На каком этапе развития эвм поколении эвм начато использование системного программного обеспечения

Обновлено: 19.05.2024

Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, полезный материал и многое другое.

§ 6. История развития вычислительной техники.

Информатика. 10 класса. Босова Л.Л. Оглавление

6.1. Этапы информационных преобразований в обществе

Информационная революция — кардинальное изменение инструментальной основы, способов передачи и хранения информации, а также объёма информации, доступной активной части населения.

Принято выделять пять информационных революций, определяющих, по сути, пять этапов информационных преобразований в обществе (табл. 2.1).

Содержание первой информационной революции составляет распространение и внедрение в деятельность и сознание человека языка. Вторая информационная революция была связана с изобретением письменности. Сущность третьей информационной революции состоит в изобретении книгопечатания, сделавшего любую информацию, и особенно научные знания, продукцией массового потребления. Четвёртая информационная революция состояла в применении электрической аппаратуры для скоростного и массового распространения всех видов информации и знаний.

Таблица 2.1

Этапы информационных преобразований в обществе


Пятая, последняя, информационная революция связана с созданием сверхскоростных вычислительных устройств — компьютеров. С появлением и массовым распространением компьютеров человек впервые за всю историю развития цивилизации получил мощное средство для эффективного использования информационных ресурсов, для усиления своей интеллектуальной деятельности.

Возможность использования членами общества полной, своевременной и достоверной информации в значительной мере зависит от степени развития и освоения новых информационных технологий, основой которых является вычислительная техника.

6.2. История развития устройств для вычислений

В развитии устройств для вычислений можно выделить несколько этапов:

• создание электронных вычислительных машин (ЭВМ):

— создание ЭВМ фон-неймановской архитектуры;
— отход от традиционной фон-неймановской архитектуры, использование процессоров, работающих параллельно.

• 40-е — начало 50-х гг. XX в. (создание ЭВМ на электронных лампах);
• середина 50-х — 60-е гг. XX в. (разработка ЭВМ на дискретных полупроводниковых приборах);
• середина 60-х гг. XX в. — середина 70-х гг. XX в. (появление ЭВМ на интегральных микросхемах);
• середина 70-х гг. XX в. — наши дни (использование больших и сверхбольших интегральных схем).

Рассмотрим особенности и характеристики каждого из приведённых этапов более подробно.

6.3. Поколения ЭВМ

Первое поколение ЭВМ — ламповые машины 50-х годов. Скорость счёта самых быстрых машин первого поколения доходила до 20 тысяч операций в секунду. Для ввода программ и данных использовались перфоленты и перфокарты. Поскольку внутренняя память этих машин была невелика (могла вместить в себя несколько тысяч чисел и команд программы), они, главным обра-зом, использовались для инженерных и научных расчётов, не связанных с переработкой больших объёмов данных. Это были довольно громоздкие сооружения, содержавшие в себе тысячи ламп, занимавшие иногда сотни квадратных метров, потреблявшие электроэнергию в сотни киловатт. Программы для таких машин составлялись на языках машинных команд, поэтому программирование в те времена было доступно немногим.

Первая ЭВМ ЭНИАК (ENIAC) была создана в конце 1945 г. в США; она весила 30 т и размещалась на 170 м 2 . В нашей стране первая ЭВМ была создана в 1951 году. Называлась она МЭСМ — Малая Электронная Счётная Машина (рис. 2.1).


Рис. 2.1. ЭВМ первого поколения МЭСМ

К концу 40-х гг. XX в., когда вошли в строй первые большие электронные компьютеры, специалисты начали искать замену громоздким и хрупким, часто выходившим из строя лампам, на которых они были построены. В 1948 году в США был создан первый полупроводниковый прибор, заменяющий электронную лампу. Он получил название транзистор. В 60-х годах транзисторы стали элементной базой для ЭВМ второго поколения. Переход на полупроводниковые элементы улучшил качество ЭВМ по всем параметрам: они стали компактнее, надёжнее, менее энергоёмкими (рис. 2.2). Быстродействие большинства машин достигло нескольких сотен тысяч операций в секунду. Объём внутренней памяти возрос в сотни раз по сравнению с ЭВМ первого поколения. Большое развитие получили устройства внешней (магнитной) памяти: магнитные барабаны, накопители на магнитных лентах. Это способствовало созданию на ЭВМ информационно-справочных, поисковых систем, нуждающихся в длительном хранении больших объёмов информации.

Во времена второго поколения ЭВМ активно начали развиваться языки программирования высокого уровня, одним из первых среди которых был Фортран (Fortran — сокращение от англ. FORmula TRANslation — трансляция формулы).


Рис. 2.2. ЭВМ второго поколения БЭСМ-6

Благодаря транзистору — германиевому кристаллу величиной с булавочную головку, заключённому в металлический цилиндр длиной около сантиметра, — электроника ступила на путь миниатюризации: один транзистор был способен заменить 40 электронных ламп.

Хотя транзистор был выдающимся научным изобретением, он не сразу получил широкое практическое применение в вычислительной технике. Германий, из которого изготавливали первые транзисторы, — довольно редкий химический элемент, поэтому стоимость транзисторов была очень высокой. Резко снизить стоимость транзисторов удалось только в середине 50-х гг. XX в.: в 1954 году был изготовлен первый транзистор из кремния — основного компонента обычного песка, — одного из самых распространённых на Земле химических элементов.

Третье поколение ЭВМ создавалось на новой элементной базе — сложные электронные схемы монтировались на маленькой пластине из полупроводникового материала, площадью менее 1 см 2 . Их назвали интегральными схемами (ИС). Первые ИС содержали в себе десятки, затем — сотни элементов (транзисторов, сопротивлений и др.). Когда степень интеграции (количество элементов) приблизилась к тысяче, их стали называть большими интегральными схемами — БИС, а затем появились сверхбольшие интегральные схемы — СБИС. ЭВМ третьего поколения начали производить во второй половине 60-х годов, когда американская фирма IBM приступила к выпуску системы машин IBM-360. В Советском Союзе в 70-х годах начался выпуск машин серии ЕС ЭВМ (Единая Система ЭВМ). Скорость работы наиболее мощных моделей ЭВМ достигла нескольких миллионов операций в секунду. На машинах третьего поколения появился новый тип внешних запоминающих устройств — магнитные диски. В ЭВМ третьего поколения широко использовались новые типы устройств ввода-вывода: дисплеи, графопостроители (рис. 2.3).


Рис. 2.3. Рабочее помещение с установленной ЕС-1060

В этот период были созданы операционные системы (ОС), позволявшие управлять большим количеством внешних устройств и выполнять на одной машине несколько программ одновременно. Широкое распространение получили ранее созданные языки программирования. Начали появляться пакеты прикладных программ для решения задач в конкретных областях. Это существенно расширило области применения ЭВМ.

Первая интегральная схема, представлявшая собой кристалл, в котором была размещена целая схема из нескольких транзисторов, была разработана в 1958 г. американским физиком Джеком Килби, удостоенным за это изобретение Нобелевской премии.

Очередное революционное событие в электронике произошло в 1971 году, когда американская фирма Intel объявила о создании микропроцессора.

Микропроцессор — это СБИС, способная выполнять функции основного блока компьютера — процессора. Соединив микропроцессор с устройствами ввода-вывода и внешней памяти, получили новый тип компьютера — микроЭВМ. Микро-ЭВМ относятся к машинам четвёртого поколения. Существенным отличием микроЭВМ от своих предшественников являются их малые габариты (размеры бытового телевизора) и сравнительная дешевизна. Это первый тип компьютеров, который появился в розничной продаже.

Сегодня самой популярной разновидностью ЭВМ являются персональные компьютеры (ПК). Первый ПК был создан в 1976 году в США. С 1980 года и на долгие годы вперёд на рынке ПК ведущей становится американская фирма IBM. Её конструкторам удалось создать такую архитектуру, которая стала фактически международным стандартом на профессиональные ПК. Машины этой серии получили название IBM PC (Personal Computer). С точки зрения общественного развития появление и распространение ПК сопоставимы с появлением книгопечатания. Именно ПК сделали компьютерную грамотность массовым явлением. С развитием компьютеров этого типа появилось такое понятие, как информационные технологии, без которых уже невозможно обойтись в большинстве областей человеческой деятельности.

Ещё одной линией в развитии ЭВМ четвёртого поколения являются суперкомпьютеры — мощные многопроцессорные компьютеры, выполняющие параллельную обработку данных (рис. 2.4).

Все компьютеры, используемые в настоящее время, по-прежнему построены на базе идей четвёртого поколения.


В начале 90-х годов прошлого века в Японии начались работы по созданию компьютера пятого поколения. По замыслу японских специалистов основой работы этих компьютеров должны были стать не вычисления, а логические рассуждения, что означало переход от обработки данных к обработке знаний. Машину обещали научить воспринимать речь человека, рукописный текст и графические изображения. Окончательные результаты в этом направлении всё ещё не достигнуты. Исследования продолжаются.

Можно проследить несколько основных тенденций, имеющих место в развитии вычислительной техники:
• возрастание вычислительной мощности компьютеров от поколения к поколению;
• изменение целей использования компьютеров от сугубо военных и научно-технических расчётов к техническим и экономическим расчётам, коммуникационному и информационному обслуживанию, управлению;
• изменение в режиме работы компьютеров от однопрограммного к пакетной обработке, работе в режиме разделения времени, персональной работе и сетевой обработке данных;
• движение от машинного языка к языкам высокого уровня;
• повышение удобства работы пользователя за счёт усовершенствования аппаратного и программного обеспечения, возможности произвольного мобильного расположения;
• неуклонное расширение областей применения и круга пользователей компьютерной техники.

САМОЕ ГЛАВНОЕ

Веками люди совершенствовали способы и методы передачи, накопления, обработки и хранения информации. Информационная революция — кардинальное изменение инструментальной основы, способов передачи и хранения информации, а также объёма информации, доступной активной части населения.

Человечество прошло через несколько информационных революций, связанных с появлением речи, письменности, книгопечатания и средств коммуникации (телеграф, телефон, радио, телевизор). Пятая информационная революция связана с новыми информационными технологиями, основой которых является вычислительная техника.

В развитии вычислительной техники также можно выделить несколько этапов, связанных с возникновением разных поколений ЭВМ:

1) 40-е — начало 50-х гг. XX в. (создание ЭВМ на электронных лампах);
2) середина 50-х — 60-е гг. XX в. (разработка ЭВМ на дискретных полупроводниковых приборах);
3) середина 60-х — середина 70-х гг. XX в. (появление ЭВМ на интегральных микросхемах);
4) середина 70-х гг. XX в. — наши дни (использование больших и сверхбольших интегральных схем).

Все компьютеры, используемые в настоящее время, по-прежнему построены на базе идей четвёртого поколения.

Вопросы и задания

1. Что понимают под информационными революциями? Какие информационные революции пережило человечество?

2. Выясните, когда отмечается День российской информатики. С чем связан выбор именно этой даты?

7. По какому принципу ЭВМ делятся на поколения? Дайте краткую характеристику каждому поколению компьютеров.

8. Предложите классификацию современных персональных компьютеров. Изобразите её в виде графа.

10. Что такое суперкомпьютеры? Для решения каких задач они используются?

11. Какое место в рейтинге суперкомпьютеров (Тор500) занимают российские разработки?

12. Назовите основные тенденции, прослеживаемые в развитии вычислительной техники.


Поколения ЭВМВ соответствии с элементной базой и уровнем развития программных средств выделяют четыре реальных поколения ЭВМ, краткая характеристика которых приведена в таблице.



Классификация ЭВМ

Компьютеры могут быть классифицированы по различным признакам, в частности, по:

1. этапам создания и элементной базе (на Электромагнитных реле, электронных лампах, транзисторах, микросхемах малой степени интеграции, микросхемах большой степени интеграции);

2. размерам и вычислительной мощности (суперЭВМ, большие ЭВМ или мейн-фреймы, малые ЭВМ, микроЭВМ, портативные или наколенные компьютеры - Lap Top, компьютеры-блокноты - Note Book, электронные секретари- Hand Help, карманные компьютеры - Palm Top);

3. принципу действии (аналоговые вычислительные машины - АВМ, цифровые вычислительные машины - ЦВМ, гибридные вычислительные машины - ГВМ);

4. степени доступности (персональные и коллективные ЭВМ);

5. назначению (серверы и рабочие станции - клиенты);

6. функциональным возможностям (универсальные, проблемно-ориентированные и специализированные ЭВМ);

7. по числу потоков и команд (STSD, MSB, S1MD, MIMD);

Дадим небольшие комментарии к каждой классификации.

Первая электронная вычислительная машина была построена в середине 40-х годов XX столетия на электронных вакуумных лампах. Для ЭВМ первого поколения характерными чертами были большая потребляемая мощность и невысокая надежность, вызванная частыми отказами электронных ламп, ЭВМ второго поколения были построены на полупроводниковых элементах - транзисторах.

ЭВМ третьего и четвертого поколении использовали соответственно микросхемы малой и большой степени интеграции (эти микросхемы отличались числом элементов, размещенных в одном корпусе, на одной подложке).

Исторически первыми появились большие ЭВМ. Скорее это название было связано с габаритами ЭВМ. Что касается производительности первых машин, то по современным понятиям их возможности были чрезвычайно малы.

Появление в 70-х годах XX столетия малых ЭВМ било обусловлено, с одной стороны, прогрессом в области микроэлектроники, а с другой — неиспользованной избыточностью ресурсов больших ЭВМ для ряда приложении. Малые ЭВМ использовались чаще всего для управления технологическими процессами предприятий. Они были компактнее и дешевле больших ЭВМ.

Изобретение микропроцессора привело к появлению в 70-х годах XX столетия еще одного класса машин - микроЭВМ. Сейчас микропроцессоры используются во всех классах ЭВМ, Наибольшую популярность в настоящее время получили персональные мнкроЭВМ - ПЭВМ, например, производства фирмы IBM с процессорами фирмы Intel - Pentium.

Вес самых малогабаритных переносных и карманных микроЭВМ составляет всего 200—300 г.

Для решения сложных задач: прогнозирование метеообстановки, управления оборонными комплексами, моделирования ядерных испытаний и др. - были разработаны наиболее сложные и мощные машины - суперЭВМ.

Создать высокопроизводительную суперЭВМ на одном микропроцессоре не удается из-за ограничения скорости распространения электромагнитных волн (ограничение тактовой частоты процессора) и температурного барьера.

1. векторные МПВС, в которых все процессоры Р одновременно выполняют одну команду 1 над различными данными П – однократный поток команд с многократным потоком данных - SIMD (Single instruction Stream/J Multiple Data Stream);

2. конвейерные МПВС, в которых процессоры одновременно выполняют разные операции I над последовательным потоком обрабатываемых данных D; по принятой классификации такие МПВС относятся к системам c многократным потоком команд и однократным потоком данных - MISE (Multiple Instruction Stream / Single Data Stream);

3. матричные МПВС, в которых процессоры Р одновременно выполняют разные операции I над несколькими потоками обрабатываемых данных; D - многократный поток команд с многократным потоком данных - MIMD (Multiple Instruction Stream / Multiple Data Stream).

Вероятно, здесь же уместно упомянуть традиционные для многих пользователей ПЭВМ однопроцессорные SISD ЭВМ, которые по числу обрабатываемых потоков команд и данных являются простейшими.

Аббревиатура SISD (Single Instruction Stream / Single Data Stream) означает одиночный поток команд и одиночный поток данных. К этому классу относятся машины фон-неймановского типа. В таких машинах есть только один поток команд, все команды обрабатываются последовательно друг за другом и каждая команда инициирует одну операцию с одним потоком данных,

Универсальные ЭВМ предназначены для решения широкого класса научно-технических задач и являются наиболее сложными и дорогими машинами. Для проблемно-ориентированных ЭВМ характерно ограничение машинных ресурсов применительно к определенному классу задач. Такие ЭВМ используются в автоматизированных системах управление технологическими процессами (АСУТП), автоматизированных системах учёных исследований (АСНИ), системах автоматизированного проектирования (САПР), в автоматизированных рабочих местах (АРМ). Специализированные ЭВМ служат для решения узкого класса задач (или даже одной задачи), требующих многократного повторения рутинных операций (например, продажа билетов на транспорте, управление коммутацией па автоматической телефонной станции, статистическая обработка информации в измерительном приборе).

В цифровых вычислительных машинах (ЦВМ) информация циркулирует в виде двоичных сигналов (кодов), с помощью которых представляются буквы, числа, знаки препинания, математические символы, управляющие сигналы, графические изображения, звуковые картины и т, д. Все данные и команды в конечном счете заменяются сигналами двух уровней - высокого и низкого, которые принято называть единицами и нулями.

В аналоговых вычислительных машинах (АВМ) электрические; сигналы имеют непрерывный характер. О результатах вычислений судят величине электрических напряжений на выходе операционных, усилителей, которые составляют основу АВМ.

Гибридные вычислительные машины (ГВМ) - это комбинированные машины, которые работают с информацией, представленной и цифровой, и в аналоговой формах.

Сервер (Server) - компьютер, предоставляющий услуги другом компьютеру - клиенту (рабочей станции). С помощью сервера другие компьютеры получают доступ к базам данных, находящимся на сервере, принтерам и факсам, подключенным к серверу. Среди компьютеров различай почтовые серверы, серверы печати, файл-серверы, серверы доменных и т. п.

К серверам печати подключены принтеры, и они предоставляют услуги для других компьютеров, пользователи которых распечатывают свои документы с помощью серверов печати.

В заключение еще раз отметим, что рассмотренные классификацию известной мере условны, так как границы между группами ЭВМ размыты и очень подвижны во времени.


Электронные вычислительные машины того времени представляли из себя массивные конструкции весом в несколько тонн. Каждый новый этап развития ЭВМ был связан не только с техническим прогрессом, но и с программным. Взять хотя бы Windows, который пришел на смену "бездушному" DOS.

Именно IBM, годом основания которой считается 1889 год, внесла огромный вклад в развитие компьютерной техники. Ее прародительница, корпорация CTR (Computing Tabulating Recording) включала в себя сразу три компании и выпускала самое различное электрическое оборудование: весы, сырорезки, приборы учета времени. После смены директора в 1914 году компания начала специализироваться на создании табуляционных машин (для обработки информации). Спустя 10 лет CTR поменяло свое название на International Business Machines или IBM.


Еще в 1888 году инженер Герман Холлерит, основатель IBM, создал первую электромеханическую счетную машину - табулятор, который мог считывать и сортировать данные, закодированные на перфокартах (бумажных карточках с отверстиями). Его даже использовали при переписи населения в 1890 году в США.

При этом история компьютеров IBM началась спустя более полувека, в 1941 году, когда был разработан и создан первый программируемый компьютер "Марк 1" весом порядка 4,5 тонн, 17 метров в длину, 2,5 метра – в высоту. Президент IBM вложил в него 500 тысяч долларов. Впервые "Марк 1" был запущен в Гарвардском университете в 1944 году. Чтобы понять, насколько сложна была конструкция машины, достаточно сказать, что общая длина проводов составила 800 км. При этом компьютер осуществлял три операции сложения и вычитания в секунду.

Первое поколение ЭВМ


Первая ЭВМ, основанная на ламповых усилителях, под названием "Эниак" была создана в США в 1946 году. По размерам она была больше, чем "Марк 1": 26 метров в длину, 6 метров в высоту, а ее вес составлял около 30 тонн. При этом по производительности "Эниак" в 1000 раз превышала "МАРК-1", а на ее создание ушло почти 500 тысяч долларов. Но у нее были существенные недостатки: очень мало памяти для хранения данных и долгое время перепрограммирования – от нескольких часов и до нескольких дней.

Кстати, среди создателей "Эниак" был ученый Джон фон Нейман, предложивший архитектуру ЭВМ, заложенную в компьютерах с конца 1940-х до середины 1950-х годов. Именно он осуществил переход к двоичной системе счисления и хранению полученной информации.

В 1951 году появился первый коммерческий компьютер UNIVAC, и уже в 1952 году вышел "IBM 701". Это был первый крупный ламповый научный коммерческий компьютер, причем создали его достаточно быстро – в течение двух лет. Его процессор работал значительно быстрее, чем у UNIVAC - 2200 операций в секунду против 455. В одну секунду процессор "IBM 701" мог выполнять почти 17 тысяч операций сложения и вычитания.

Второе поколение ЭВМ


Второе поколение ЭВМ использовало в своей основе транзисторы, созданные в 1947 году. Это была очередная революция, в результате которой существенно уменьшились размеры и энергопотребление компьютеров, так как сами биполярные транзисторы в разы меньше вакуумных ламп.

В 1959 году появились первые компьютеры IBM на транзисторах. Они были надежны, и ВВС США стали использовать их в системе раннего оповещения ПВО. А в 1960 году IBM разработала мощную систему Stretch или "IBM-7030". Она была и вправду сильна – создатели добились 100-кратного увеличения быстродействия. В течение трех лет он был самым быстрым компьютером в мире. Однако со временем IBM уменьшила его стоимость, а вскоре и вовсе сняла с производства.

Третье поколение ЭВМ


Третье поколение компьютеров связано с использованием интегральных схем (в которых используется от десятков до сотен миллионов транзисторов), впервые изготовленных в 1960 году американцем Робертом Нойсом.

В 1964 году IBM объявила о начале работы над целой линейкой IBM System/360.

System/360 хорошо продавалась даже спустя шесть лет после анонса системы. За 6 лет IBM выпустила более 30 тысяч машин. Однако затраты на разработку System/360 были очень велики - около пяти миллиардов долларов. Таким образом, System/360 заложила фундамент для следующих поколений, первым из которых был System/370.

Четвертое поколение ЭВМ


Четвертое поколение связано с использованием микропроцессоров. Первый такой микропроцессор под названием "Intel-4004" был создан в 1971 году компанией Intel, до сих пор остающейся в лидерах. Спустя 10 лет IBM выпустила первый персональный компьютер, который так и назывался IBM PC. Самая дорогая конфигурация стоила 3000 долларов и предназначалась для бизнеса, а конфигурация за 1500 долларов – для дома.

Процессор Intel 8088 работал на частоте 4,77 МГц (сейчас этот показатель в тысячи раз больше), а объем ОЗУ - 64 кбайта (сейчас – в миллионы раз больше). Для хранения информации использовались 5,25-дюймовые флоппи-дисководы. Жесткий диск нельзя было установить из-за недостаточной мощности блока питания.

Интересно, что разработкой компьютера занимались всего четыре человека. Причем IBM не запатентовала ни операционную систему DOS, ни BIOS, что породило огромное количество клонов. Уже в 1996 году IBM уступило первое место по продажам ПК на ею же основанном рынке.

Несмотря на то, что современные гаджеты сильно отличаются по характеристикам от своего предшественника, все они относятся к тому же поколению ЭВМ.

Основные толчки для развития компьютеров дала наука (появление ламп, а затем транзисторов). В настоящее время распространяется ввод информации с голоса, общения с машиной на человеческом языке (приложение Siri в iPhone) и активная работа над роботами. Основное мнение, что будущее – за квантовыми компьютерами, которые будут использовать в своей основе молекулы и нейрокомпьютерами, использующими центральную нервную систему человека и непосредственно его мозг. Однако для того, чтобы эти технологии появились, необходимо досконально изучить эти системы.

Каждый этап развития ЭВМ определяется совокупностью элементов ЭВМ, из которых строились компьютеры — элементной базой.

С изменением элементной базы ЭВМ значительно изменялись характеристики, внешний вид, габариты, возможности компьютеров. Через каждые 8 — 10 лет происходил резкий скачок в конструкции и способах производства ЭВМ.

Поколения ЭВМ

ЭВМ первого поколения

В октябре 1945 года в США был создан первый компьютер ENIAC (Electronic Numerical Integrator And Calculator — электронный числовой интегратор и вычислитель).

В ЭВМ первого поколения использовались электронные лампы. Так, фирма IBM в 1952 году выпустила первый промышленный компьютер IBM-701, содержащий 4000 электронных ламп и 12000 германиевых диодов. Один компьютер этого типа занимал площадь порядка 30 кв. метров, потреблял много электроэнергии, имел низкую надежность. Поиск неисправности составлял 3-5 дней.

Поколения ЭВМ

ЭВМ второго поколения

ЭВМ второго поколения составляли транзисторы, они занимали меньше места, потребляли меньше электроэнергии и были более надёжными. В 1955 году в США было объявлено о разработке полностью транзисторной ЭВМ — TRADIC включающей 800 транзисторов и 11000 диодов. В 1958 году машина Philco — 2000 содержала 56 тыс. транзисторов, 1, 2 тыс. диодов и 450 электронных ламп.

Наивысшим достижением отечественной вычислительной техники созданной коллективом С.А. Лебедева явилась разработка в 1966 году полупроводниковой ЭВМ БЭСМ-6 с производительностью 1 млн. операций в секунду.

Поколения ЭВМ

ЭВМ третьего поколения

ЭВМ третьего поколения обязано созданием интегральной схемы (ИC) в виде одного кристалла, в миниатюрном корпусе которого были сосредоточены транзисторы, диоды, конденсаторы, резисторы. Создание процессоров осуществлялось на базе планарно-диффузионной технологии.

В 1964 году фирма IBM объявила о создании модели IBM-360, производительность её достигала несколько миллионов операций в секунду, объём памяти значительно превосходил машины второго поколения. В 1966 — 67 гг. ЭВМ 3-го были выпущены фирмами Англии, ФРГ, Японии.

В 1969 году СССР совместно со странами СЭВ была принята программа разработки машин 3-го поколения. В 1973 была выпущена первая модель ЭВМ серии ЕС, с 1975 года появились модели ЕС-1012, ЕС-1032, ЕС-1033, ЕС-1022, а позже более мощная ЕС-1060.

При развитии ЭВМ третьего поколения, начиная с 60-х годов, элементарная база перестала быть определяющим признаком поколения. Предпочтение стали отдавать архитектуре (составу аппаратных средств), функционально-структурной организации и программному обеспечению. Миникомпьютеры для народного хозяйства обозначались СМ ЭВМ (Система малых ЭВМ).

Поколения ЭВМ

К ЭВМ четвертого поколения относятся ПЭВМ “Электроника МС 0511” комплекта учебной вычислительной техники КУВТ УКНЦ, а также современные IBM — совместимые компьютеры, на которых мы работаем.

Поколения ЭВМ

ЭВМ пятого поколения

В 1980-егоды стало ясно, что использование компьютерной техники позволило резко повысить производительность труда при обработке больших потоков информации, сфера внедрения ЭВМ активно расширялась во все отрасли народного хозяйства. А это заставило разработчиков совершенствовать компьютерную технику. Постепенно прорисовывались требования к ЭВМ пятого поколения. Они должны:
накапливать и хранить большие массивы информации и оперативно ее выдавать пользователю;
анализировать информацию и выдавать оптимальные решения, т. е. быть интеллектуальным компьютером;
общаться с помощью голоса на языке пользователя, воспринимать и обрабатывать текстовую и графическую информацию;
объединить в сети ЭВМ различных классов для обработки и передачи информации на большие расстояния.
В ЭВМ пятого поколения предусматривается другой принцип работы процессоров и способы обработки информации в них. В настоящее время компьютеров пятого поколения, пока, не создано.

Читайте также: