Какую роль играет сигнализация в обеспечении безопасности движения поездов

Обновлено: 28.06.2024


Железнодорожный транспорт был и остаётся ведущим звеном комплексной транспортной системы России. В долгосрочной перспективе железнодорожные перевозки останутся самым экономически эффективным способом транспортировки значительных по объёмам стабильных потоков массовых грузов, доставляемых на средние и дальние расстояния.

В последние годы подавляющая часть прироста объёмов перевозок и грузооборота на железнодорожном транспорте получена путём повышения его конкурентоспособности за счёт применения современных и перспективных научных разработок, воплощённых в инновационных технологиях, услугах, оборудовании, автоматизированных системах управления и централизованной организации перевозочного процесса. Поскольку основную долю перевозок на железных дорогах России составляют грузовые перевозки, то в этой обстановке чрезвычайно важным является повышение транспортной привлекательности железнодорожного транспорта для производителей продукции. Это включает в себя не только безопасное перемещение грузов, но и предоставление клиенту полной и исчерпывающей информации о движении его вагонов и текущем местонахождении грузов.

Эти проекты включают в себя: – формирование современных технологий управления с использованием ситуационных математических моделей, мониторинговых прогнозных систем перевозочного процесса, программ реального развития логистики, формирования и использования динамических эксплуатационных резервов пропускной и провозной способности железнодорожных линий, а также повышения их уровня применением интеллектуальных автоматизированных систем управления; – создание систем управления для интеллектуального подвижного состава и соответствующей инфраструктуры на основе самодиагностируемых объектов инфраструктуры и подвижного состава, обеспечивающих передачу оперативной информации о техническом состоянии, остаточном ресурсе, целесообразности изменения режима работы и ремонтного цикла или необходимости вывода из эксплуатации, сокращение удельного энергопотребления на тягу и затрат на эксплуатацию; – обеспечение безопасности, экологичности и надёжности перевозок.

Современные технологии управления предусматривают использование многомерных ситуационных моделей, мониторинговых прогнозных систем перевозочного процесса, новейших методов логистики, динамических эксплуатационных резервов пропускной и провозной способности для магистральных железнодорожных линий, а также применение суперинтеллектуальных автоматизированных систем управления. Интеллектуальный тяговый подвижной состав и инфраструктура создаются на основе самоконтролируемых и самодиагностируемых объектов, обеспечивающих передачу в центры управления движением оперативной информации о техническом состоянии, остаточном ресурсе, целесообразности изменения режима работы или необходимости вывода из эксплуатации. Одновременно должно быть обеспечено и сокращение удельного энергопотребления и эксплуатационных затрат, что способствует снижению себестоимости перевозок. Реализация вышеперечисленных проектов невозможна без чёткой работы и взаимодействия всех систем компьютерного управления, автоматики и связи на железных дорогах страны. Поэтому одними из основополагающих требований к устойчивой работе инфраструктуры железнодорожного транспорта являются требования к надёжности, безотказности и безопасности телекоммуникационных структур, обеспечивающих эксплуатационную деятельность российских железных дорог.

Разработка новых транспортных технологий, миниатюризация и повышение надёжности микропроцессорной техники, использование нанотехнологий во многих производствах, совершенствование широкополосных систем передачи данных позволяют внедрять элементы искусственного интеллекта на подвижном составе. Всё это создаёт предпосылки к появлению интеллектуального транспорта, включая инфраструктуру и подвижной состав.

В рамках обеспечения полной безопасности движения поездов разрабатывается приёмник сигналов автоматической локомотивной сигнализации нового поколения, реализованный на перспективной микроэлементной и наноэлементной базе с использованием корреляционных алгоритмов приёма и обработки сигналов. Одновременно предусмотрено внедрение системы автоблокировки с тональными рельсовыми цепями, централизованным размещением аппаратуры и дублирующими каналами передачи информации (АБТЦ-М). Данное решение представляет собой микропроцессорную систему интервального регулирования и обеспечения безопасности движения поездов на перегонах.

Впервые на российских железных дорогах внедрён европейский стандарт (ЕС) управления безопасностью движения. Эта система построена на основе традиционной российской системы и доработанной совместно с итальянской компанией системы ITARUS-АТС. В числе её особенностей – способность отслеживать все происходящее в транспортной системе в режиме реального времени, например, фактическое положение поездов с точностью до 10 метров и их скорость движения, и передавать управляющие команды на локомотивы с помощью специального радиоканала.

Такая высокая интенсивность движения потребовала от разработчиков реализации качественно новых решений во всех деталях проекта, начиная с системы управления и обеспечения безопасности движения поездов и заканчивая тормозными характеристиками подвижного состава, применением к ним повышенных требований надёжности, составлением чётких графиков движения. Без использования интеллектуальных систем такой проект был бы невозможен.

В перспективе необходимо на базе технологий, разрабатываемых для отдельных хозяйств, создать комплекс обеспечения безопасности железнодорожного движения с использованием спутниковых технологий в целом по железнодорожной отрасли.

Развитие ИТС позволяет выйти на качественно новый уровень создания систем с высокой надёжностью и эффективностью функционирования, обеспечить приведение уровня качества транспортных услуг и безопасности перевозок на железных дорогах России и на пространстве 1520 (ширина колеи железной дороги) в соответствие с требованиями населения и экономики, а также лучшими мировыми стандартами. Энергетическая стратегия России, ориентированная на период до 2020 года, определяет приоритеты, направления и средства структурной, региональной, научно-технической и экологической политики в области энергообеспечения, в том числе железнодорожного транспорта. Механизмы реализации энергетической политики включают в себя прогнозирование энергопотребления, структурную и инвестиционную политику в области энергетики, научно-техническую и экологическую политику, систему стимулов и условий для энергосбережения.

Для решения этой актуальной проблемы, именно за счет внедрения интеллектуальных систем и инновационных технологий, возникает необходимость в перевооружении хозяйства электроснабжения электрифицированных железных дорог, создании концепции обновления и технического развития тягового электроснабжения, разработке концептуальных решений по нетрадиционным системам тягового электроснабжения.

Новый этап технического развития также связан с освоением в производстве цифровых защит электротяговых сетей переменного тока на основе интеллектуальных терминалов (микропроцессорных многофункциональных комплексов). Такие терминалы осуществляют не только функции непосредственно релейной защиты, но и функции автоматики, управления, сигнализации, контроля параметров нагрузки, регистрации событий и аварийных процессов, самодиагностики, связи, сервисные функции.

Эффективным мероприятием, направленным на экономию энергетических ресурсов и повышение безопасности движения поездов на магистральных электрических железных дорогах, является внедрение более совершенных многопульсовых выпрямительно-инверторных агрегатов. Оптимизация структур, параметров и режимов работы выпрямительно-инверторных агрегатов продиктована также необходимостью повышения показателей качества электрической энергии в системе тягового и внешнего электроснабжения, снижения потерь электрической энергии и потребления реактивной энергии.

Система тягового электроснабжения (СТЭ) железнодорожного транспорта страны является одним из самых мощных потребителей электроэнергии. Наряду с этим СТЭ имеет самый неравномерный график энергопотребления. За период нескольких минут мощность энергии одного лишь фидера тяговой подстанции (ТП) может колебаться от 0 до 10 МВт. Такие колебания нагрузки крайне негативно влияют на все электрооборудование. Следует также отметить, что в силу отсутствия надёжных приемников энергии на пригородных участках железных дорог практически не используется рекуперативное торможение.

Эту проблему можно эффективно решить с помощью накопителей энергии (НЭ). Задача заключается в оценке возможности использования НЭ в СТЭ железнодорожного транспорта. При этом необходимо разработать имитационную модель для исследования режимов работы НЭ, проанализировать процесс энергообмена между НЭ и СТЭ, оценить технико-экономическую эффективность использования НЭ в СТЭ. Для решения задач, связанных с неравномерностью электропотребления (выравнивание тяговой нагрузки, принятие энергии рекуперации, понижение установленной мощности тяговых подстанций и т.п.), наилучшим образом подходят инерционные накопители энергии, сверхпроводящие индуктивные и ёмкостные. Однако НЭ являются единственным типом накопителей, которые можно устанавливать непосредственно на борту поезда.

Анализ мировой тенденции развития электротехники и электроэнергетики, в том числе в интересах электрифицированного транспорта, показывает, что одним из радикальных направлений этого развития в ближайшие годы будет использование сильноточной прикладной сверхпроводимости. Как известно, сверхпроводниковые материалы могут быть выполнены на токи с плотностями, в сотни раз превышающие плотности тока в традиционных резистивных материалах, и вместе с тем обеспечивать уникальные электродинамические, массогабаритные и другие характеристики электротехнического оборудования. В настоящее время ведутся научные исследования по разработке, испытаниям моделей и промышленных образцов разнообразного электротехнического оборудования на базе сверхпроводниковых материалов, включающего кабельные линии электропередачи, трансформаторы, электродвигатели, реакторы, накопители энергии и другое оборудование.

Еще более существенные возможности открывает подготавливаемое к массовому производству как за рубежом, так и в России второе поколение высокотемпературных сверхпроводников, имеющее аналогичные характеристики (магнитное поле, критический ток), но способное работать при температурах вплоть до температуры жидкого азота. Реализация сверхпроводимости при применении жидкого азота в сотни раз экономичнее, чем при применении жидкого гелия. Оценки показывают, что после освоения высокотемпературных сверхпроводников стоимость такого провода будет сравнима со стоимостью резистивных проводов. А это означает, что в ближайшие годы начнётся освоение нового сверхпроводникового электротехнического оборудования, которое не только по физико-техническим, но и коммерческим показателям будет превосходить традиционное электрооборудование.

Создание обобщённой имитационной модели системы тягового электроснабжения, учитывающей движущийся по фидерной зоне поезд, открывает возможность для построения программно-измерительного комплекса, позволяющего решать с высокой степенью точности и достоверности задачи, связанные с переходными электромагнитными процессами, протекающими как в устройствах системы тягового электроснабжения, так и в устройствах электроподвижного состава. До настоящего времени эти процессы рассматривались как независимые друг от друга, что, естественно, приводило к потере качества решаемых задач. Обобщенная имитационная модель позволит устранить указанный недостаток и решать на более высоком уровне задачи, связанные как с режимными вопросами работы системы электроснабжения, так и с расчётами защит от коротких замыканий и перегрузок с учётом переходных процессов в системе.

Читайте также: