причем количество точек измерения является характеристикой АЦП рефлектометра и чем больше количество этих точек, тем больше разрешающая способность прибора.


Рисунок 5 – Процессы, происходящие в месте сварки волокон различных производителей

На рисунке 5 продемонстрирован случай, когда волокно с большим количеством примесей сварено с волокном с меньшим количеством примесей. В этом случае при измерении слева направо, рефлектометр фиксирует резкое уменьшение уровня обратного рассеяния (Релеевского рассеяния) и идентифицирует событие как неотражающее с большими потерями. При измерении с обратной стороны, при переходе с одного волокна в другое уровень обратного рассеяния резко увеличивается, что идентифицируется как усиление. Естественно, в данном случае мы имеем дело не с реальным усилением, а с псевдо усилением. Поэтому для определения реальных потери на сварном соединении необходимо проводить двусторонние измерение, и вычислять среднее значение потерь на сварном соединении по формуле Асв сред = (А св А-Б + А св Б-А)/2.

Определение разь ё много соединения (коннекторного) оптического волокна при помощи рефлектометра (OTDR)

Разъёмное соединение относится к отражающим событиям. Уровень отражения сигнала от коннекторного соединения описан в соответствующих стандартах и в вебинаре “Оптические разъемы: типы, установка, чистка”. Отраженный от такого соединения сигнал напрямую фиксируется оптическим рефлектометром и отображается на рефлектограмме и таблице событий см. рисунок 3, а также рис 4 (события № 1,5,6,7).

Читайте также: