Кто в экосистеме в наибольшей степени осуществляет минерализацию органических веществ продуценты

Обновлено: 30.06.2024

Структура экосистем. С точки зрения трофической струк­туры экосистему можно разделить на два яруса – автотрофный и гетеротрофный (по Ю. Одуму, 1986).

По Ю. Одуму, с биологической точки зрения в составе экосистемы удоб­но выделить следующие компоненты:

1) неорганические вещества, 2) органические вещества, 3) воздушную, водную и субстратную среду, 4) продуцентов, 5) макроконсументов, 6) микроконсументов.

1.Неорганические вещества(СО2, Н2О, N2, О2 минераль­ные соли и др.), включающиеся в круговороты.

2.Органические вещества (белки, углеводы, липиды, гуму­совые вещества и др.), связывающие биотическую и аби­отическую части.

3.Воздушная, водная и субстратная среда, включающая абиотические факторы.

4.Продуценты автотрофные организмы, способные про­изводить органические вещества из неорганических, используя фотосинтез или хемосинтез (растения и авто­трофные бактерии).

5.Консументы (макроконсументы, фаготрофы) – гетеро­трофные организмы, потребляющие органическое веще­ство продуцентов или других консументов (животные, гетеротрофные растения, некоторые микроорганизмы). Консументы бывают первого порядка (фитофаги, сапрофаги), второго порядка (зоофаги, некрофаги) и т.д.

6.Редуценты (микроконсументы, деструкторы, сапротрофы, осмотрофы) – гетеротрофные организмы, питающиеся органическими остатками и разлагающие их до минераль­ных веществ (сапротрофные бактерии и грибы). Следует учитывать, что и продуценты, и консументы час­тично выполняют функции редуцентов, выделяя в окружаю­щую среду минеральные вещества – продукты их метаболизма.


Таким образом, как правило, в любой экосистеме можно выделить три функциональные группы организмов: продуцен­тов, консументов и редуцентов. В экосистемах, образованных только микроорганизмами, консументы отсутствуют. В каж­дую группу входит множество популяций разных видов, насе­ляющих экосистему. В экосистеме пищевые и энергетические связи идут в на­правлении: продуценты → консументы → редуценты.

Пищевые цепи и сети. Питаясь друг другом, живые организ­мы образуют цепи питания.Цепь питания последователь­ность организмов, по которой передается энергия, заключен­ная в пище, от ее первоначального источника. Каждое звено цепи называетсятрофическим уровнем. Первый тро­фический уровень – продуценты (автотрофные организмы, преимущественно зеленые растения). Второй трофический уро­вень – консументы первого порядка (растительноядные живот­ные и паразиты продуцентов). Третий трофический уровень – консументы второго порядка (первичные хищники, питающи­еся растительноядными животными, и паразиты первичных консументов). Четвертый трофический уровень – консументы третьего порядка (вторичные хищники, питающиеся плотояд­ными животными, и паразиты вторичных консументов). В пищевой цепи редко бывает больше 4–6 трофических уров­ней. Последний трофический уровень – редуценты (сапротрофные бактерии и грибы). Они осуществляют минерализа­цию – превращение органических остатков в неорганические вещества. Редуценты могут представлять любой трофический уровень, начиная со второго.

Различают два типа пищевых цепей.Цепи выедания (или пастбищные) пищевые цепи, начинающиеся с живых фотосинтезирующих организмов. Например, фитоплан­ктон зоопланктон рыбы микрофаги рыбы макрофаги птицы ихтиофаги.Цепи разложения (или детритные) пище­вые цепи, начинающиеся с отмерших остатков растений, тру­пов и экскрементов животных. Например, детрит детритофаги хищники микрофаги хищники макрофаги. Таким образом, поток энергии, проходящий через экосистему, разби­вается как бы на два основных направления. Энергия к консументам поступает через живые ткани растений или через запасы мертвого органического вещества. Цепи выедания пре­обладают в водных экосистемах, цепи разложения – в экоси­стемах суши.




В сообществах пищевые цепи сложным образом перепле­таются и образуютпищевые сети.В состав пищи каждого вида входит обычно не один, а несколько видов, каждый из кото­рых в свою очередь может служить пищей нескольким видам. С одной стороны, каждый трофический уровень представлен многими популяциями разных видов, с другой стороны, мно­гие популяции принадлежат сразу к нескольким трофическим уровням. В результате благодаря сложности пищевых связей выпадение какого-то одного вида часто не нарушает равнове­сия в экосистеме.

6.6. Круговорот веществ и поток энергии в экосистеме. Биологическая продуктивность экосистем

Принцип единства организм-среда (основной биологический закон) – между живыми организмами и окружающей их средой существуют тесные взаимоотношения, взаимозависимости и взаимовлияния, обуславливающие их единство.

В экосис­теме органические вещества синтезируются автотрофами из неорганических веществ. Затем они потребляются гетеротрофами. Выделенные в процессе жизнедеятельности или после гибели организмов (как автотрофов, так и гетеротрофов) орга­нические вещества подвергаются минерализации, то есть пре­вращению в неорганические вещества. Эти неорганические вещества могут быть вновь использованы автотрофами для синтеза органических веществ. Так осуществляетсябиологи­ческий круговорот веществ.

В то же время, энергия не может циркулировать в пределах экосистемы.Поток энергии (передача энергии), заключенной в пище, в экосистеме осуществляется однонаправленно от авто­трофов к гетеротрофам. Жизнь на Земле продолжается, не прерываясь потому, что она протекает в системе биологических круговоротов вещества и поддерживается постоянным потоком солнечной энергии.

По I закону термодинамики, энергия не исчезает бесследно, а переходит из одной формы в другую. Так, на первом трофическом уровне зелеными растениями солнечная энергия в процессе фотосинтеза преобразуется в энергию химических связей орга­нических веществ. Это валовая первичная продукция. По II закону термодинамики, любые превращения энергии сопровождаются переходом части ее в такое состояние, когда она уже не может быть использована для работы. Так, боль­шая часть поглощенной растениями, но не усвоенной энер­гии, рассеивается в окружающую среду в виде тепловой энер­гии. Часть образованных органических веществ окисляется, а высвобождающаяся энергия расходуется на поддержание всех метаболических процессов. Это так называемые траты на ды­хание. Эта энергия, в конечном счете, также рассеивается в виде тепла. Оставшаяся часть новообразованных органичес­ких веществ составляет прирост биомассы растений и называется чистой первичной продукцией. В чистую пер­вичную продукцию превращается только 1% поглощенной ра­стением энергии.

До второго трофического уровня доходит только часть чис­той первичной продукции. Некоторая ее часть не исполь­зуется консументами первого порядка. Она может накапли­ваться или экспортироваться за пределы системы. Та часть, которую ассимилировали (потребили) консументы, час­тично тратится на дыхание, частично выделяется с экскре­ментами, а остальное накапливается в виде вторичной про­дукции.

Вторичная продукция на каждом последующем трофичес­ком уровне консументов и т.д.) составляет около 10% предыдущей (хотя на уровне хищников может быть выше – около 20%). В результате, чем длиннее пищевая цепь, тем мень­ше остается к ее концу накопленной в органическом веществе энергии. Поэтому число трофических уровней никогда не бы­вает слишком большим.

Таким образом, при передаче энергии с одного трофичес­кого уровня на другой большая часть энергии рассеивается в виде тепла (в соответствии со вторым законом термодинами­ки), и только около 10 % от первоначального количества пере­дается по пищевой цепи.

Правило десяти процентов – на каждый следующий трофический уровень переходит примерно 10 % вещества и энергии предыдущего уровня.

Пищевые цепи можно представить в виде эко­логических пирамид. Различают три основных типа экологи­ческих пирамид.

Пирамида чисел(пирамида Элтона) отражает уменьшение численности организмов от продуцентов к консументам.

Пирамида биомасс показывает изменение биомасс на каж­дом следующем трофическом уровне: для наземных экосис­тем пирамида биомасс сужается кверху, для экосистемы океа­на – имеет перевернутый характер (сужается книзу), что свя­зано с быстрым потреблением фитопланктона консументами.

Пирамида энергии (продукции) имеет универсальный харак­тер и отражает уменьшение количества энергии, содержащей­ся в продукции, создаваемой на каждом следующем трофи­ческом уровне.

Прирост биомассы в экосистеме, созданной за единицу вре­мени, называетсябиологической продукцией (продуктивностью). Различают первичную и вторичную продукцию сообщества.

Первичная продукция биомасса, созданная за единицу вре­мени продуцентами. Она делится на валовую и чистую.Вало­вая первичная продукция (общая ассимиляция) – это общая биомасса, созданная растениями в ходе фотосинтеза. Часть ее расходуется на поддержание жизнедеятельности растений – траты на дыхание (40–70 %). Оставшаяся часть составляетчи­стую первичную продукцию (чистая ассимиляция), которая в дальнейшем используется консументами и редуцентами, или накапливается в экосистеме.

Вторичная продукция биомасса, созданная за единицу времени консументами. Она различна для каждого следующе­го трофического уровня.

Масса организмов определенной группы (продуцентов, консументов, редуцентов) или сообщества в целом называетсябио­массой. Самой высокой биомассой и продуктивностью обла­дают тропические дождевые леса, самой низкой – пустыни и тундры.

Если в экосистеме скорость прироста растений (образова­ния первичной продукции) выше темпов переработки ее кон­сументами и редуцентами, то это ведет к увеличению биомас­сы продуцентов. Если при этом присутствует недостаточная утилизация продуктов спада в цепях разложения, то происхо­дит накопление мертвого органического вещества. Это проявляется в заторфовывании болот, образовании мощной лесной подстилки и т.п. В стабильных экосистемах биомасса остается постоянной, так как практически вся продукция расходуется в цепях питания.

Фото

Продуценты (от лат. ptoducentis — производящий) — это живые организмы, которые способны синтезировать органическое вещество из неорганических составляющих с использованием внешних источников энергии. (Отметим, что получение энергии извне — общее условие жизнедеятельности всех организмов; по энергии все биологические системы — открытые) Их называют также автотрофами, поскольку они сами снабжают себя органическим веществом. В природных сообществах продуценты выполняют функцию производителей органического вещества, накапливаемого в тканях этих организмов. Органическое вещество служит и источником энергии для процессов жизнедеятельности; внешняя энергия используется лишь для первичного синтеза.

Хемоавтотрофы в процессах синтеза органического вещества используют энергию химических связей. К этой группе относятся только прокариоты: бактерии, архебактерии и отчасти синезеленые. Химическая энергия высвобождается в процессах окисления минеральных веществ. Экзотермические окислительные процессы используются нитрифицирующими бактериями (окисляют аммиак до нитритов, а затем до нитратов), железобактериями (окисление закисного железа до окисного), серобактериями (сероводород до сульфатов). Как субстрат для окисления используется также метан, СО и некоторые другие вещества.

При всем многообразии конкретных форм продуцентов-автотрофов их общая биосферная функция едина и заключается в вовлечении элементов неживой природы в состав тканей организмов и таким образом в общий биологический круговорот. Суммарная масса автотрофов-продуцентов составляет более 95 % массы всех живых организмов в биосфере.

К этой экологической категории относятся организмы-гетеротрофы, которые, используя в качестве пищи мертвое органическое вещество (трупы, фекалии, растительный опад и пр.), в процессе метаболизма разлагают его до неорганических составляющих.

Частично минерализация органических веществ идет у всех живых организмов. Так, в процессе дыхания выделяется СО2, из организма выводятся вода, минеральные соли, аммиак и т. д. Истинными редуцентами, завершающими цикл разрушения органических веществ, следует поэтому считать лишь такие организмы, которые выделяют во внешнюю среду только неорганические вещества, готовые к вовлечению в новый цикл.

В категорию редуцентов входят многие виды бактерий и грибов. По характеру метаболизма это организмы-восстановители. Так, денитрифицирующие бактерии восстанавливают азот до элементарного состояния, сульфатредуцирующие бактерии — серу до сероводорода. Конечные продукты разложения органических веществ — диоксид углерода, вода, аммиак, минеральные соли. В анаэробных условиях разложение идет дальше — до водорода; образуются также углеводороды.

Полный цикл редукции органического вещества более сложен и вовлекает большее число участников. Он состоит из ряда последовательных звеньев, в череде которых разные организмы-разрушители поэтапно превращают органические вещества сначала в более простые формы и только после этого в неорганические составляющие действием бактерий и грибов.

В наземной среде основная часть процесса деструкции органических веществ идет в почве — еще один пример целостности биосферных процессов и функциональной связи разных сфер обитания жизни. Первичные стадии разложения проходят с участием животных, которые измельчают ткани пищевых объектов, в процессе пищеварения разлагают сложные молекулы белков, углеводов и других веществ на более простые, легко доступные для окончательной деструкции с помощью бактерий и грибов. Биомасса наиболее активных животных — участников разложения органики —достигает больших величин (табл. 2.1).

Активная деятельность организмов-разрушителей приводит к тому, что годичный спад органических веществ полностью разлагается в тропических дождевых лесах в течение 1—1 лет, в лиственных лесах умеренной зоны — за 2—4 года, в хвойных лесах — за 4—5 лет. Интенсивность минерализации во многом зависит от температуры, влажности и других факторов

Назовите первичные продуценты

Пищевые цепи и трофические уровни

Внутри экосистемы содержащие энергию органические вещества создаются автотрофными организмами и служат пищей (источником вещества и энергии) для гетеротрофов. Типичный пример: животное поедает растения. Это животное в свою очередь может быть съедено другим животным, и таким путём может происходить перенос энергии через ряд организмов — каждый последующий питается предыдущим, поставляющим ему сырье|сырьё и энергию. Такая последовательность называется пищевой цепью, а каждое её звено — трофическим уровнем (греч. trophos — питание). Первый трофический уровень занимают автотрофы, или так называемые первичные продуценты. Организмы второго трофического уровня называются первичными консументами, третьего — вторичными консументами и т. д. Обычно бывает четыре или пять трофических уровней и редко больше шести — по причинам, описанным и очевидным. Ниже приводится характеристика каждого звена пищевой цепи, а их последовательность показана .

Первичные продуценты

Первичными продуцентами являются автотрофные организмы, в основном зелёные растения. Некоторые прокариоты, а именно сине-зелёные водоросли и немногочисленные виды бактерий, тоже фотосинтезируют, но их вклад относительно невелик. Фотосинтетики превращают солнечную энергию (энергию света) в химическую энергию, заключённую в органических молекулах, из которых построены их ткани. Небольшой вклад в продукцию органического вещества вносят и хемосинтезирующие бактерии, извлекающие энергию из неорганических соединений.

В водных экосистемах главными продуцентами являются водоросли — часто мелкие одноклеточные организмы, составляющие фитопланктон поверхностных слоёв океанов и озёр. На суше большую|большую часть первичной продукции поставляют более высокоорганизованные формы, относящиеся к голосеменным и покрытосеменным. Они формируют леса|леса и луга|луга.

Первичные консументы

Первичные консументы питаются первичными продуцентами, т. е. это травоядные животные. На суше типичными травоядными являются многие насекомые, рептилии, птицы и млекопитающие. Наиболее важные группы травоядных млекопитающих — это грызуны и копытные. К последним относятся пастбищные животные, такие, как лошади, овцы|овцы, крупный рогатый скот, приспособленные к бегу|бегу на кончиках пальцев.

В водных экосистемах (пресноводных и морских) травоядные формы представлены обычно моллюсками и мелкими ракообразными. Большинство этих организмов — ветвистоусые и веслоногие раки, личинки крабов, усоногие раки и двустворчатые моллюски (например, мидии и устрицы) — питаются, отфильтровывая мельчайших первичных продуцентов из воды, как описано в разд. 10.2.2. Вместе с простейшими многие из них составляют основную часть зоопланктона, питающегося фитопланктоном. Жизнь в океанах и озёрах практически полностью зависит от планктона, так как с него начинаются почти всё|все пищевые цепи.

К первичным консументам относятся также паразиты растений (трибы, растения и животные).

Консументы второго третьего порядка

Вторичные консументы питаются травоядными; таким образом, это уже плотоядные животные, так же как и третичные консументы, поедающие консументов второго порядка. Консументы второго и третьего порядка могут быть хищниками и охотиться, схватывать и убивать свою жертву, могут питаться падалью или быть паразитами. В последнем случае они по величине меньше своих хозяев. Пищевые цепи паразитов необычны по ряду|ряду параметров (они включены в пирамиды численности в разд. 12.3.6).

В типичных пищевых цепях хищников плотоядные животные оказываются крупнее на каждом следующем трофическом уровне:

Растительный материал (например, нектар) муха → паук → землеройка сова

Сок розового куста → тля → божья коровка → паук → насекомоядная птица → хищная птица

В типичных пищевых цепях, включающих паразитов, последние становятся меньше по размерам на каждом следующем уровне (разд. 12.3.6). Приведём ещё несколько примеров пищевых цепей:

Редуценты и детритофаги (детритные пищевые цепи)

Кусочки частично разложившегося материала называют детритом, и многие мелкие животные (детритофаги) питаются им, ускоряя процесс разложения. Поскольку в этом процессе участвуют как истинные редуценты (грибы и бактерии), так и детритофаги (животные), и тех и других иногда называют редуцентами, хотя в действительности этот термин относится только к сапрофитным организмам.

Назовите первичные продуценты

Назовите первичные продуценты

План.

1. Введение. Экосистема и экосистемный метод|метод в экологии.

2. Общая структура экосистем.

3. Биотический компонент экосистем.

3.1. Солнце как источник энергии.

4. Пищевые цепи и трофические уровни.

4.1. Первичные продуценты.

4.2. Первичные консументы.

4.3. Консументы второго и третьего порядка.

4.4. Редуценты и детритофаги.

6. Экологические пирамиды.

6.1. Пирамиды численности.

6.2. Пирамиды биомассы.

7. Абиотический компонент экосистемы.

7.1. Эдафические факторы.

7.2. Климатические факторы.

7.2.3. Влажность и солёность.

9. Список используемой литературы.

1. Введение. Экосистема и экосистемный метод|метод в экологии.

Впервые определение экосистемы как совокупности живых организмов с их местообитанием было дано Тэнсли в 1935 году. При экосистемном подходе к изучению экологии в центре внимания учёных оказываются поток энергии и круговорот веществ между биотическим и абиотическим компонентом экосферы. Экосистемный подход выдвигает на первый план общность организации всех сообществ, независимо от местообитания и систематического положения входящих в них организмов. Вместе с тем в экосистемном подходе находит приложение концепция гомеостаза (саморегуляции), из которой становится понятным, что нарушение регуляторных механизмов, например в результате загрязнения среды|среды, может привести к биологическому дисбалансу. Экосистемный подход важен также при разработке в будущем научно обоснованной практики ведения|ведения сельского хозяйства.

2. Общая структура экосистем.

Экосистемы состоят из живого и неживого компонентов, называемых соответственно биотическим и абиотическим. Совокупность живых организмов биотического компонента называется сообществом. Исследование экосистем включает, в частности, выяснение и описание тесных взаимосвязей, существующих между сообществом и абиотическим компонентом.

Биотический компонент полезно подразделить на автотрофные и гетеротрофные организмы. Таким образом, всё|все живые организмы попадут в одну из двух групп. Автотрофы синтезируют необходимые им органические вещества из простых неорганических и делают, за исключением хемотрофных бактерий, с помощью фотосинтеза, используя свет как источник энергии. Гетеротрофы нуждаются в источнике органического вещества и (за исключением некоторых бактерий) используют химическую энергию, содержащуюся в потребляемой пище. Гетеротрофы в своём существовании зависят от автотрофов, и понимание этой зависимости необходимо для понимания экосистем.

Неживой, или абиотический, компонент экосистемы в основном включает 1) почву или воду и 2) климат. Почва и вода содержат смесь неорганических и органических веществ. Свойства почвы зависят от материнской породы, на которой она лежит, и из которой частично образуется. В понятие климата входят такие параметры, как освещённость температура и влажность, в большой степени определяющий видовой состав организмов, успешно развивающихся в данной экосистеме. Для водных экосистем очень существенна также степень солёности.

3. Биотический компонент экосистем

Организмы в экосистеме связаны общностью энергии и питательных веществ. Всю экосистему можно уподобить единому механизму, потребляющему энергию и питательные вещества для совершения работы. Питательные вещества первоначально происходят из абиотического компонента системы, в который, в конце концов, и возвращаются либо в качестве отходов жизнедеятельности, либо после гибели и разрушения организмов. Таким образом, в экосистеме происходит круговорот питательных веществ, в котором участвуют и живой и неживой компоненты. Такие круговороты называются биогеохимическими циклами.

Движущей силой этих круговоротов служит, в конечном счёте, энергия Солнца. Фотосинтезирующие организмы непосредственно используют энергию солнечного света и затем передают её другим представителям биотического компонента. В итоге создаётся поток энергии и питательных веществ через экосистему. Необходимо ещё отметить, что климатические факторы абиотического, компонента, такие, как температура, движение атмосферы, испарение и осадки, тоже регулируются поступлением солнечной энергии.

Энергия может существовать в виде различных взаимопревращаемых форм, таких, как механическая, химическая, тепловая и электрическая энергия. Переход одной формы в другую называется преобразованием энергии.

Таким образом, всё|все живые организмы – это преобразователи энергии, и каждый раз, когда происходит превращение энергии, часть её теряется в виде тепла. В конце концов, вся энергия, поступающая в биотический компонент экосистемы, рассеивается в виде тепла. Изучение потока энергии через экосистемы называется энергетикой экосистемы.

Фактически живые организмы не используют тепло, как источник энергии для совершения работы – они используют свет и химическую энергию.

Изучение потока энергии через экосистемы называется энергетикой экосистем.

3.1. Солнце как источник энергии

Первоисточником энергии для экосистем служит Солнце. Солнце – это звезда, излучающая в космос огромное количество энергии. Энергия распространяется в космическом пространстве в виде электромагнитных волн, и небольшая часть её, примерно 10,5 * 106 кДж/м2 в год, захватывается Землёй. Около 40 % этого количества сразу отражается от облаков, атмосферной пыли|пыли и поверхности Земли|Земли без какого бы то ни было теплового эффекта. Ещё 15 % поглощаются атмосферой (в частности, озоновым слоем в её верхних частях) и превращаются в тепловую энергию или расходуются на испарение воды|воды. Оставшиеся 45 % поглощаются растениями и земной поверхностью. В среднем это составляет 5 * 106 кДж/м2 в год, хотя реальное количество энергии для данной местности зависит от географической широты|широты. Большая|Большая часть энергии повторно излучается земной поверхностью и нагревает атмосферу приблизительно две трети энергии поступает в атмосферу этим путём. И только небольшая часть пришедшей от Солнца энергии усваивается биотическим компонентом экосистемы.

4. Пищевые цепи и трофические уровни

Внутри экосистемы содержащие энергию органические вещества создаются автотрофными организмами и служат пищей (источником вещества и энергии) для гетеротрофов. Типичный пример животное поедает растения. Это животное в свою очередь может быть съедено другим животным, и таким путём может происходить перенос энергии через ряд организмов – каждый последующий питается предыдущим, поставляющим, поставляющим ему сырье|сырьё и энергию. Такая последовательность называется пищевой цепью, а каждое её звено – трофическим уровнем. Первый трофический уровень занимают автотрофы, или так называемые первичные продуценты. Организмы второго трофического уровня называются первичными консументами, третьего – вторичными консументами и т. д. Обычно бывает четыре или пять трофических уровней и редко больше шести.

4.1. Первичные продуценты

Первичными продуцентами являются автотрофные организмы, в основном зелёные растения. Некоторые прокариоты, а именно сине-зелёные водоросли и немногочисленные виды бактерий, тоже фотосинтезируют, но их вклад относительно невелик. Фотосинтетики превращают солнечную энергию (энергию света) в химическую энергию, заключённую в органических молекулах, из которых построены ткани. Небольшой вклад в продукцию органического вещества вносят и хемосинтезирующие бактерии, извлекающие энергию из неорганических соединений.

В водных экосистемах главными продуцентами являются водоросли – часто мелкие одноклеточные организмы, составляющие фитопланктон поверхностных слоёв океанов и озёр. На суше большую|большую часть первичной продукции поставляют более высокоорганизованные формы, относящиеся к голосеменным и покрытосеменным. Они формируют леса|леса и луга|луга.

4.2. Первичные консументы

Первичные консументы питаются первичными продуцентами, т. е. это травоядные животные. На суше типичными травоядными являются многие насекомые, рептилии, птицы и млекопитающие. Наиболее важные группы травоядных млекопитающих – это грызуны и копытные. К последним относятся пастбищные животные, такие, как лошади, овцы|овцы, крупный рогатый скот, приспособленные к бегу|бегу на кончиках пальцев.

В водных экосистемах (пресноводных
и морских) травоядные формы представлены обычно моллюсками и мелкими ракообразными. Большинство этих организмов – ветвистоусые и веслоногие раки, личинки крабов, усоногие раки и двустворчатые моллюски (например, мидии и устрицы) – питаются, отфильтровывая мельчайших первичных продуцентов из воды. Вместе с простейшими многие из них составляют основную часть зоопланктона, питающегося фитопланктоном. Жизнь в океанах и озёрах практически полностью зависит от планктона, так как с него начинаются почти всё|все пищевые цепи.

К первичным консументам относятся также паразиты растений (грибы, растения и животные).

4.3. Консументы второго и третьего порядка

Вторичные консументы питаются травоядными; таким образом, это уже плотоядные животные, так же как и третичные консументы, поедающие консументов второго порядка. Консументы второго и третьего порядка могут быть хищниками и охотиться, схватывать и убивать свою жертву, могут питаться падалью или быть паразитами. В последнем случае они по величине меньше своих хозяев. Пищевые цепи паразитов необычны по ряду|ряду параметров. В типичных пищевых цепях хищников плотоядные животные оказываются крупнее на каждом следующем трофическом уровне:

Растительный материал (например, нектар) → муха → паук →

→ землеройка → сова

Сок розового куста → тля → божья коровка → паук → насекомоядная птица → хищная птица

В типичных пищевых цепях, включающих паразитов, последние становятся меньше по размерам на каждом следующем уровне.

4.4. Редуценты и детритофаги (детритные пищевые цепи)

Кусочки частично разложившегося материала называют детритом, и многие мелкие животные (детритофаги) питаются им, ускоряя процесс разложения. Поскольку в этом процессе участвуют как истинные редуценты (грибы и бактерии), так и детритофаги (животные), и тех и других иногда называют редуцентами, хотя в действительности этот термин относится только к сапрофитным организмам.

Видео по теме : Назовите первичные продуценты

Пищевая (трофическая) цепь является неотъемлемой частью существования всего живого на планете. Это объясняется тем, что благодаря её существованию происходит перенос вещества и энергии за счет поедания одних представителей живой природы другими. К этим представителям, населяющим экосистему, можно отнести продуценты, редуценты и консументы.

Продуценты, консументы, редуценты - функции, примеры и роль в экосистеме

Структура компонентов и трофические цепи

В связи с тем, что жизнеспособность невозможна без круговорота энергии, все организмы отдают её друг другу в последовательном порядке. По правилу 10% Линдемана, которое изучают экология и биология, последующее звено пищевой цепи получает 10% энергии, которая была накоплена предыдущим. Число кажется небольшим, но для того, чтобы осознать масштабность такого объема и причины размеров, необходимо понять, кто её вырабатывает, а кто её получает, и является ли этот процесс конечным?

Типы пищевых цепей

Существует два типа трофических связей:

Продуценты, консументы, редуценты - функции, примеры и роль в экосистеме

Продуценты, консументы и редуценты — это основные структурные компоненты обмена. Поскольку основной источник тепла — Солнце, то с него начинается весь поток, который должен обрабатываться живыми организмами. В первую очередь, большую его часть принимают на себя продуценты в процессе фотосинтеза.

Продуценты и их роль в цепях

Люди задаются вопросом и часто не понимают, как получают энергию продуценты? Всё дело в фотосинтезе, который обеспечивает их солнечным светом.

Фотосинтез — важнейший химический процесс, который возникает в зеленых растениях. Свет поглощается хлорофиллами — органеллами клетки, присущими только растительному организму, расщепляется на водород и кислород. Водород и АТФ дают возможность превратить углекислый газ (СО2) в сахара, а именно глюкозу и крахмал.

Кислород же участвует непосредственно в обмене веществ. С помощью этого процесса всё, содержащее хлоропласты, и формирует своё тело.

Продуценты, консументы, редуценты - функции, примеры и роль в экосистеме

Продуценты — это те организмы, которые способны производить органическое из неорганического. Их еще называют автотрофами, создающими самыми первыми вещество для биосферы и формирующими экосистему. Автотрофы способны накапливать в себе вещества, и по этому признаку они подразделяются на два основных вида:

  • фотоавтотрофы, или производители, которые перерабатывают солнечную энергию для получения сахаров из СО2 (углекислого газа). К ним, помимо зеленых растений, относят водоросли и цианобактерии;
  • хемоавтотрофы: получающие энергию в результате процессов окисления различных минеральных соединений, содержащих водород, азот, серу, железо и аммиак.

Именно за счет этих типов и формируются остальные звенья в цепи. Насаждения леса, комнатные растения — всё это обогащает среду обитания кислородом.

Далее следует звено, именующееся консументами.

Консументы и их порядок

Консументы, или гетеротрофы — потребители готовой энергии. Они не способны синтезировать сами, поэтому нуждаются в тех веществах, что произвели для них. В ходе пищеварения они расщепляют полимерные соединения и усваивают мономерные. Существуют и некоторые растения, неспособные синтезировать вещества, например, раффлезия. Живут они за счет паразитизма на зеленом растении, ведь хлорофилл выработать сами не могут.

Следуя правилу 10%, можно сделать вывод о том, что 90% энергии будет потеряно. Именно по количеству полученной энергии консументы и делятся на свои порядки:

  • консументы первого порядка — непосредственно те, кто получил энергию из продуцента, употребив его в пищу, например, травоядный заяц;
  • консументы второго порядка — хищные гетеротрофы, которые включают в своё питание особей из категории первого порядка.

Продуценты, консументы, редуценты - функции, примеры и роль в экосистеме

В крайне редких случаях экологическая пирамида может достигать четырех порядков. Грибы также относятся к гетеротрофам, поскольку часто паразитируют на пнях, корнях растения или даже на теле животного или человека. Но и не стоит их исключать из списка редуцентов. Эти организмы имеют довольно большое значение на протяжении всех компонентов, ведь могут находиться в трех структурах. Консументы — немаловажный компонент, формирующий биогеоценозы, ведь они формируют пищу для деструкторов.

Существуют и дополнительные звенья в трофических цепях. К ним можно отнести детритофагов, способствующих развитию основных. Поскольку они питаются разлагающимся органическим веществом, они также накапливают энергию в своих телах и могут послужить источником пищи для дальнейшего звена. Например, жук-навозник, питающийся гниющей органикой, может быть съеден птицей, гибель которой также послужит источником накопления энергии. Второй наглядный пример: шакалы, поедающие мертвую газель, в дальнейшем будут выполнять роль источника еды для консументов более высокого порядка.

Редуценты, или деструкторы

Редуценты — те организмы, которые разрушают отмершие остананки продуцентов и консументов, превращая их снова в простые органические соединения и неорганику. Называются также сапротрофами. Люди часто путают их с детритофагами. В отличие от последних деструкторы не оставляют твердые остатки, которые не способны перевариться.

Продуценты, консументы, редуценты - функции, примеры и роль в экосистеме

Поскольку они способны к переработке и растительных, и животных остатков, их часто относят к отдельному трофическому уровню. К группе разрушителя, способного переварить органику, относят микроорганизмы и некоторые виды грибов. Довольно часто к ним относят и паразитов, населяющих тела, например, бычий цепень, аскариды и другие.

Их роль в экологической системе очень важна и неотъемлема, поскольку группа деструкторов способна вернуть в почву питательные вещества, которые снова войдут в круговорот и будут обеспечивать нормальную функцию продуцентов. Экосистеме будет сложнее обходиться без них, нежели без консументов.

Для чего нужна трофическая цепь?

Продуценты, консументы, редуценты - функции, примеры и роль в экосистеме

Трофические уровни. Пищевая сеть

Трофический уровень — то конкретное место, которое занимает организм в цепочке. Проследить взаимосвязь можно на примере таблицы продуцентов, редуцентов и консументов:

Трофический уровень (Т.У.) Пример
Первый Т. У. Автотроф, производящий пищу для себя же из солнечной энергии (растение, сине-зеленые водоросли и др.)
Второй Т. У. Гетеротроф, питающийся автотрофом (насекомые, травоядные и др.)
Третий Т. У. Поедающие травоядных хищники
Четвертый Т. У. Третичные потребители (сова, которая поедает змею)
Пятый Т. У. Четвертичный потребитель: ястреб питается совами

Совокупность множества цепей называется сетью. Сеть — глобальная связь всех цепей, которая поддерживается вследствие гомеостаза. Поэтому важно изучать все составляющие, соблюдать их охрану и беречь популяции от сокращения численности.

Читайте также: