Какую функцию в клетке выполняет ядро осуществляет

Обновлено: 02.07.2024

Прокариотические клетки не имеют ядра (клетки бактерий и сине — зеленых водорослей). У эукариотических организмов во всех клетках есть ядро, за исключением зрелых эритроцитов и тромбоцитов млекопитающих, а также клеток ситовидных трубок растений.

Вопрос 2. Встречаются ли в природе многоядерные клетки? Приведите примеры.

Да, встречаются. Многоядерные клетки: клетки скелетных мышц, волокна поперечнополосатой мускулатуры, до 20% клеток печени человека, мыши, крапива двудомная, виноградная улитка, гриб — трутовик, клоп ягодный, кишечная палочка, инфузория туфелька.

Вопрос 3. Какие вещества отвечают за хранение, передачу и реализацию наследственной информации в биологических системах?

Вопрос 4. Эритроциты человека и млекопитающих животных — красные кровяные клетки, которые во взрослом (зрелом) состоянии совсем не имеют ядра. Оно выдавливается из этой клетки в процессе её созревания. А вот эритроциты большинства других животных — ядерные. Эта особенность очень помогала сыщикам уже более 100 лет тому назад определять, не подменил ли преступник место преступления, налив где — нибудь птичьей крови, например куриной. Как вы думаете, почему эритроциты человека не имеют ядра? Какой в этом физиологический смысл?

Ядро эритроцита утратилось в процессе эволюции. Отсутствие ядра в этих клетках позволяет вмещать больше молекул гемоглобина и использовать для транспортировки кислорода и углекислого газа весь объем клетки.

Поэтому каждый эритроцит человека может захватывать больше кислорода, чем эритроциты низших животных, например, лягушки. Так на высоких ступенях развития животного мира отдельные клетки "приносят себя в жертву" всему живому организму.

Вопрос 5. Какова функция ядра в клетке?

В ядре содержится вся информация о процессах жизнедеятельности, росте и развитии клетки. Эта информация хранится в ядре в виде молекул ДНК, входящих в состав хромосом. Поэтому ядро координирует и регулирует синтез белка, а, следовательно, все процессы обмена веществ и энергии, протекающие в клетке.

Вопрос 6. Какое строение имеет оболочка ядра клетки? Какие функции она выполняет?

Ядерная оболочка образована двумя мембранами (наружной и внутренней). Внешняя мембрана ядерной оболочки имеет ряд структурных особенностей, что позволяет отнести ее к мембранной системе эндоплазматической сети. Например, на внешней ядерной мембране основном располагается небольшое количество рибосом. Существует много данных о непосредственном переходе внешней ядерной мембраны в систему канальцев гранулярной эндоплазматической сети. Наружная ядерная мембрана большинства животных и растительных клеток не является ровной и может образовывать разного размера вырасти в виде пузырьков или длинных трубчатых образований в сторону цитоплазмы. Со стороны кариоплазмы к внутренней ядерной мембраны прилегает фибриллярный слой, так называемая ядерная ламина, построенная из промежуточных филаментов. Ядерная ламина связана с хромосомным материалом ядра.

Между ядерными мембранами есть небольшое пространство (перинуклеарное). Ядерная оболочка пронизана многочисленными отверстиями — ядерными порами. Это позволяет молекулам и даже некоторым органоидам перемещаться между содержимым ядра, которое называется кариоплазма, и цитоплазмой.

1. отделяет содержимое ядра, его генетический материал от цитоплазмы, ограничивает свободный доступ в ядро или выход из него различных веществ.

2. регулирует транспорт макромолекул между ядром и цитоплазмой. Например, известно, что гистоны и другие белки после синтеза в цитоплазме мигрируют в ядро. Известен также и обратный процесс транспорта веществ из ядра в цитоплазму. Это прежде всего касается транспорта РНК и рибонуклеопротеидов, образующиеся исключительно в ядре. Транспорт высокомолекулярных соединений, а также рибосом через ядерную оболочку осуществляется через поры.

3. участвует в поддержании внутренней структуры ядра в интерфазе путем фиксации хромосомного материала к внутренней ядерной мембраны.

Вопрос 7. Что представляет собой хроматин? Какую функцию в ядре выполняют белки — гистоны?

Хроматин представляет собой хромосомы в деспирализованном состоянии. Хроматин — это ДНК, связанная с белками. Перед делением клетки ДНК плотно скручивается, образуя хромосомы, а ядерные белки — гистоны — необходимы для правильной укладки ДНК, в результате которой объём, занимаемый ДНК, во много раз уменьшается. В растянутом виде длина хромосомы человека может достигать 5 см.

Вопрос 8. Что представляют собой хромосомы? Каково их значение в клетке?

Хромосомы — это плотные палочки или нитевидные тельца, которые заметны в ядре клетки во время митотического деления.

Каждая митотическая хромосома состоит из двух хроматид (d — хромосома). В каждой хромосоме можно заметить суженное место — первичную перетяжку (центромеру), которая разделяет хромосому на два плеча (плечи бывают разной длины). Каждый вид растительных и животных организмов имеет специфику числа, размеров и строения хромосом.

1) хранят наследственную информацию.

2) воспроизводят ее в процессе репликации.

2) участвуют в реализации генетической информации. С ДНК (которая составляет основу хромосом) в процессе транскрипции информация переписывается на иРНК.

Вопрос 9. Каковы основные функции ядрышек, содержащихся в ядре клетки?

Ядрышки — участки ДНК, которые отвечают за синтез молекул РНК и белков, использующихся клеткой для построения рибосом.

Основная функция ядрышка — образование рибосомных субъединиц.

Вопрос 10. Продолжайте заполнение сравнительной таблицы о строении клеток эукариотов (см. задание 1 на с. 152).

Продолжайте заполнение сравнительной таблицы о строении клеток эукариотов (см. задание 1 на с. 152)

Вопрос 11. Прочитайте описание эксперимента и оформите его как мини — исследование. Роль ядра в клетке можно продемонстрировать на примере следующего эксперимента. Нужно разделить клетку амёбы на две равные части, отличающиеся друг от друга только тем, что в одной из них будет содержаться ядро, а другая соответственно окажется без него. В итоге мы увидим, что первая часть быстро оправится от последствий травмы и будет активно питаться, расти и даже делиться. Вторая же часть просуществует всего несколько дней, а затем погибнет. Но если в неё ввести ядро от другой амёбы, то она быстро восстановится в нормальный одноклеточный организм.

Мини — исследование строится по единому алгоритму, который отражает этапность работы над научно — исследовательской проблемы. Это выбор проблемы; сбор информации об уже имеющихся в науке знаниях по изучаемой проблематике; анализ и обобщение полученных знаний по проблеме; разработка концепции и планирование исследования; подбор методов и методик осуществления исследования; проведение исследования; обработка полученных данных; письменное оформление теоретического и эмпирического материала в виде целостного текста; представление работы на рецензирование; представление к защите и защита работы.

Структура работы должна быть представлена следующим образом: титульный лист; содержание; введение; главы основной части; выводы; заключение; список литературы; приложения.

Проблема. Роль ядра в клетке.

Гипотеза. Большинство клеток живых организмов без ядра нормально жить и функционировать не могут.

Объект исследования: амёба обыкновенная.

Предмет исследования: важно ли наличие ядра в клетке.

Методы исследования: морфологический, наблюдение, метод извлечения ядра из клетки.

Цель исследования: исследовать важность присутствия ядра на процессы жизнедеятельности клетки и одноклеточного организма в целом.

1. Разделить клетку амёбы на две равные части, отличающиеся друг от друга только тем, что в одной из них будет содержаться ядро, а другая соответственно окажется без него.

2. Отмечать изменения в жизнедеятельности клеток.

3. В клетку без ядра ввести ядро от другой амёбы.

4. Отмечать изменения в жизнедеятельности клетки.

Вопрос 12. Обсудите с одноклассниками: почему иногда в информационных источниках о строении клетки ядро не относят к органоидам клетки?

Порой под органоидами понимается исключительно лишь постоянные структуры клетки, которые находятся в ее цитоплазме. Здесь эти компоненты клетки сопоставляются с органами многоклеточного организма. По этой же причине ядро клетки и ее ядрышко не называют органоидами, равно как и не являются органоидами клеточная мембрана, реснички и жгутики.

К Клеточное ядро является обязательной составляющей клетки, которое регулирует обмен веществ и отвечает за передачу и хранение наследственной информации.

Клеточное ядро

Схема строения интерфазного ядра

Схема строения интерфазного ядра: 1 — наружная мембрана; 2 — внутренняя мембрана; 3 — перинуклеарное пространство; 4 — пора; 5 — ядрышко; 6 — кариоплазма; 7 — хроматин.

Ядро является обязательным компонентом всех эукариотических клеток. Форма и размеры ядра зависят от формы и величины клетки и выполняемой ею функции.

Химический состав ядра

По химическому составу ядро отличается от остальных компонентов клетки высоким содержанием ДНК (15 — 30%) и РНК (12%). В ядре клетки сосредоточено 99% ДНК клетки в виде комплекса с белками – дезоксирибонуклеопротеина (ДНП).

Функции ядра

Ядро выполняет две главные функции:

  1. хранение, воспроизведение и передачу наследственной информации
  2. регуляцию процессов обмена веществ, протекающих в клетке.

Выделяют два состояния ядра: делящееся и интерфазное. В интерфазном ядре различают: ядерную оболочку, ядерный сок, хроматин и ядрышки.

Ядерная оболочка

Ядерная оболочка (кариолемма) представлена двумя биологическими мембранами, между которыми находится перинуклеарное пространство. Наружная ядерная мембрана непосредственно соединена с мембранами каналов эндоплазматической сети. На ней располагаются рибосомы. Ядерная оболочка пронизана многочисленными порами, через которые происходит обмен веществ между ядром и цитоплазмой. Основная функция ядерной оболочки: регуляция обмена веществ между ядром и цитоплазмой клетки.

Ядерный сок

Ядерный сок (кариоплазма) – это однородная масса, заполняющая пространство между структурами ядра. В его состав входят вода, минеральные соли, белки (ферменты), нуклеотиды, аминокислоты, АТФ и различные виды РНК.

Функция кариоплазмы: обеспечение взаимосвязей между ядерными структурами.

Хроматин

Хроматин представляет собой дезоксирибонуклеопротеин (ДНП), состоящий преимущественно из ДНК и белков-гистонов, выявляемый под световым микроскопом в виде глыбок и гранул. Это деспирализованные хромосомы интерфазного ядра. В процессе митоза хроматин путем спирализации образует хорошо видимые (особенно в метафазе) интенсивно окрашивающиеся структуры – хромосомы.

Метафазная хромосома

Метафазная хромосома

Схема строения метафазной хромосомы (А) и типы хромосом (Б). А: 1 — плечо; 2 — центромера; 3 — вторичная перетяжка; 4 — спутник; 5 — две хроматиды; Б: 1 — акроцентрическая; 2 — субметацентрическая; 3 — метацентрическая.

Метафазная хромосома состоит из двух продольных нитей ДНП – хроматид, соединенных друг с другом в области первичной перетяжки – центромеры. Центромера делит каждую хроматиду на два плеча.

В зависимости от расположения первичной перетяжки различают следующие типы хромосом: метацентрические (равноплечие), в которых центромера расположена посередине, а плечи примерно равной длины; субметацентрические (неравноплечие), когда центромера смещена от середины хромосомы, а плечи неравной длины; акроцентрические (палочковидные), когда центромера смещена к одному концу хромосомы и одно плечо очень короткое. Некоторые хромосомы могут иметь вторичные перетяжки, отделяющие от хроматиды участок, называемый спутником. Основная функция хромосом – хранение, воспроизведение и передача генетической информации.

Кариотип

Кариотип – это диплоидный набор хромосом соматических клеток организма определенного вида. Каждый вид растений и животных имеет определенное, постоянное число хромосом. Так, в ядре соматических клеток у лошадиной аскариды содержится 2 хромосомы, у мухи дрозофилы – 8, у человека – 46. Во всех соматических клетках число хромосом всегда парное (диплоидный набор – 2n), т.е. каждая хромосома в наборе имеет парную, гомологичную (одну из этих хромосом дочерний организм получает от отца, а вторую от матери). Гомологичные хромосомы одинаковы по величине, форме, расположению центромер. Для каждого биологического вида характерно постоянство числа, величины и формы хромосом. При образовании половых клеток из каждой пары гомологичных хромосом в гамету попадает только одна, поэтому хромосомный набор гамет называется гаплоидным (одинарным – 1n). При оплодотворении восстанавливается диплоидный набор хромосом.

Ядрышки

Ядрышки имеют шаровидную форму, не окружены мембраной. Они содержат преимущественно белки и р-РНК. Ядрышки – непостоянные образования, они растворяются в начале деления клетки и восстанавливаются после его окончания. Их образование связано со вторичными перетяжками (ядрышковыми организаторами) спутничных хромосом, в которых локализованы гены, кодирующие синтез рибосомальных РНК и белков. Функция ядрышек – образование субъединиц рибосом.

Эукариотические клетки

Клетки подавляющего большинства живых организмов имеют оформленное, сложно устроенное ядро, цитоплазму с органоидами и оболочку. Такие клетки называются эукариотическими. Они характерны для протистов, грибов, растений и животных.

Прокариотические клетки

Прокариотические клетки не имеют оформленного ядра и мембранных органоидов. Генетический аппарат прокариот представлен нуклеоидом одной кольцевой молекулой ДНК, не связанной с белками-гистонами и не окруженной мембраной. Имеются рибосомы. Функций мембранных органоидов выполняют впячивания плазмалеммы – мезосомы. К прокариотам относятся бактерии и цианобактерии.

Клетки растений и животных сходны по строению и химическому составу, но между ними имеются и определенные отличия.

Отличие про- от эукариотических клеток

Признак Прокариоты Эукариоты
Цитоплазматическая мембрана Есть Есть
Клеточная стенка Есть У животных нет, у растений есть
Ядерная оболочка Нет Есть
Митохондрии Нет Есть
Комплекс Гольджи Нет Есть
ЭПС Нет Есть
Лизосомы Нет Есть
Мезосомы Есть Нет
Рибосомы Есть Есть
Хромосомы Нет(кольцевая молекула ДНК) Набор хромосом (ДНК + белок)
Способ размножения Простое бинарное деление Митоз, амитоз

Отличие животных от растительных клеток

Признак Животные клетки Растительные клетки
Клеточная стенка Нет Есть (целлюлоза)
Тип питания Гетеротрофные Автотрофные
Пластиды Нет Есть
Центросома Есть Нет
Центральная вакуоль Нет Есть
Запасное питательное вещество Гликоген Крахмал

1. Биология для абитуриентов. Авторы: Давыдов В.В. , Бутвиловский В.Э. , Рачковская И. В. , Заяц Р.Г.

Ядро животной клетки - это наиболее важный её органоид. Ядро содержит информацию о наследственности, то есть генетический материал (ДНК).

ДНК

Это основополагающая клетки, ведь ДНК несёт информацию по созданию белков, которые и помогают организму правильно функционировать. ДНК в ядре защищено гистонами, которые образуются благодаря белкам. Во время этого процесса появляются структуры, которые называются хромосомами.

Строение животной клетки

Строение животной клетки

Количество ядер в клетке

ДНК образуется в органеллах, которые называются центросомами. После деления животной клетки, у каждой остаётся по одному ядру. Но так происходит не всегда. Иногда случается так, что у эукариотической клетки образуется два ядра. Двуядерные клетки также именуют инфузориями. А когда у клетки больше двух ядер, то это уже опалина. Но также есть клетки, которые вторично утрачивают ядро. Это обычно эритроциты млекопитающих.

Строение ядра

Форма ядра — сферическая, эллипсовидная, реже лопастная, бобовидная и др. Диаметр ядра — обычно от 3 до 10 мкм.

Также между мембранами присутствует узкая щель, которая заполнена полужидким веществом. В некоторых местах образуются поры (3), когда мембраны сливаются друг с другом. Через эти поры происходит обмен веществ из ядра в цитоплазму и наоборот. Одна из мембран, покрытая рибосомами, называется наружная ядерная мембрана (1). Она обращена в цитоплазму. Рибосомы придают ей шероховатость. Также есть и гладкая, внутренняя мембрана (2). Ядерные мембраны соединяюсь с другими частями, образуют целую систему : выросты ядерной мембраны смыкаясь с ЭПС образуют единую сообщающуюся цепь.

Таким образом ядро состоит из :

  • Наружной мембраны
  • Внутренней мембраны
  • Пор
  • Ядрышка
  • Эухроматина

Функции ядра

Наиболее важная функция ядра

Ядро выполняет большое количество функций. Одна из них заключается в том, что ядро способствует регулированию генов, которые экспрессируются в клетке. Эти гены бывают разные в зависимости от типа клетки. С помощью этих генов клетки нормально функционируют. Сама дезоксирибонуклеиновая кислота расположена возле ядрышка, где присутствуют рибосомы. От остальной части клетки ядро отделяется благодаря ядерной оболочки.

Не менее важная функция клетки – регулирование роста и деления клетки

Как уже говорилось, ядро выполняет множество важных функций. Ещё одна из важный - это регулирование роста и деления клетки. Во время деления происходит в ядре происходит процесс разделения и дублирования. То есть хромосомы делятся и удваиваются. Таким образом появляются две дочерние клетки. Также во время деления важно организовывать ДНК, чтобы клетка продолжала функционировать.

Хранение, передача информации и синтез белка

Какой органоид самым первым описали учёные? Это было именно ядро. После открытия других органоидов стало понятно, что ядро крупнее остальных собратьев по клетке. Поэтому этот органоид раскрыт больше других. Но это произошло также и потому, что ядро выполняет важнейшие функции клетки. Основополагающее - это то, что ядро хранит в себе наследственную информацию. Органоид также и передаёт эту самую информацию. Всё это происходит благодаря синтезу белка, который и способствует реализации информации.

Типы ядра

Ядра клеток обычно яйцевидные и шаровидные.

Ядро – регулятор активности клетки

Ядро является важным регулятором активности клетки. В нём находятся нитевидные комплексы молекул ДНК с белками гистонами, которые называются хроматиды. Особенностью хроматидов является содержание в них большого количества аминокислот лизина и аргинина.

Компонент ядра

Выполняемая функция

  • Ядерная оболочка. Имеет пористую двухмембранную структуру.

1. Разграничивает ядро от остальных органоидов и цитоплазмы.

2. Обеспечивает взаимодействие ядра с цитоплазмой.

  • Хромосомы. Плотные продолговатые или нитевидные образования, которые можно рассмотреть только при делении клетки.

Содержат ДНК – носитель наследственной информации, которая передается от поколения к поколению.

  • Ядрышки. Имеют сферическую или неправильную форму.

Участвуют в процессе синтеза РНК, входящей в состав рибосомы.

  • Ядерный сок (кариоплазма). Полужидкая среда, находящаяся внутри ядра.

Вещество, в котором содержатся ядрышки и хромосомы.

Хромосомы

В ДНК хранится практически вся информация о наследственных признаках клетки и всего организма. Также существуют такие хроматиды, которых именуют хромосомами. Когда происходит клеточное деление, эти самые хроматиды спирализуются и, если в этот момент посмотреть в световой микроскоп, то можно увидеть именно хромосомы.

Гетерохроматин

Бывает и так, что хроматиды во время деления деспирализируются не полностью. А гетерохроматин - это плотно спирадизованные части хромосом. Гетерохроматин расположен наиболее близко к оболочке ядра. Также существуют более деспирализованная часть хромосом, которая называется эухроматин. Он с располагается к центру ядра.

Экспрессия генов

На эухроматине происходит экспрессия генов. Это процесс считывания генетической информации, то есть синтез РНК.

Репликация ДНК

До деления ядра происходит репликация ДНК. А собственно до деления ядра, происходит деление клетки. Итак, получается, что дочерние ядра получают готовую ДНК, а дочерние клетки - готовое ядро.

Ядро – двумембранный органоид

Всё, что содержится в клетке, отделяется от её остальной части благодаря двум мембранам ядерной оболочки (внешней и внутренней).

Следовательно, можно сделать вывод о том, что ядро - двумембранный органоид. Между мембранами также есть свободное пространство, которое называется перенуклеарным.

Эндоплазматическая сеть

Внешняя мембрана в некоторых местах отделяется и переходит в ЭПС - эндоплазматическую сеть.

ЭПС бывает двух видов. Гладкая и шероховатая. Шероховатая она, когда на ЭПС располагаются рибосомы. Когда они располагаются не на самой ЭПС, а на наружной мембране, то её называют гладкой. Также мембраны могут образовывать ядерные поры, которые получаются после сливания внешней и внутренней мембраны.

Ядро – это важный структурный компонент эукариотической клетки, который содержит молекулы ДНК – генетическую информацию. Имеет округлую или овальную форму. Ядро хранит, передает и реализует наследственную информацию, а также обеспечивает синтез белка. Подробнее о клеточной организации, составе и функциях ядра животной или растительной клетки рассмотрим в таблице ниже.

Компонент ядра и выполняемая функция

  1. Разграничивает ядро от остальных органоидов и цитоплазмы.
  2. Обеспечивает взаимодействие ядра с цитоплазмой.

Несмотря на различия в строении и функциях, все части клетки постоянно взаимодействуют друг с другом, их объединяет одна главная функция – обеспечение жизнедеятельности клетки, своевременное деление клетки и правильный обмен веществ внутри нее.

Строение и функции ядра клетки

Строение клетки.
Строение клетки – это очень важный раздел знаний по биологии , без которого невозможно говорить об усвоении дальнейших знаний, потому что клетка является наименьшей структурной единицей всего живого.
Строение клетки.
Строение клеточной оболочки.
Клеточная оболочка ( цитоплазматическая оболочка ) – это поверхностный аппарат клетки, который выполняет важные функции, а потому имеет свои особенности.
Строение клеточной оболочки.

Ядро есть только у эукариотических клеток. При этом некоторые из них его утрачивают в процессе дифференцировки (зрелые членики ситовидных трубок, эритроциты). У инфузорий есть два ядра: макронуклеус и микронуклеус. Бывают многоядерные клетки, возникшие путем объединения нескольких клеток.

Однако в большинстве случаев в каждой клетке имеется только одно ядро.

Ядро клетки является самым крупным ее органоидом (если не считать центральные вакуоли клеток растений). Оно самое первое из клеточных структур, которое было описано учеными. Клеточные ядра обычно имеют шаровидную или яйцевидную форму.

Ядро регулирует всю активность клетки. В нем находятся хроматиды — нитевидные комплексы молекул ДНК с белками-гистонами (особенностью которых является содержание в них большого количества аминокислот лизина и аргинина).

ДНК ядра хранит информацию о почти всех наследственных признаках и свойствах клетки и организма. В период клеточного деления хроматиды спирализуются, в таком состоянии они видны в световой микроскоп и называются хромосомами.

Хроматиды в неделящейся клетке (в период интерфазы) не полностью деспирализованы.

Плотно спирализованные части хромосом называются гетерохроматином. Он располагается ближе к оболочке ядра. К центру ядра располагается эухроматин — более деспирализованная часть хромосом.

На нем происходит синтез РНК, т. е. идет считывание генетической информации, экспрессия генов.


Репликация ДНК предшествует делению ядра, которое, в свою очередь, предшествует делению клетки. Таким образом, дочерние ядра получают уже готовую ДНК, а дочерние клетки — готовые ядра.

Внутреннее содержимое ядра отделяется от цитоплазмы ядерной оболочкой, состоящей из двух мембран (внешней и внутренней).

Таким образом, ядро клетки относится к двумембранным органоидам. Пространство между мембранами называется перинуклеарным.

Внешняя мембрана в определенных местах переходит в эндоплазматическу сеть (ЭПС).

Если на ЭПС располагаются рибосомы, то она называется шероховатой. Рибосомы могут размешаться и на наружней ядерной мембране.

Во множестве мест внешняя и внутренняя мембраны сливаются друг с другом, образуя ядерные поры.

Их число непостоянно (в среднем исчисляются тысячами) и зависит от активности биосинтеза в клетке. Через поры ядро и цитоплазма обмениваются различными молекулами и структурами. Поры — это не просто дырки, они сложно устроены для избирательного транспорта. Их структуру определяют различные белки-нуклеопорины.


Из ядра выходят молекулы иРНК, тРНК, субчастицы рибосом.

В ядро через поры заходят различные белки, нуклеотиды, ионы и др.

Субчастицы рибосом собираются из рРНК и рибосомных белков в ядрышке(их может быть несколько).

Центральную часть ядрышка образуют специальные участки хромосом (ядрышковые организаторы), которые располагаются рядом друг с другом. В ядрышковых организаторах содержится большое количество копий кодирующих рРНК генов. Перед клеточным делением ядрышко исчезает и вновь образуется уже во время телофазы.

Жидкое (гелеобразное) содержимое клеточного ядра называется ядерным соком (кариоплазмой, нуклеоплазмой).

Его вязкость почти такая же как у гиалоплазмы (жидкое содержимое цитоплазмы), однако кислотность выше (ведь ДНК и РНК, которых в ядре большое количество, — это кислоты). В ядерном соке плавают белки, различные РНК, рибосомы.

Структурные элементы ядра бывают четко выражены только в определенный период клеточного цикла в интерфазе. В период деления клетки (в период митоза или мейоза) одни структурные элементы исчезают, другие существенно преобразуются.

Классификация структурных элементов интерфазного ядра:

Хроматин представляет собой вещество, хорошо воспринимающее краситель (хромос), откуда и произошло его название.

Хроматин состоит из хроматиновых фибрилл, толщиной 20-25 нм, которые могут располагаться в ядре рыхло или компактно. На этом основании различают два вида хроматина:

• эухроматин — рыхлый или деконденсированный хроматин, слабо окрашивается основными красителями;

• гетерохроматин — компактный или конденсированный хроматин, хорошо окрашивается этими же красителями.

При подготовке клетки к делению в ядре происходит спирализация хроматиновых фибрилл и превращение хроматина в хромосомы.

После деления в ядрах дочерних клеток происходит деспирализация хроматиновых фибрилл и хромосомы снова преобразуются в хроматин. Следовательно, хроматин и хромосомы представляют собой различные фазы одного и того же вещества.

По химическому строению хроматин состоит из:

• дезоксирибонуклеиновой кислоты (ДНК) 40 %;

• белков около 60 %;

• рибонуклеиновой кислоты (РНК) 1 %.

Ядерные белки представлены формами:

• щелочными или гистоновыми белками 80-85 %;

• кислыми белками 15-20 %.

Гистоновые белки связаны с ДНК и образуют полимерные цепи дезоксирибонуклеопротеида (ДНП), которые и представляют собой хроматиновые фибриллы, отчетливо видимые при электронной микроскопии.

На определенных участках хроматиновых фибрилл осуществляется транскрипция с ДНК различных РНК, с помощью которых осуществляется затем синтез белковых молекул. Процессы транскрипции в ядре осуществляются только на свободных хромосомных фибриллах, то есть в эухроматине.

В конденсированном хроматине эти процессы не осуществляются и потому гетерохроматин является неактивным хроматином. Соотношение эухроматина и гетерохроматина в ядре является показателем активности синтетических процессов в данной клетке. На хроматиновых фибриллах в S-периоде интерфазы осуществляется также процессы редупликации ДНК. Эти процессы происходят как в эухроматине, так и в гетерохроматине, но в гетерохроматине они протекают значительно позже.

Ядрышко — сферическое образование (1-5 мкм в диаметре) хорошо воспринимающее основные красители и располагающееся среди хроматина.

В одном ядре может содержаться от 1 до 4-х и даже более ядрышек. В молодых и часто делящихся клетках размер ядрышек и их количество увеличены.

Ядрышко не является самостоятельной структурой. Оно формируется только в интерфазе в определенных участках некоторых хромосом — ядрышковых организаторах, в которых содержатся гены, кодирующие молекулу рибосомальной РНК. В области ядрышкового анализатора осуществляется транскрипция с ДНК рибосомальной РНК.

В ядрышке происходит соединение рибосомальной РНК с белком и образование субъединиц рибосом.

Микроскопически в ядрышке различают:

• фибриллярный компонент — локализуется в центральной части ядрышка и представляет собой нити рибонуклеопротеида (РНП);

• гранулярный компонент — локализуется в периферической части ядрышка и представляет скопление субъединиц рибосом.

В профазе митоза, когда происходит спирализация хроматиновых фибрилл и образование хромосом, процессы транскрипции РНК и синтеза субъединиц рибосом прекращаются и ядрышко исчезает.

По окончании митоза в ядрах вновь образованных клеток происходит деконденсация хромосом и появляется ядрышко.

Кариоплазма (нуклеоплазма) или ядерный сок состоит из воды, белков и белковых комплексов (нуклеопротеидов, гликопротеидов), аминокислот, нуклеотидов, сахаров. Под световым микроскопом кариоплазма бесструктурна, но при электронной микроскопии в ней определяются гранулы (15 нм), состоящие из рибонуклеопротеидов.

Белки кариоплазмы являются в основном белками-ферментами, в том числе ферментами гликолиза, осуществляющих расщепление углеводов и образование АТФ.

Негистоновые (кислые) белки образуют в ядре структурную сеть (ядерный белковый матрикс), которая вместе с ядерной оболочкой принимает участие в создание внутреннего порядка, прежде всего в определенной локализации хроматина.

При участии кариоплазмы осуществляется обмен веществ в ядре, взаимодействие ядра и цитоплазмы.

Кариолемма (нуклеолемма) — ядерная оболочка отделяет содержимое ядра от цитоплазмы (барьерная функция), в то же время обеспечивает регулируемый обмен веществ между ядром и цитоплазмой. Ядерная оболочка принимает участие в фиксации хроматина.

Кариолемма состоит из двух билипидных мембран — внешней и внутренней ядерной мембраны, разделенных перинуклеарным пространством, шириной от 25 до 100 нм.

В кариолемме имеются поры, диаметром 80-90 нм. В области пор внешняя и внутренняя ядерные мембраны переходят друг в друга, а перинуклеарное пространство оказывается замкнутым.

Просвет поры закрыт особым структурным образованием — комплексом поры, который состоит из фибриллярного и гранулярного компонента. Гранулярный компонент представлен белковыми гранулами диаметром 25 нм, располагающимися по краю поры в три ряда.

От каждой гранулы отходят фибриллы и соединяются в центральной грануле, располагающейся в центре поры. Комплекс поры играет роль диафрагмы, регулирующей ее проницаемость. Размеры пор стабильны для данного типа клеток, но число пор может изменяться в процессе дифференцировки клетки. В ядрах сперматозоидов ядерные поры отсутствуют. На наружной ядерной мембране могут локализоваться прикрепленные рибосомы. Кроме того, наружная ядерная мембрана может продолжаться в канальцы эндоплазматической сети.

Гетерохроматин

Гетерохроматин — участки хроматина, находящиеся в течение клеточного цикла в конденсированном (компактном) состоянии. Особенностью гетерохроматиновой ДНК является крайне низкая транскрибируемость. ГЕТЕРОХРОМАТИН

(от гетеро… и хроматин), участки хроматина, находящиеся в конденсированном (плотно упакованном) состоянии в течение всего клеточного цикла. Интенсивно окрашиваются ядерными красителями и хорошо видны в световой микроскоп даже во время интерфазы.

Гетерохроматич. р-ны хромосом, как правило, реплицируются позже эухроматиновых и не транскрибируются, т. е. генетически весьма инертны. Ядра активных тканей и эмбриональных клеток большей частью бывают бедны Г. Различают факультативный и конститутивный (структурный) Г. Факультативный Г. присутствует только в одной из гомологичных хромосом. Пример Г. такого типа — вторая Х-хромосома у жен.особей млекопитающих, к-рая в ходе раннего эмбриогенеза инактивируется вследствие её необратимой конденсации.

Структурный Г. содержится в обеих гомологичных хромосомах, локализован преим. в экспонированных участках хромосомы — в центромере, теломере, ядрышко-вом организаторе (во время интерфазы он располагается неподалёку от ядерной оболочки), обеднён генами, обогащен сателлитной ДНК и может инактивиро-вать расположенные по соседству гены (т.

н. эффект положения). Этот тип Г. очень вариабелен как в пределах одного вида, так и в пределах близких видов. Он может влиять на синапсис хромосом, частоту индуцированных разрывов и рекомбинацию. Участкам структурного Г. свойственна адгезия (слипание) сестринских хроматид.

ЭУХРОМАТИН (от греч. eu — хорошо, полностью и хроматин), участки хромосом, сохраняющие деспирализованное состояние в покоящемся ядре (в интерфазе) и спирализующиеся при делении клеток (в профазе); содержат большинство генов и потенциально способны к транскрипции.

Э. отличается от гетерохроматина меньшим содержанием метилированных оснований и блоков повторяющихся последовательностей ДНК, большим количеством негистоновых белков и ацетилированных молекул гистонов, менее плотной упаковкой хромосомного материала, что, как полагают, особенно важно для активности Э. и делает его потенциально более доступным для ферментов, обеспечивающих транскрипцию.

Э. может приобретать свойства факультативного гетерохроматина — инактивироваться, что является одним из способов регуляции генной активности.

Строение и функции клеточного ядра

Ядро – обязательная часть эукариотической клетки. Главная функция ядра – хранение генетического материала в форме ДНК и передача ее дочерним клеткам при клеточном делении. Кроме того, ядро управляет белковыми синтезами, контролирует все процессы жизнедеятельности клетки.

( в растительной клетке ядро описал Р.Броун в 1831г., в животной – Т.Шванн в 1838г.)

Большинство клеток имеет одно ядро, обычно округлой формы, реже неправильной формы.

Размеры ядра колеблются от 1мкм (у некоторых простейших) до 1мм (в яйцеклетках рыб, земноводных).

Встречаются двуядерные клетки (клетки печени, инфузорий) и многоядерные (в клетках поперечно – полосатых мышечных волокон, а так же в клетках ряда видов грибов и водорослей).

Некоторые клетки (эритроциты) – безъядерные, это редкое явление, носит вторичный характер.

В состав ядра входят:

4)хроматин или хромосомы.

Хроматин находится в неделящемся ядре, хромосомы – в митотическом ядре.

Оболочка ядра состоит из двух мембран (наружной и внутренней). Наружная ядерная мембрана соединяется с мембранными каналами ЭПС. На ней располагаются рибосомы.

В мембранах ядра имеются поры (3000-4000). Через ядерные поры происходит обмен различными веществами между ядром и цитоплазмой.

Кариоплазма (нуклеоплазма) представляет собой желеобразный раствор, который заполняет пространство между структурами ядра (хроматином и ядрышками).

Она содержит ионы, нуклеотиды, ферменты.

Ядрышко, обычно шаровидной формы (одно или несколько), не окружено мембраной, содержит фибриллярные белковые нити и РНК.

Ядрышки – не постоянные образования, они исчезают в начале деления клетки и восстанавливаются после его окончания. Ядрышки имеются только в неделящихся клетках.

В ядрышках происходит формирование рибосом, синтез ядерных белков. Сами же ядрышки образуются на участках вторичных перетяжек хромосом (ядрышковых организаторах). У человека ядрышковые организаторы находятся на 13,14,15,21 и 22 хромосомах.

Ядро клетки по своему строению относится к группе двухмембранных органоидов. Однако ядро настолько важно для жизнедеятельности эукариотической клетки, что обычно его рассматривают отдельно. Ядро клетки содержит хроматин (деспирализованные хромосомы), который отвечает за хранение и передачу наследственной информации.

В строении ядра клетки выделяют следующие ключевые структуры:

  • ядерная оболочка, состоящая из внешней и внутренней мембраны,
  • ядерный матрикс — всё, что заключено внутри клеточного ядра,
  • кариоплазма (ядерный сок) — жидкое содержимое, подобное по составу гиалоплазме,
  • ядрышко,
  • хроматин.

Кроме перечисленного в ядре содержатся различные вещества, субъединицы рибосом, РНК.

Строение наружной мембраны ядра клетки сходно с эндоплазматической сетью.

Часто внешняя мембрана просто переходит в ЭПС (последняя от нее как бы ответвляется, является ее выростом).

С внешней стороны на ядре располагаются рибосомы.

Внутренняя мембрана более прочная за счет выстилающей ее ламины.

Кроме опорной функции к этой ядерной выстилке прикрепляется хроматин.

Пространство между двумя ядерными мембранами называется перинуклеарным.

Мембрана ядра клетки пронизана множеством пор, соединяющих цитоплазму с кариоплазмой. Однако по своему строению поры ядра клетки не просто отверстия в мембране. В них содержатся белковые структуры (поровый комплекс белков), отвечающий за избирательную транспортировку веществ и структур. Пассивно через пору могут проходить только малые молекулы (сахара, ионы).

Хроматин следует считать главным компонентом ядра. В нем заключена наследственная информация, которая передается при каждом делении клетки, а также реализуется в процессе жизнедеятельности самой клетки.

Хроматин ядра клетки состоит их хроматиновых нитей. Каждая хроматиновая нить соответствует одной хромосоме, которая образуется из нее путем спирализации.

Чем сильнее раскручена хромосома (превращена в хроматиновую нить), тем больше она задействована в процессах синтеза на ней.

Одна и та же хромосома может быть в одних участках спирализована, а в других деспирализована.

Каждая хроматиновая нить ядра клетки по строению является комплексом ДНК и различных белков, которые в том числе выполняют функцию скручивания и раскручивания хроматина.

Ядра клеток могут содержать одно и более ядрышек. Ядрышки состоят из рибонуклеопротеидов, из которых в дальнейшем образуются субъединицы рибосом.

Читайте также: