Кто выявил основные закономерности наследования признаков

Обновлено: 02.07.2024

Г Генетика как наука подразумевает изучение наследственности и изменчивости. Большой вклад в развитие генетики оказал австрийский биолог Грегор Иоганн Мендель.

Генетика как наука и основные задачи

Генетика – наука о наследственности и изменчивости. Наследственность – это свойство дочерних организмов быть похожими на своих родителей морфологическими, физиологическими, биохимическими и другими признаками и особенностями индивидуального развития. Изменчивость – это свойство, противоположное наследственности, оно заключается в способности дочерних организмов отличаться от родителей морфологическими, физиологическими, биохимическими и другими особенностями и отклонениями в индивидуальном развитии. Наследственность и изменчивость реализуются в процессе наследования. Элементарной единицей наследственности и изменчивости является ген. Ген – это участок молекулы ДНК, определяющий последовательность аминокислот определенного полипептида или нуклеотидов РНК.

Основными задачами генетики как науки являются:

  • изучение способов хранения генетической информации у разных организмов и ее материальных носителей;
  • анализ способов передачи наследственной информации от одного поколения клеток и организмов к другому;
  • выявление механизмов и закономерностей реализации генетической информации в процессе индивидуального развития и влияние на них условий среды;
  • изучение закономерностей и механизмов изменчивости;
  • поиск способов исправления поврежденной информации.

Основные методы исследования генетики

Для решения этих задач используются разные методы исследования

Метод гибридологического анализа был разработан Г. Менделем. Сущность его заключается в следующем:

  • проводится анализ наследования отдельных альтернативных признаков;
  • прослеживается передача этих признаков в ряду поколений;
  • проводится точный количественный учет потомков с различной комбинацией признаков.

Этот метод позволяет выявлять закономерности наследования отдельных признаков при половом размножении организмов.

Цитогенетический метод основан на изучении кариотипов (наборов хромосом) клеток организма и позволяет выявлять геномные и хромосомные мутации.

Генеалогический метод позволяет изучать родословные животных и человека и устанавливать закономерности и тип наследования того или иного признака, зиготность организмов и вероятность проявления признаков в будущих поколениях. Этот метод широко используется в селекции и работе медико-генетических консультаций.

Близнецовый метод основан на изучении проявления признаков у монозиготных и дизиготных близнецов. Он позволяет выявить роль наследственности и среды в формировании конкретных признаков.

Биохимические методы исследования основаны на изучении химического состава клеток и активности ферментов, которые определяются наследственностью. Этими методами выявляют генные мутации.

Популяционно-статистический метод позволяет рассчитывать частоту генов и генотипов в популяциях.

Совокупность всех генов организма называется генотипом. Совокупность всех свойств и признаков организма называется фенотипом. Фенотип развивается на базе определенного генотипа под действием факторов окружающей среды. Отдельный признак называется феном.

Гены, определяющие развитие альтернативных (взаимоисключающих) признаков, называются аллельными. Они располагаются в одинаковых локусах (местах) гомологичных (парных) хромосом.

Альтернативный признак и соответствующий ему ген, проявляющийся у гибридов первого поколения, называют доминантным, а не проявляющийся (подавленный) – рецессивным. Доминантный ген подавляет действие рецессивного, проявляется фенотипически в гомо- и в гетерозиготном состоянии, а рецессивный – только в гомозиготном. Аллельные гены принято обозначать одинаковыми буквами латинского алфавита: доминантный – заглавной буквой (А), а рецессивный – прописной (а).

Если в гомологичных хромосомах находятся одинаковые аллельные гены (два доминантных – АА или два рецессивных – аа), такой организм называется гомозиготным, так как он образует один тип гамет и не дает расщепления при скрещивании с таким же по генотипу. Если в гомологичных хромосомах локализованы разные гены одной аллельной пары (Аа), то такой организм называется гетерозиготным. Он образует два типа гамет и при скрещивании с таким же по генотипу дает расщепление.

Г. Мендель проводил скрещивание растений гороха, при котором родительские формы анализировались по одной паре альтернативных признаков. Такое скрещивание называется моногибридным. Если у родительских форм учитывают две пары альтернативных признаков, скрещивание называется дигибридным.

Закономерности наследования при моногибридном скрещивании

Прежде чем проводить опыты, Г. Мендель получил чистые линии растений гороха с альтернативными признаками: гомозиготные доминантные (АА, с желтыми семенами) и гомозиготные рецессивные (аа, с зелеными семенами) особи, которые в дальнейшем скрещивались друг с другом.

Запись скрещивания проводится следующим образом: в первой строке пишут букву Р (родители), далее генотип женского организма, знак скрещивания Х и генотип мужского организма; во второй строке записывают букву G (гаметы) и гаметы женской и мужской особей, каждая буква берется в кружочек; в третьей строке ставят букву F (потомки) и записывают генотипы потомков.

Генетика: запись скрещивания

При анализе результатов скрещивания оказалось, что все потомки в первом поколении одинаковы по фенотипу (желтые) и генотипу (гетерозиготны) – закон единообразия гибридов первого поколения. Он формулируется следующим образом: при скрещивании гомозиготных особей, анализируемых по одной паре альтернативных признаков, наблюдается единообразие гибридов первого поколения как по фенотипу, так и по генотипу.

При выписывании гамет следует придерживаться следующих принципов: из каждой пары аллельных генов в гамету должен попасть один ген. Если организм гомозиготен (например, АА), то все гаметы будут содержать только один ген (А), т.е. они будут однотипны, и, следовательно, гомозиготный организм образует один тип гамет. Если организм гетерозиготен (Аа), то в процессе мейоза одна хромосома с геном А попадет в одну гамету, а вторая гомологичная хромосома с геном а – в другую гамету (гетерозиготный организм по одной паре генов будет образовывать два типа гамет: Аа –> А + a).

При скрещивании гибридов первого поколения между собой (т.е. гетерозиготных особей) получается следующий результат:

Генетика: запись скрещивания гибридов

Каждая из гетерозигот образует по два типа гамет, т.е. возможно получение четырех их сочетаний:

  1. яйцеклетку с геном А оплодотворяет сперматозоид с геном А – получится генотип АА;
  2. яйцеклетку с геном А оплодотворяет сперматозоид с геном а – генотип Аа;
  3. яйцеклетку с геном а оплодотворяет сперматозоид с геном А – генотип Аа;
  4. яйцеклетку с геном а оплодотворяет сперматозоид с геном а – генотип аа.

Получаются зиготы: 1АА, 2Аа, 1аа, вероятность образования которых равная. По фенотипу особи АА и Аа неотличимы (желтые), поэтому наблюдается расщепление в отношении 3 : 1 (три части потомков с желтыми семенами и одна часть – с зелеными). По генотипу соотношение будет: 1АА (одна часть растений гомозиготы по доминантному признаку) : 2Аа (две части растений – гетерозиготы) : 1аа (одна часть растений – гомозиготы по рецессивному признаку).

Мейозное расхождение хромосом

Схема расхождения гомологичных хромосом при мейозе

Второй закон Менделя – закон расщепления – формулируется следующим образом: при скрещивании гетерозиготных особей, анализируемых по одной паре альтернативных признаков, наблюдается расщепление в соотношении 3 : 1 по фенотипу и 1 : 2 : 1 по генотипу.

Взаимодействие аллельных генов

Взаимодействие генов одной аллельной пары (внутриаллельное взаимодействие) может проявляться полным и неполным доминированием. Если доминантный ген полностью подавляет действие рецессивного (как в опытах Менделя), то гомо- и гетерозиготы с доминантным геном неразличимы фенотипически. В этом случае говорят о полном доминировании. Однако доминантный ген не всегда полностью подавляет проявление рецессивного гена – в этом случае происходит неполное доминирование. При этом гибриды первого поколения не воспроизводят признаки родителей – имеет место промежуточный характер наследования. Во втором поколении доминантные гомо- и гетерозиготы будут отличаться фенотипически и расщепление по фенотипу и генотипу будет одинаковым (1 : 2 : 1).

Например, при скрещивании гомозиготных растений ночной красавицы с красными (АА) и белыми (аа) цветками первое поколение получается с розовыми цветками (промежуточное наследование). Во втором поколении расщепление по фенотипу и по генотипу будет: 1 часть растений с красными цветками (доминантные гомозиготы), две – с розовыми (гетерозиготы) и одна – с белыми (рецессивные гомозиготы).

Иногда в популяции встречается аллельных генов больше, чем два. Такое явление называется множественными аллелями. Например, группы крови человека по АВ0 — системе определяются тремя аллелями: I 0 , I A , I B . У людей I(0) группы крови в эритроцитах не определяются специфические антигены А и В, их генотип – I 0 I 0 (ген I 0 > не кодирует синтез специфических белков). У людей II(А) группы крови в эритроцитах содержится антиген А (его синтез детерминируется геном I А )‚ их возможные генотипы – I А I А или I А I 0 . Люди III(В) группы крови содержат в эритроцитах антиген В (его синтез детерминируется геном I B ), их возможные генотипы – I B I B и I B I 0 . У людей IV группы крови в эритроцитах содержатся и антиген А и антиген В, их генотип – I A I B . В этом случае аллельные гены не подавляют проявление друг друга, они равноценны. Такое взаимодейстие называется кодоминарованием. Следовательно, IV группа крови у человека определяется одновременным присутствием в генотипе двух кодоминантных генов I A и I B ;при этом ген I A детерминирует синтез в эритроцитах антигена А, а ген I B – антигена В. В целом, гены I A и I В кодоминантны, но доминантны по отношению к гену I 0 (I А = I B > I 0 ).

Для объяснения установленных Менделем закономерностей наследования У. Бэтсоном была предложена гипотеза чистоты гамет. Кратко ее можно свести к следующим положениям:

  1. у гибридного организма гены не гибридизируются (не смешиваются), а остаются в чистом аллельном состоянии;
  2. в процессе мейоза в гамету попадает только один ген из аллельной пары.

Гипотеза чистоты гамет объясняет, что законы расщепления есть следствие случайного сочетания гамет, несущих разные гены. Однако общий результат оказывается закономерным, так как здесь проявляется статистический характер наследования, определяемый большим числом равновероятных встреч гамет. Таким образом, расщепление при моногибридном скрещивании гетерозиготных организмов 3 : 1 в случае полного доминирования или 1 : 2 : 1 при неполном доминировании следует рассматривать как биологическую закономерность, основанную на статистических данных.

Для установления генотипа особи с доминантным признаком при полном доминировании применяют анализирующее скрещивание. Для этого данный организм скрещивают с рецессивным гомозиготным по данной аллели. Возможны два варианта результатов скрещивания:


Если в результате скрещивания получается единообразие гибридов первого поколения, то анализируемая особь является гомозиготной, а если в F1 , произойдет расщепление признаков 1 : 1, то – гетерозиготной.

Закономерности наследования при дигибридном скрещивании

Изучив наследование одной пары аллелей, Мендель проследил наследование двух признаков одновременно. С этой целью он использовал гомозиготные растения гороха, отличающиеся по двум парам альтернативных признаков: семена желтые гладкие (А, В – доминантные признаки) и зеленые морщинистые (а, b – рецессивные признаки).

Генетика: наследование пар при дигибридном скрещивании

В результате такого скрещивания в первом поколении он получил растения, у которых все семена были желтые гладкие. Этот результат подтверждает, что закон единообразия гибридов первого поколения проявляется не только при моногибридном скрещивании, но и при дигибридном.

Полученные гибриды первого поколения (АаВb) будут давать четыре типа гамет в равном соотношении, так как в процессе мейоза из каждой пары генов в гамету попадает один ген, свободно комбинируясь с генами другой пары.

При оплодотворении каждая из четырех типов гамет одного организма случайно встречается с одной из гамет другого. Следовательно, возможно 16 вариантов их сочетаний. Для удобства записи пользуются решеткой Пеннета, в которой по горизонтали записывают женские гаметы, а по вертикали мужские:

Решетка Пеннета

Краткая запись генотипа (А-В-) применяется для обозначения фенотипа особи, так как независимо от второй аллели (А или а) фенотип особи будет доминантный (желтый). Легко подсчитать, что по фенотипу потомство делится на 4 группы: 9 частей растений с желтыми гладкими семенами (А-В-)‚ 3 части – с желтыми морщинистыми (А-bb), 3 части – с зелеными гладкими (ааВ-) и 1 часть – с зелеными морщинистыми (ааbb). Если учесть расщепление по одной паре признаков (желтый и зеленый цвет, гладкая и морщинистая поверхность), то получится: 9 + 3 особи с желтыми (гладкими) и 3 + 1 особи с зелеными (морщинистыми) семенами. Их соотношение равно 12 : 4, или 3 : 1. Следовательно‚ при дигибридном скрещивании каждая пара признаков в потомстве дает расщепление независимо от другой пары, как и при моногибридном скрещивании. При этом происходит случайное комбинирование генов‚ приводящее к новым сочетаниям признаков, которых не было у родительских форм. В нашем примере исходные растения гороха имели желтые гладкие и зеленые морщинистые семена, а во втором поколении кроме таких сочетаний признаков получены растения с желтыми морщинистыми и зелеными гладкими семенами.

Отсюда следует третий закон Менделя – закон независимого комбинирования признаков: при скрещивании гомозиготных особей, анализируемых по двум или нескольким парам альтернативных признаков, во втором поколении наблюдается независимое комбинирование генов разных аплельных пар и соответствующих им признаков.

Цитологические основы законов Менделя составляют закономерности расхождения гомологичных хромосом и хроматид и образования гаплоидных половых клеток в процессе мейоза и случайное сочетание гамет при оплодотворении.

Для проявления законов Менделя необходимо соблюдение следующих условий:

  1. доминирование должно быть полным;
  2. должна быть равная вероятность образования гамет и зигот разного типа и равная вероятность выживания потомков с разными генотипами (не должно быть летальных генов);
  3. гены разных аллельных пар должны локализоваться в разных негомологичных хромосомах.

Нередко наблюдается явление, когда один ген влияет на проявление нескольких признаков, что вызывает отклонения от законов Менделя. Оно называется плейотропией. Так‚ у мухи дрозофилы ген, определяющий отсутствие пигмента в глазах (белые глаза) снижает плодовитость и уменьшает продолжительность жизни.

1. Биология для абитуриентов. Авторы: Давыдов В.В. , Бутвиловский В.Э. , Рачковская И. В. , Заяц Р.Г.

Г.Мендель в 1865 г. сформулировал идею о существовании наследственных факторов. Гибридологический метод, связанный с изучением характера наследования отдельных признаков и свойств позволил Менделю выявить и сформулировать основные правила наследственности.

К основным особенностям гибридологического метода изучения наследственности относят:

- использование в качестве исходных форм для скрещивания растений, отличающихся друг от друга сравнительно небольшим количеством (одна, две или три пары) контрастных признаков, и тщательный учет характера наследования каждого из них;

- точный количественный учет гибридных растений, различающийся по отдельным признакам, в ряде последовательных поколений;

- индивидуальный анализ потомства от каждого растения в ряде последовательных поколений;

- недопустимость влияния чужеродного генетического материала и родительские расы и гибриды;

- сохранение способности к размножению у гибридов и их потомков.

Одной из главных причин, обеспечивших успех в работе Менделя, был удачный выбор объекта исследования. Работа была проведена на однолетнем растении - горохе, который имеет много сортов с четко различающимися признаками. Горох легко культивируется, является строгим самоопылителем, строение его цветков таково, что почти невозможен занос чужой пыльцы, но при необходимости, можно производить искусственное опыление.

При изучении наследования признаков составляют схемы скрещивания. Скрещивание обозначают знаком умножения (х), который ставится между родителями. При написании схем женский пол обозначают знаком ♀ (символ планеты Венеры), мужской - ♂ (символ планеты Марс), родительские формы - буквой Р (от англ. родители). В строке ниже родителей записывают все типы производимых ими гамет (половых клеток). Полученное в результате скрещивания потомство называют гибридами и обозначают буквой F, внизу буквы ставят цифру, указывающую, к какому поколению оно относится. Например, F1 - гибриды первого поколения, F2- второго поколения и т.д.

При гибридологическом анализе довольно часто используют реципрокное скрещивание. Реципрокным называют два скрещивания, в одном из которых определенным признаком отличается отцовская форма, во втором - материнская. На основании проведенных опытов Менделем установлено три закона и правило чистоты гамет.

1 закон (правило) Менделя - закон единообразия гибридов первого поколения. Сущность его заключается в том, что при скрещивании гомозиготных родительских форм, различающихся по своим признакам, первое поколение получается единообразным.

Мендель начал изучать закономерности наследования признаков с моногибридного скрещивания, т.е. со скрещивания сортов гороха, отличающихся друг от друга только одним признаком. Он избрал для анализа семь пар четко различающихся признаков: форма зрелых семян - круглая или морщинистая, окраска семядолей зрелых семян - желтая или зеленая, окраска цветков и семенной кожуры - белая или окрашенная и др. Скрещивая между собой горох с альтернативными признаками, Мендель обнаружил, что у гибридов первого поколения появляется признак только одного из родителей (доминантный - А), в то время как признак другого родителя в гибридных формах остается скрытым (рецессивный - а). У гороха доминировала округлая форма семян над морщинистой, желтая окраска семядолей над зеленой. Полученные гибриды были одинаковы независимо от того, отцовскому или материнскому растению принадлежали доминирующие признаки. Например, наследственный задаток доминантной желтой окраски семядолей будет А, рецессивный задаток зеленой окраски - а.




2 закон Менделя - закон расщепления гибридов второго поколения при скрещивании гибридов первого поколения между собой. Суть правила расщепления заключается в следующем: во втором поколении моногибридного скрещивания наблюдается расщепление по фенотипу в соотношении 3:1, по генотипу в соотношении 1:2:1 (одна часть особей, гомозиготных по доминантному признаку, две части гетерозиготных и одна часть гомозиготных по рецессивному признаку).

Дигибридное скрещивание - это скрещивание особей, которые отличаются между собой по двум парам альтернативных признаков.

3 закон Менделя - закон независимого наследования генов (признаков А и В), которые находятся в разных парах хромосом. Генетически обусловленные признаки наследуются независимо друг от друга, сочетаясь во всех возможных комбинациях. Каждая пара аллельных генов наследуется по типу моногибридного скрещивания (3А+1а) х (3В+1в)=9АВ:3Ав:3аВ:1ав, то есть расщепление по фенотипу будет 9:3:3:1. По генотипу расщепление 1:2:1:2:4:2:1:2:1 = (1АА+2Аа+1аа)х(1ВВ+2Вв+1вв). Аллельными называют гены, которые располагаются в одном локусе (месте) гомологичных хромосом.

Вывод формулы расщепления по генотипу при дигибридном скрещивании

Расщепление по генотипу По одной паре аллелей
АА 2Аа аа
По другой паре аллелей ВВ ААВВ 2АаВВ ааВВ
2Вв 2ААВв 4АаВв 2ааВв
вв ААвв 2Аавв аавв

При опылении растений гороха с круглыми желтыми семенами (ААВВ) пыльцой сорта с морщинистыми зелеными семенами (аавв) все семена гибридов первого поколения оказались круглыми и желтыми (АаВв - дигетерозиготные). Доминировали та же форма и тот же цвет семян, что и при моногибридном скрещивании. При скрещивании гибридов первого поколения между собой получили вышеназванное расщепление. Мендель сумел определить генотип каждого из растений.. Растения имеющие два доминантных признака, круглые и желтые семена, различались по генотипу в соотношении 1 ААВВ+2ААВв+2АаВВ+4АаВв, с морщинистыми желтыми семенами - в соотношении 1 ааВВ+2ааВв, с круглыми зелеными семенами - в соотношении 1ААвв+2Аавв и одна часть особей с морщинистыми зелеными семенами имела генотип аавв.

Правило чистоты гамет состоит в том, что у гетерозиготной особи наследственные задатки не смешиваются друг с другом, а передаются в половые клетки в чистом виде.

В результате многочисленных скрещиванием Г. Менделем растений, относящихся к чистым линиям, были выведены несколько закономерностей наследования генов.

Моногибридное скрещивание

Моногибридным называется такое скрещивание, в результате которого изучается проявление одного признака. При этом прослеживаются наследственные закономерности пары вариантов по одному признаку. Развитию данных проявлений способствуют пары аллельных генов.

Схемой моногибридного скрещивания является:

Моногибридное скрещивание

На основе полученных результатов Г. Мендель сформировал свой первый закон: Скрещивание гомозиготных родительских форм, которые различаются по одному альтернативному признаку, гибриды первого поколения в генотипе и фенотипе проявляют единообразие.

От самоопыления (скрещивания) полученных гибридов первого поколения между собой был получен следующий результат:

  • 2001 штук (зеленые семена);
  • 6022 штук (желтые семена).

Приблизительно полученное соотношение равно 1:3 или 3:1. Обнаруженную закономерность назвали законом расщепления (второй закон Менделя). Его трактовка такова: Скрещивание гетерозиготных гибридов, полученных в первом поколении, приводит к преобладанию во втором поколении признаков по соотношению 1:2:1 (генотип) и 3:1(фенотип).

Скрещивание гетерозиготных гибридов, полученных в первом поколении

Для определения генотипа особи, полученной от перекрестного скрещивания, часто прибегают к анализирующему скрещиванию. Анализирующим скрещивание называют скрещивание, когда неизвестный генотип скрещивают с гомозиготным по рецессивному гену организмом.

Моногибридное скрещивание: анализирующее скрещивание

Становится виден механизм расщепления гомозиготных особей по доминантному гену. Полученные результаты привели Г. Менделя к выводу, что не происходит смешивания наследственных факторов при образовании гибридов, но сохраняется их неизменный вид. Так как возникновению между поколениями связей помогают гаметы, то вероятнее всего, что при их образовании происходит попадание только одного фактора из пары. Оплодотворение же способствует восстановлению пары. Такое предположение назвали правилом чистоты гамет.

Правило чистоты гамет: Гаметогенез приводит к разделению генов у одной пары.

Несмотря на это, очевидно, что существующие между живыми организмами отличия базируются на наличии многих признаков, поэтому для установления наследственных закономерностей необходим анализ пары и более признаков по потомству.

Дигибридное скрещивание

Дигибридным скрещиванием именуют скрещивание организмов, которые различаются по двум признакам. В случае скрещивания форм, отличающихся по большему количеству признаков, употребляют термин – полигибридное скрещивание.

Схематично дигибридное скрещивание выглядит так:

Схематично дигибридное скрещивание

Г. Мендель скрещивал между собой две чистые линии гороха, которые различались по двум признакам:

  • форме (морщинистые и гладкие);
  • цвету (зеленые и желтые).

Данное скрещивание подразумевает определение признаков разными парами генов: одна отвечает за форму, а другая - за окраску. Гладкая форма семян (В) преобладает над морщинистой (b), а желтые горошины (А) доминируют над зелеными (а).

Как видно из приведенной схемы, образовалось несколько комбинаций гамет для простоты представления которых, рекомендуется пользоваться решеткой американского генетика – Пеннета. Она позволяет наглядно представить все виды комбинаций генов в гаметах и результаты их слияния.

Решетка Пеннета

Горизонтальная часть такой таблицы отражает мужские гаметы, а женские записаны в вертикальном столбце. Таким образом, образуется 4 вида гамет: АВ, Аb, аВ и аb. При этом количество зигот, которые могут возникнуть при случайном слиянии этих гамет, равно 4*4=16. Именно столько клеток и отражает решетка Пеннета.

Приведенная таблица отражает 9 видов генотипов, повторяющихся в 16 сочетаниях. Эти 9 генотипов проявляются в виде 4 фенотипов:

  1. желтые, гладкие;
  2. желтые, морщинистые;
  3. зеленые, гладкие;
  4. зеленые, морщинистые.

Численно представленное соотношение выглядит так: 9 желтых, гладких : 3 желтых, морщинистых : 3 зеленых, гладких : 1 зеленый, морщинистый.

Формулировка данного закона звучит так: каждой паре аллельных генов (с альтернативными признаками) свойственно независимое друг от друга наследование.

Дигибридное скрещивание имеет и цитологические основы. Так, в профазу I мейоза гомологичным хромосомам свойственна конъюгация и расхождение в анафазе. Расхождение хромосом происходит от средней части клетки (экватор), причем к каждому полюсу отходит по одной хромосоме. В результате такого расхождения происходит независимое комбинирование негомологичных хромосом в свободном и независимом порядке. Оплодотворение приводит к восстановлению в зиготе диплоидного хромосомного набора, в результате чего гомологичные хромосомы, оказавшиеся в процессе мейоза в разных половых клетках родителей, соединяются вновь.

Таким образом, закон независимого наследования признаков демонстрирует дискретный характер генов. Это видно в ходе независимого комбинирования аллелей у разных генов. Дискретностью гена определяют свойство, которое заключается в его контролировании благодаря наличию либо отсутствию специальной биохимической реакции, которая влияет на подавление либо развитие определенных признаков внутри живого организма. Вероятнее всего, что несколько генов определяют какое-либо одно свойство или один признак (длина колосьев пшеницы, окраска глаз дрозофилы, форма куриных гребней и прочее).

Гипермаркет знаний>>Биология>>Биология 9 класс>> Закономерности наследования признаков, установленные Г. Менделем

Закономерности наследования признаков, установленные Г. Менделем.

1. У каких организмов только одна кольцевая хромосома?
2. Что такое гибрид?


Генетика — наука, изучающая закономерности наследственности и изменчивости живых организмов.

Наследственность — это свойство всех живых организмов передавать свои признаки и свойства из поколения в поколение.

Изменчивость — свойство всех живых организмов приобретать в процессе индивидуального развития новые признаки. Элементарные единицы наследственности — гены — представляют собой участки ДНК хромосом.


Гибридологический метод.

Основой замечательной работы Г. Менделя был так называемый гибридологический метод. Суть этого метода заключается в скрещивании (гибридизации) организмов, отличающихся друг от друга какими-либо признаками, и в последующем анализе характера наследования этих признаков у потомства. Гибридологический метод до сих пор лежит в основе исследований всех генетиков.

Ставя опыты, Мендель придерживался нескольких правил.

Во-первых, работая с садовым горохом, он использовал лля скрещивания растения, которые относились к различным сортам. Так, например, у одного сорта горошины всегда были желтые, а у другого — всегда зеленые. Так как горох самоопыляемое растение, то в природных условиях эти сорта не смешиваются. Такие сорта называют чистыми линиями.

Во-вторых, чтобы получить больше материала для анализа законов наследственности, Мендель работал не с одной, а с несколькими родительскими парами гороха.

В-третьих, Мендель намеренно упростил задачу, наблюдая за наследованием не всех признаков гороха сразу, а только одной их пары. Для своих опытов он изначально выбрал пвет семян гороха — горошин. В тех случаях, когда родительские организмы различаются лишь по одному признаку например, только по цвету семян или только по форме семян), скрещивание называют моногибридным.

В-четвертых, имея математическое образование, Мендель применил для обработки данных количественные методы: он не просто замечал, каков цвет семян гороха у потомства, но и точно подсчитывал, сколько таких семян появилось.

Надо добавить, что Мендель очень удачно выбрал для опытов горох. Горох легко выращивать, в условиях Чехии он размножается несколько раз в год, сорта гороха отличаются пруг от друга рядом хорошо заметных признаков, и, наконец, з природе горох самоопыляем, но в эксперименте это самоопыление легко предотвратить, и экспериментатор может опылять растение пыльцой с другого растения, т. е. перекрестно.

Если пользоваться терминами, появившимися через много лет после работ Менделя, то можно сказать, что клетки растений гороха одного сорта содержат по два гена только желтой окраски, а гены растений другого сорта — по два гена только зеленой окраски. Гены, ответственные за развитие одного признака (например, цвета семян), получили название аллелъных генов. Если организм содержит два одинаковых аллельных гена (например, оба гена зеленого цвета :емян или, наоборот, оба гена желтизны семян), то такие организмы называют гомозиготными. Если же аллельные гены различны (т. е. один из них определяет желтую, а другой — зеленую окраску семян), то такие организмы называют гетерозиготными. Чистые линии образованы гомозиготными растениями, поэтому при самоопылении они всегда воспроизводят один вариант проявления признака. В опытах Менделя это был один из двух возможных цветов семян гороха — или всегда желтый, или всегда зеленый.

(Не будем забывать, что в те годы, когда Мендель ставил свои эксперименты, о генах, хромосомах, митозе и мейозе не было известно ничего!)

Единообразие гибридов первого поколения. Искусственно скрещивая растения гороха с желтыми горошинами с растениями, имеющими зеленые горошины (т. е. проводя моногибридное скрещивание), Мендель убедился, что все семена потомков-гибридов будут желтого цвета. Такое же явление он наблюдал в опыте при скрещивании растений с гладкими и морщинистыми семенами - все гибридные растения имели гладкие семена.

Проявляющийся у гибридов признак (желтизну семян или гладкость семян) Мендель назвал доминантным, а подавляемый признак (т. е. зеленый цвет семян или морщинистость семян) — рецессивным. Доминантный признак принято обозначать большой буквой (А, В, С), а рецессивный — маленькой (а, в, с).

На основании этих данных Мендель сформулировал правило единообразия гибридов первого поколения: при скрещивании двух гомозиготных организмов, отличающихся друг от друга одним признаком, все гибриды первого поколения будут иметь признак одного из родителей, и поколение по данному признаку будет единообразным.
Из семян, полученных в первом поколении, Мендель вырастил растения гороха и снова скрестил их между собой. У растений второго поколения большинство горошин были желтого цвета, но встречались и зеленые горошины. Всего от нескольких скрещиваемых пар растений Мендель получил 6022 желтых и 2001 зеленых горошин. Легко сосчитать, чтс 3/4 гибридных семян имели желтую окраску и ¼ зеленую. Явление, при котором скрещивание приводит к образованию потомства частично с доминантными, частично с рецессивными признаками, получило название расщепления.

Опыты с другими признаками подтвердили эти результаты, и Мендель сформулировал правило расщепления: при скрещивании двух потомков (гибридов) первого поколения между собой во втором поколении наблюдается расщепление и снова появляются особи с рецессивными признаками; эти особи составляют одну четвертую часть от всего числа потомков второго поколения.

Как же объяснить закономерности генетики с позиций современной науки?

Цитологические основы закономерностей наследования при моногибридном скрещивании. Изобразим моногибридное скрещивание в виде схемы. Символ 0 обозначает женскую особь, символ 0 мужскую, х — скрещивание, Р — родительское поколение, F1— первое поколение потомков, F2— второе поколение потомков, А — ген, отвечающий за доминантный желтый цвет, а — ген, отвечающий за рецессивный зеленый цвет семян гороха (рис. 50).

Из рисунка видно, что в каждой гамете родительских особей будет по одному гену (вспомните мейоз): в одном случае А, в другом — а. Таким образом, в первом поколении все соматические клетки будут гетерозиготными — Аа. В свою счередь, гибриды первого поколения с равной вероятностью могут образовывать гаметы А или а.

Случайные комбинации этих гамет при половом процессе могут дать следующие варианты: АА, Аа, аА, аа. Первые три растения, содержащие ген А, по правилу доминирования будут иметь желтые горошины, а четвертое — рецессивная гомозигота аа —- будет иметь зеленые горошины.

Скрещивание

Гибридологический метод. Чистые линии. Моногибридные скрещивания. Аллельные гены. Гомозиготные и гетерозиготные организмы. Доминантные и рецессивные признаки. Расщепление. Закон чистоты гамет.

1. Каких правил придерживался Г. Мендель при проведении своих опытов?
2. Почему для опытов Г. Менделя был удачным выбор гороха?
3. Какие гены называются аллельными?
4. Чем гомозиготный организм отличается от гетерозиготного?
5. В чем суть гибридологического метода?
6. Сформулируйте закон чистоты гамет.
7. Что такое моногибридное скрещивание?
8. Какой признак называется доминантным? рецессивным?
9. В чем суть правила единообразия гибридов первого поколения? Проиллюстрируйте своё ответ схемой.
10. Сформулируйте правило расщепления. Нарисуйте схему скрещивания гибридов первого поколения.

Онлайн библиотека с учениками и книгами, плани-конспекти уроков с Биологии 9 класса, книги и учебники согласно календарного плана планирование Биологии 9 класса


Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.

Основные закономерности наследования были открыты Г. Менделем на горохе. Он осуществлял внутривидовые скрещивания форм, отличающихся по единичному числу признаков, имеющих альтернативные (контрастные) их проявления. В числе признаков, которые он использовал, были окраска семян, цветков и бобов, форма семян и бобов, расположение цветков, высота растений. Первоначально проводился гибридологический анализ форм гороха, отличавшихся по одному признаку. Скрещивания, в которые вовлекаются родительские формы, имеющие отличия по проявлениям одного признака, называются моногибридными.

При скрещивании двух исходных форм, относящихся к чистым линиям, в первом дочернем поколении, как правило, наблюдается появление потомков одинакового фенотипа. Эта закономерность известна под названием закона единообразия гибридов первого поколения. Гибриды F1 могут иметь проявление признака как одного из родителей, так и промежуточное между исходными формами выражение. При этом, если различия родительских форм определяются одним геном (моногенно), запись скрещивания выглядит следующим образом: Р АА х аа → F1Аа. Это означает, что за проявление данного признака ответствен ген А, который существует в двух разных состояниях — А и а. Такие альтернативные состояния гена называются аллелями.

Аллели одного гена взаимодействуют друг с другом разными способами. Если у гетерозиготы Аа проявляется фенотипическое выражение признака, одинаковое с особями генотипа АА, то аллель А полностью доминирует над а, тогда особи АА несут доминантное проявление признака, а гомозиготы по а — рецессивное. В этом заключается еще одно правило менделизма.— правило доминирования. Если же гетерозигота имеет проявление признака, промежуточное между двумя родительскими формами (например, при скрещивании растений ночной красавицы с красными и белыми цветками образуются гибриды с розовой окраской венчика), то речь идет о неполном доминировании.

Иногда у гетерозигот проявляются признаки обоих родителей — это отсутствие доминирования, или ко доминирование.

Закон расщепления в моногибридном скрещивании

Моногибридным называется скрещивание, в котором исходные формы отличаются по одному признаку. При скрещивании гибридов первого поколения, полученных от скрещивания гомозиготных форм, обнаруживается расщепление на 3/4 особей с доминантным проявлением признака и 1/4 — с рецессивным проявлением признака.

Во втором поколении, получаемом в результате скрещивания гибридов Р1 между собой, появляется два фенотипических класса в строго определенном соотношении. Это и есть расщепление, под которым понимают наличие в потомстве нескольких фенотипов в конкретных численных соотношениях.

Гибриды первого поколения могут скрещиваться не только с себе подобными. Если гетерозиготная особь Р1 скрещивается с организмом, гомозиготным по рецессивному аллелю рассматриваемого гена, то получается расщепление: Аа х аа → 1/2 Аа : 1/2 аа.

Такое скрещивание носит название анализирующего. В анализирующем скрещивании не составляет труда установить типы образуемых гетерозиготной особью гамет и их численное соотношение, легко определить, какие организмы гетерозиготны, а какие гомозиготны по интересующему нас признаку.

Закон расщепления в моногибридном скрещивании читается и в обратном порядке: если при скрещивании двух особей получается одно из рассмотренных выше расщеплений (в Р2 — 3:1, 1:2:1, 2:1, а в анализирующем скрещивании — 1:1), то исходные родительские формы отличаются по аллелям одного гена, то есть между ними существует различие по одному гену (моногенное различие исходных форм).

Закон независимого наследования в дигибридном скрещивании

Дигибридным называется такое скрещивание, в котором исходные формы отличаются по двум признакам. По каждому из признаков родительские формы отличаются по одному гену (по признаку А — по гену А, по признаку В — по гену В). При скрещивании гибридов F1, полученных от дигибридного скрещивания, наблюдается расщепление по фенотипу: 9/16 А-В- : 3/16 А-bb : 3/ 16 ааВ- : 3/16 ааbb.

При этом признаки наследуются независимо друг от друга, и по каждому из них наблюдается расщепление 3/4 : 1/4.

Это расщепление легко получается как комбинированное, сочетающее два моногибридных (во втором поколении каждого из которых наблюдается расщепление 3:1), при этом за каждый признак отвечает один ген:

(3/4 А- + 1/4 аа) х (3/4 В- + 1/4 bb) = 9/16 А-В- + 3/16 А-bb + 3/16 ааВ- + 1/16 ааbb.

В анализирующем скрещивании аналогично получается расщепление 1:1:1:1.

Выполнение этого закона определяется независимым характером расхождения хромосом негомологичных пар в мейозе, а также тем, что гены А и В расположены в разных (негомологичных) хромосомах. Независимое расхождение хромосом в мейозе приводит к возникновению новых сочетаний генов и признаков, которых не было у родительских организмов, — в потомстве появляются рекомбинанты (особи, несущие перекомбинированные сочетания признаков).

Так же получаются и расщепления в полигибридных скрещиваниях (скрещивания, в которых родительские формы отличаются по нескольким или многим признакам).

Все законы наследования Г. Менделя иллюстрируют постулированную им точку зрения о дискретном характере наследования: наследуется не сам признак, а определяющие его материальные факторы. Этими факторами являются гены.

Взаимодействие генов

Некоторые признаки определяются не одним геном, а одновременным действием нескольких. В таких случаях, безусловно, наблюдается изменение и усложнение формул расщеплений и методов анализа. Гены, влияющие на развитие одного признака, называются взаимодействующими. Известно несколько видов такого взаимодействия генов: комплементарное, эпистатическое, полимерное.

Взаимодействие генов (или взаимодействие неаллельных генов) приводит к расщеплениям дигенного типа. Помимо случая, рассмотренного выше, во втором поколении могут наблюдаться расщепления: 9:7, 9:6:1, 9:3:4, 12:3:1, 13:3, 15:1.

Условия выполнения законов наследования

Рассмотренные выше закономерности наследования признаков выполняются лишь при соблюдении определенных условий. Необходимо, чтобы все типы гамет образовывались с равной вероятностью, обладали одинаковой жизнеспособностью и участвовали в оплодотворении с одинаковой эффективностью, формируя все типы зигот с одинаковой частотой, зиготы же должны характеризоваться равной жизнеспособностью. Степень выраженности признака также должна быть неизменной. Невыполнение хотя бы одного из таких условий приводит к искажению расщеплений.

Например, если в моногибридном скрещивании, в котором наблюдается расщепление в F2 1/4 АА : 2/4 Аа : 1/4 аа, наблюдается избирательная гибель зигот генотипа АА, то фенотипическое расщепление будет выглядеть как 2/3 Аа : 1/3 аа.

Следует отметить, что даже если выполняются перечисленные выше условия, фактическое расщепление не всегда точно соответствует теоретически рассчитанному. Дело в том, что законы наследования, открытые Менделем, проявляются на довольно большом статистическом материале. Для их точного выполнения необходимо проанализировать выборку определенного размера. Таким образом, закономерности наследования являются биологическими по сути, но имеют статистический характер проявления.

Читайте также: