Какой принцип положен в основу архитектуры современных компьютеров

Обновлено: 02.07.2024

Архитектурой ПК (персонального компьютера) принято называть совокупность структуры, отражающей состав и обслуживающее ПО. Структурой называется комплекс функциональных систем ПК и их связующих элементов.

Особенности архитектуры являются определяющими факторами при рассмотрении принципов действия ПК, программно-информационных связей и последовательности соединения всех узлов логики компьютера. К узлам логики относят: ОЗУ (оперативная память), ЦП (центральный процессор), внешнее устройство памяти (жесткий диск), графический модуль (видеокарта), периферийные модули. Основным, принципиальным элементом архитектуры любого ПК, являются блоки программного управления.

Классическая архитектура фон Неймана

Группа ученых, в составе которой были американцы Г.Голдштейн, Дж. фон Нейман и А. Беркс, в 1946 году провели колоссальную работу по разработке новых принципов и архитектуры ЭВМ. Работа математиков легла в основу при создании компьютеров первого и второго поколений. Принципы фон Неймана были сохранены, хоть и существенно видоизменились, во время работ по созданию машин следующих поколений.

Основные принципы фон Неймана:

Интеграция методов двоичного счисления позволила упростить работу устройств и сделать ее выполнение гораздо быстрее, чем это было при использовании десятичной системы.

Программное управление ПК

Функционал ПК зависит от исправной работы программного обеспечения. Программа, управляющая компьютерной системой представляет собой набор последовательно исполняющихся команд. Проблема низких показателей быстродействия, актуальная для ранних ПК, была решена интеграцией модуля памяти, применяемого для записи программных данных. Кодированные в двоичной системе данные и командные коды, расположены в пронумерованных адресных блоках. Возможность быстрого доступа к адресной ячейки сделало возможной работу в переменных программных средах.

Условный переход при исполнении программы

По умолчанию программные компоненты имеют последовательную модель исполнения, но существует возможность реализации перехода к любому месту кода. Главным преимуществом подобного механизма стало превращение программного продукта из постоянной величины в изменяемую, аппаратная же часть осталась статичной и достаточно простой.

Фон Нейман предложил собственную структура персонального компьютера (рис. 1).

В состав ПК предложенного математиком входили:

  • Устройство памяти или ЗУ;
  • Устройство исполнения арифметико-логических задач или АЛУ;
  • Управляющее устройство (УУ) задействованное в работе по координации работы узловых элементов ПК;
  • Периферийные устройства ввода/вывода.

В данной модели ПК любой тип данных вводится в устройство запоминания опосредованно через АЛУ посредствам устройств ввода/вывода. Программные команды фиксируются последовательно в блоках памяти, тогда как обрабатываемые данные записываются в блоках произвольно.

Простейшая команда содержала в себе информацию об операции требующей выполнения и адресов памяти, хранящей данные требуемые для выполнения данной операции. Кроме этого в команде прописывались адреса блоков памяти доступных для сохранения результата выполнения команды. Арифметико-логическое устройство выводило обработанные данные в устройство запоминания или в выводное устройство. Существенным отличием систем подобного рода является форма данных удобная для сохранения и обработки, а также для восприятия человека при передачи на устройство вывода (печатающее устройство или монитор).

Выполнение операции осуществляется аппаратная оснастка компьютера или АЛУ. По завершению выполнения команд значение счетчика увеличивается на единицу, что является сигналом для запуска следующей команды. При необходимости запуска команд без стандартной очередности, запускается команда переадресации, содержащая целевой адрес ячейки запуска управляющей команды.

Архитектура современных ПК

Современные компьютеры имеют магистрально-модульный тип архитектуры, то есть состоят из относительно самостоятельных компонентов, связанных между собой через ЦП.

Принцип модульности позволяет осуществлять произвольную комплектацию ПК устанавливая совместимые компоненты. Кроме этого современные ПК имеют возможность модернизации и улучшения. В данной системе функционирует магистральный тип обмена информацией. Для обеспечения взаимосвязи компонентов ПК используется магистральная шина, располагаемая на материнской плате в виде печатной платы. Преимуществом подобного вида ПК является возможность добавления или замены комплектующих.

Благодаря принципиальным переменам в архитектуре ПК произошло значительное повышение скорости обработки и обмена информации. Считываемая информация хранится в системной памяти, что позволяет работать напрямую с ЦП и значительно ускоряет работу ПК в целом. Максимум быстродействия ограничен скоростью обработки данных самой магистрали, чем выше данный показатель, тем выше скорость работы ПК в целом.

Для решения вопроса предпринято следующее:

    Системная память напрямую (без буферов) подключается к шине, вместо магистрали, что избавляет ПК от проблем со скоростью обмена данных. Данное решение актуализировалось максимально с выходом высокопроизводительных ПК. Новшества привели к существенным изменением архитектуры и замене одношинных ПК трехшинными.

Многопроцессорная архитектура ПК

Существуют компьютеры с несколькими процессорами, работающими параллельно. Такие ПК называются многопроцессорными и используются при необходимости обработать очень большой объем информации за максимально короткое время.

Многомашинная вычислительная система

Архитектура с параллельными процессорами

Подобная система работает под управлением одного УУ, взаимодействующего с несколькими АЛУ. Подобный принцип позволяет обрабатывать большой объем информации в одном потоке. Актуален данный принцип только при выполнении однотипных задач с различным набором данных.

В настоящее время встречаются более сложные архитектурные решения, а также вариации ПК, в которых применяется несколько классических архитектурных принципов.

Архитектура персонального компьютера (ПК) включает в себя структуру, которая отражает состав ПК, и программное обеспечение.

Структура ПК – это набор его функциональных элементов (от основных логических узлов до простейших схем) и связей между ними.

Архитектура определяет принципы действия, информационные связи и взаимное соединение основных логических узлов ПК, к которым относят процессор, оперативное запоминающее устройство, внешние запоминающие устройства и периферийные устройства.

Основным принципом построения всех современных ПК является программное управление.

Классическая архитектура фон Неймана

В $1946$ году американские математики Джон фон Нейман, Герман Голдштейн и Артур Бёркс в совместной статье изложили новые принципы построения и функционирования ЭВМ. На основе этих принципов производилось $1$-е и $2$-е поколение компьютеров. В следующих поколениях происходили некоторые изменения, но принципы фон Неймана (как они были названы) сохранялись.

Основные принципы фон Неймана:

  1. Использование двоичной системы счисления в ПК, в которой устройствам гораздо проще выполнять арифметико-логические операции, чем в десятичной.
  2. Программное управление ПК. Работа ПК управляется программой, которая состоит из набора команд, выполняющихся последовательно одна за другой. Создание машины с хранимой в памяти программой положило начало программированию.
  3. Данные и программы хранятся в памяти ПК. Команды и данные кодируются одинаково в двоичной системе.
  4. Ячейки памяти ПК имеют последовательно пронумерованные адреса. Возможность обращения к любой ячейке памяти по ее адресу позволила использовать переменные в программировании.
  5. Возможность условного перехода при выполнении программы. Команды в ПК выполняются последовательно, но при необходимости можно реализовать переход к любой части кода.

Основным принципом было то, что программа уже стала не постоянной частью машины, а изменяемой, в отличие от аппаратуры, которая остается неизменной и очень простой.

Готовые работы на аналогичную тему

Фон Нейманом также была предложена структура ПК (рис. 1).

Структура ПК

Рисунок 1. Структура ПК

В состав машины фон Неймана входили:

  • запоминающее устройство (ЗУ);
  • арифметико-логическое устройство (АЛУ), которое выполняло все арифметические и логические операции;
  • устройство управления (УУ), которое координирует действия всех узлов машины в соответствии с программой;
  • устройства ввода-вывода.

Программы и данные вводились в ЗУ из устройства ввода через АЛУ. Все команды программы записывались в ячейки памяти последовательно, а данные для обработки – в произвольные ячейки.

Команда состояла из указания операции, которую необходимо выполнить, и адресов ячеек памяти, в которых хранятся данные и над которыми необходимо выполнить нужную операцию, а также адреса ячейки, в которую необходимо записать результат (для хранения в ЗУ).

Из АЛУ результаты выводятся в ЗУ или устройство вывода. Принципиально эти устройства отличаются тем, что в ЗУ данные хранятся в удобном для обработки ПК виде, а на устройства вывода (монитор, принтер и т.п.) в удобном для человека.

От УУ на другие устройства поступают сигналы с командами, а от других устройств УУ получает информацию о результате их выполнения.

После выполнения команды счетчик команд увеличивается на $1$ и указывает на следующую команду программы. При необходимости выполнения команды, которая не следует по порядку за текущей, специальная команда перехода содержит адрес ячейки, в которую нужно передать управление.

Архитектура современных ПК

В основу архитектуры современных ПК заложен магистрально-модульный принцип. ПК состоит из отдельных частей – модулей, которые являются относительно самостоятельными устройствами ПК (напрмер, процессор, оперативная память, контроллер, дисплей, принтер, сканер и т.д.).

Модульный принцип позволяет пользователю самостоятельно комплектовать необходимую конфигурацию ПК и производить при необходимости его обновление. Модульная организация системы опирается на магистральный принцип обмена информацией. Для работы ПК как единого механизма необходимо осуществлять обмен данными между различными устройствами, за что отвечает системная (магистральная) шина, которая выполняется в виде печатного мостика на материнской плате.

Основные особенности архитектуры ПК сводятся к принципам компоновки аппаратуры, а также к выбранному набору системных аппаратных средств.

Подобная архитектура характеризуется ее открытостью – возможностью включения в ПК дополнительных устройств (системных и периферийных), а также возможностью простого встраивания программ пользователя на любом уровне программного обеспечения ПК.

Также совершенствование архитектуры ПК связано с максимальным ускорением обмена информацией с системной памятью. Именно из системной памяти, в которой хранятся данные, ПК считывает все исполняемые команды. Таким образом больше всего обращений центральный процессор совершает к памяти и ускорение обмена с памятью приведет к существенному ускорению работы всей системы в целом.

Т.к. при использовании системной магистрали для обмена процессора с памятью приходится учитывать скоростные ограничения самой магистрали, то существенного ускорения обмена данными с помощью магистрали добиться невозможно.

Для решения этого вопроса был предложен следующий подход. Системная память вместо системной магистрали подключается к специальной высокоскоростной шине, которая дистанционно находится ближе к процессору и не требует сложных буферов и больших расстояний. В этом случае обмен с памятью идет с максимально возможной для процессора скоростью, и системная магистраль не замедляет его. Особенно актуальным это решение стало с ростом быстродействия процессора.

Таким образом, структура ПК из одношинной, которая применялась только в первых компьютерах, становится трехшинной.

Трехшинная структура ПК

Рисунок 2. Трехшинная структура ПК

АЛУ и УУ в современных ПК образуют процессор. Процессор, который состоит из одной или нескольких больших интегральных схем, называется микропроцессором или микропроцессорным комплектом.

Многопроцессорная архитектура ПК

Наличие в ПК нескольких процессоров означает, что параллельно может быть организовано много потоков данных и команд, т.е. одновременно могут выполняться несколько фрагментов одной задачи.

Архитектура многопроцессорного ПК

Рисунок 3. Архитектура многопроцессорного ПК

Многомашинная вычислительная система

В архитектуре многомашинной вычислительной системы каждый процессор имеет свою оперативную память. Применение многомашинной вычислительной системы эффективно при решении задач, которые имеют очень специальную структуру, которая должна состоять из такого количества ПК, на сколько слабо связанных подзадач разбита система.

Многопроцессорные и многомашинные вычислительные системы имеют преимущество перед однопроцессорными в быстродействии.

Архитектура с параллельными процессорами

В данной архитектуре несколько АЛУ работают под управлением одного УУ. Это означает, что множество данных может обрабатываться по одной программе, т. е. по одному потоку команд. Высокое быстродействие такой архитектуры можно получить только на задачах, в которых одинаковые вычислительные операции выполняются одновременно на различных однотипных наборах данных.

Архитектура с параллельным процессором

Рисунок 4. Архитектура с параллельным процессором

В современных машинах часто присутствуют элементы различных типов архитектурных решений. Существуют и другие архитектурные решения, отличные от рассмотренных выше.

Архитектура компьютера, организация внутренней и внешней памяти, магистраль, принципы работы и конфигурация компьютера

Для того чтобы понимать возможности и ограничения, существующие при работе с компьютерами, и уметь автоматизировать информационные процессы, недостаточно знать, из каких функциональных устройств состоит компьютер. Необходимо иметь представление о структуре компьютера и понимать принципы организации работы компьютера. Говоря другими словами, необходимо иметь представление об архитектуре компьютера.

Архитектура компьютера — структура и принципы организации работы компьютера, рассматриваемые без особенностей их технической реализации.

Все информационные процессы в компьютере осуществляются автоматически под управлением программ, созданных программистами. Программы состоят из команд. Процессор выполняет последовательность команд, обрабатывает данные и управляет всеми устройствами компьютера автоматически.

Вся информация в компьютере (данные и программы) хранится, обрабатывается и передается с использованием двоичного кода. Иначе говоря, информация в компьютере кодируется последовательностью нулей и единиц.

Адрес ячейки памяти, как и вся информация в компьютере, представлен с использованием двоичного кода. Количество ячеек (байтов) памяти, а значит, емкость внутренней памяти зависит от количества двоичных разрядов, используемых для кодирования адреса ячейки (байта). Например, если для кодирования адреса ячейки использовано 8 двоичных разрядов (8 битов), то можно закодировать 256 адресов ячеек (28 = 256). А поскольку каждая ячейка содержит 1 байт информации, то информационная емкость всех ячеек памяти, имеющих адреса, составит 256 байтов, нумеруемых с 0 по 255 (табл. 21).

Носители внешней памяти компьютера размечаются (форматируются) на секторы. Каждому сектору присваивается свой порядковый номер, который называется адресом сектора. Информационная емкость одного сектора, как правило, составляет 512 байтов. Поскольку информационная емкость одного сектора довольно мала, то соседние секторы могут быть объединены в кластеры. В зависимости от параметров разметки носителя один кластер может содержать 1, 2, 4, 8, 16, 32, 64 соседних секторов. Обращение к кластеру происходит по адресу — порядковому номеру кластера.

Данные и программы хранятся в памяти компьютера единообразно с использованием двоичного кода. Причем в одних и тех же ячейках или секторах памяти в разное время могут храниться как данные, так и программы. Учитывая это, говорят, что память компьютера однородна.

Взаимодействие всех устройств компьютера осуществляется через общий канал связи — магистраль, которую также называют системной шиной. По магистрали передаются команды и обрабатываемые данные, адреса ячеек памяти, где хранятся данные или команды, управляющие сигналы, координирующие работу устройств компьютера. Через магистраль процессор управляет и высокоскоростными (регистры процессора, оперативная память, кэш-память) и низкоскоростными (внешняя память, устройства ввода и вывода) устройствами компьютера. Взаимодействие с низкоскоростными устройствами, как правило, требует преобразования сигналов (например, из аналогового сигнала в цифровой сигнал) и выполнения определенных операций. Для того чтобы процессор не ждал, пока низкоскоростные устройства выполнят его команды, используются контроллеры, которые управляют работой таких устройств. Контроллеры частично выполняют функцию процессора, и в этом случае говорят уже не о процессоре, а о центральном процессоре и контроллерах.

Магистраль компьютера (системная шина компьютера) — совокупность проводников, связывающих центральный процессор и внутреннюю память с устройствами управления внешней памятью, устройствами ввода и вывода для передачи адресов ячеек памяти, данных, программ и служебных сигналов.

Основной характеристикой магистрали является ее разрядность, которая определяется количеством одновременно передаваемых битов информации. Разрядность магистрали напрямую связана с количеством двоичных разрядов, отводимых для кодирования адреса ячейки памяти, а значит, и с емкостью внутренней памяти компьютера. Разрядность магистрали должна быть согласована с разрядностью процессора.

Компьютер собирается из отдельных блоков (модулей) аналогично тому, как собирается игрушечный дом из кубиков детского конструктора. В компьютере можно заменять и добавлять блоки при условии их совместимости. Это не только не нарушит работу компьютера, но и, возможно, повысит его производительность или увеличит количество выполняемых им функций.

Таким образом, можно выделить следующие основные принципы, которые лежат в основе архитектуры как ранее разработанных, так и большинства современных компьютеров.

Принцип программного управления компьютером — компьютер автоматически управляется командами программы, которые понятны процессору.

Принцип двоичного представления данных и команд в компьютере — вся обрабатываемая информация (данные и команды программы) представляется с использованием двоичного кода, а значит, единообразно представляется в виде последовательности нулей и единиц.

Принцип адресности памяти компьютера — внутренняя память состоит из ячеек, каждая из которых имеет свой адрес, аналогично внешняя память состоит из секторов, каждый из которых также имеет свой адрес.

Принцип однородности памяти компьютера — обрабатываемые данные и исполняемые программы могут храниться в одной и той же памяти компьютера.

Принцип магистрально-модульного устройства компьютера — все устройства компьютера взаимодействуют через магистраль (системную шину), каждое устройство конструктивно выполнено в виде отдельного блока (модуля), который легко подключается или заменяется.

Принцип открытой архитектуры компьютера — каждый физически неисправный или устаревший по характеристикам блок можно заменить на новый блок без внесения изменений в конструкцию компьютера.

Говорят, что компьютеры, построенные с учетом этих принципов, имеют магистрально-модульную архитектуру (рис. 20).

Все устройства компьютера взаимодействуют через магистраль. Непосредственно к магистрали подсоединяются центральный процессор и основная память компьютера. Остальные устройства подключены к магистрали через контроллеры. Центральный процессор управляет всеми устройствами с помощью команд.

Устройства компьютера могут быть изготовлены как в виде отдельных элементов (например, мышь, клавиатура, видеоадаптер), так и конструктивно объединены в единый блок (например, жесткий диск состоит из самого носителя, накопителя на жестком ди ске и контроллера жесткого диска). Подсоединяя к магистрали наборы разных модулей, можно собирать компьютеры, различные по возможностям, характеристикам и составу устройств. Иначе говоря, можно получать компьютеры разной конфигурации.

Конфигурация компьютера — совокупность взаимосвязанных устройств, составляющих компьютеры, и их основные технические характеристики.

Приведем пример конфигурации современного персонального компьютера: 32-разрядный центральный процессор с тактовой частотой 3,3 ГГц, оперативная память объемом 1 Гбайт с частотой работы 800 МГц, жесткий диск объемом 320 Гбайтов со скоростью вращения 7200 оборотов в минуту, кэш-память объемом 16 Мбайтов, видеопамять объемом 512 Мбайтов, накопитель DVD ± RW.

Для организации взаимодействия компьютеров в сети каждому компьютеру присваивается уникальный адрес. Так, например, в сетях Интернет и Интранет он называется IP-адрес (Ай Пи адрес). Поскольку IP-адрес состоит из 32 двоичных разрядов, то, используя их, можно закодировать адреса нескольких миллиардов компьютеров. Подключение компьютера к сети обеспечивается устройством ввода-вывода (сетевой картой), которое, с одной стороны, взаимодействует через контроллер с магистралью этого компьютера, а с другой — с компьютерной сетью.

Развитие архитектуры компьютера происходит в нескольких направлениях. Среди них основными являются параллельное выполнение нескольких операций и одновременное использование нескольких процессоров (многопроцессорных систем) в компьютере. Это позволит повысить быстродействие компьютеров и сделать работу человека более эффективной.

В основе работы современных компьютеров лежит программное управление, которое является базовым принципом их работы. Архитектура компьютера актуализируется в результате создания связей между частями компьютера, а именно – между логическими узлами и другими устройствами. Так, к логическим уздам можно отнести как оперативное запоминающее устройство, так и внешние, и периферийные устройства.

Истоки

Одной из первых появилась в середине прошлого века классическая архитектура персонального компьютера, авторство которой принадлежит Д. Нейману. В статье, изданной Д. Нейманом, Г. Голдштейном и А. Бёрксом были изложены основы конструкции и работы ЭВМ, благодаря этим знаниям и появились новые устройства, которые к нашему времени стали повсеместно доступны и распространены. Конечно, каждый новый выпуск устройств отличался от предыдущего: его характеристики улучшались, модифицировались, добавлялись новые функции, но основа, которой являются сформулированные принципы, оставалась неизменной.

Данные принципы заключаются в следующем:

  1. Машинам гораздо проще использовать двоичный код счисления и руководствоваться им при выполнении различных операций.
  2. Для корректной и системной работы компьютера, ему необходима операционная система. Она служит некой главной программой, которая запускает и контролирует внутренние процессы устройства. Без открытия этого факта, было бы невозможным развитие программирования, так как операционная система в современных компьютерах является базисом его работы.
  3. У персонального компьютера есть память, которая позволяет хранить какой-то объём данных, включая различные программы. При этом все данные и произведённые с ними операции кодируются в двоичном коде.
  4. Благодаря тому, что каждая ячейка памяти имеет свой адрес, компьютер в любой момент времени может обратиться к какой-то из них. Данное открытие позволило программированию перейти к использованию переменных.
  5. Любая часть кода доступна практически в любой момент. Это доказывается тем, что при использовании какой-либо программы, пользователь имеет возможность перейти к использованию другой. Причём эти процессы происходят параллельно друг другу.

Главная особенность заключается в том, что аппаратура остаётся статичной, в то время как набор программ может меняться.

Структура персонального компьютера, предложенная Д. Нейманом, изображена на данной схеме (рис. 1).


Рисунок 1. Структура персонального компьютера

Таким образом, в состав компьютера входили такие части как внешнее и оперативное запоминающее устройство, устройство ввода, устройство вывода, устройство управления (координация) и устройство выполнения арифметико-логических операций.

Последовательность работы компьютера

  • В запоминающее устройство вводились данные и программы.
  • Через устройство арифметико-логических операций проходили данные из запоминающего устройства. Запись в память происходила посредством последовательных команд, направляющих содержимое в ячейки, чего не сказать о данных обработки, которые направлялись в ячейки произвольно.
  • Из арифметико-логического устройства результаты обработки переходят в запоминающее устройство, если информацию сохраняют, или в устройство вывода, если её нужно распространить. Особенность здесь заключается в том, что все команды кодируются в понятном для компьютера формате, а когда происходит вывод информации, она становится пригодной для использования человеком, и понятна ему без дешифровки.
  • Команда для компьютера заключается в том, что необходимо установить связь между запросом пользователя и адресом ячейки. Таким образом реализуется определённая операция, которая проводит эту связь и записывает результат, в зависимости от запроса, в определённую ячейку. Затем эта память остаётся на хранение в запоминающем устройстве.
  • В управляющем устройстве содержится ячейка, которая позволяет В случае с управляющим устройством, команды могут быть двух видов – поступающие от управляющего устройства и получаемые управляющим устройством результаты команд. После обработки команды управляющего устройства, содержимое ячеек помещается в регистр команд, что даёт ему возможность зафиксировать процессы, проходящие в памяти и проконтролировать их. Тем не менее, все операции на этом этапе переходят в компетенции арифметико-логических операций и аппаратных средств.
  • Затем счётчик команд увеличивает показатели на 1 соответствующе и прописывается новая команда. При этом возможен переход из определённой ячейки в конкретно отведённую, то есть в командах есть последовательность.

Архитектура современных компьютеров: структура и принципы работы

В качестве основополагающего условия работы персональных компьютеров в наше время можно назвать работу по магистрально-модульному принципу. Это реализуется за счёт того, что персональный компьютер состоит из модулей, каждый из которых является самобытной единицей. К таковым можно отнести, например, принтер или даже процессор.

Архитектура современного компьютера позволяет компоновать аппаратуру и делать самостоятельный выбор в пользу использования тех или иных средств – она открыта и предполагает возможность встраивания в систему дополнительных средств для достижения установленных целей и реализации задач.Установленный принцип позволяет пользователю самостоятельно определять комплектацию своих устройств и даже самостоятельно обновлять их. Магистральный аспект позволяет качественно и своевременно обмениваться информацией при помощи установления связей, за что отвечает магистральная шина. Она представляет собой элемент, располагающийся на материнской плате.

Примечание 1
Принципа архитектуры компьютера постоянно усовершенствуется для того, чтобы иметь возможность устанавливать всё новые и новые связи, при этом делать это быстро, мобильно и качественно. Современные потоки информации предполагают совершенствование аппаратных средств. Все команды компьютера реализуются за счёт средств системной памяти, поэтому в связке с процессором, ускорение процесса обмена информацией между элементами компьютера, приводит к ускорению работы компьютера, в целом.

Однако существует одна важная деталь: чтобы эти процессы проходили быстрее, необходимо учитывать скоростные возможности магистрали. Как же решить эту задачу? Решение нашлось. Чтобы ускорение стало возможным, необходимо подключить системную память не к магистрали, а к высокоскоростной шине. В связи с особенностями работы этого элемента, обмен будет реализовываться проще и быстрее.

Таким образом, использование компьютера с магистралью сходит на нет и на смену ему приходит компьютер с шиной, а затем – с тремя шинами. Что мы и имеем на данный момент времени.


Рисунок 2. Трехшинная структура ПК

Процессор в современных компьютерах состоит из управляющего устройства и арифметико-логического устройства. Если спустится ещё на один структурный уровень, то структуру процессора, в частности, составляют интегральные схемы. В зависимости от количества этих схем, можно говорить о микропроцессорах или микропроцессорных комплектах.

Многопроцессорная архитектура ПК: особенности и нюансы

Если в компьютере несколько процессоров, то его работа выглядит следующим образом – много различных потоков информации реализуются одновременно. Конечно, такие компьютеры имеют преимущества перед компьютерами с одним процессором.


Рисунок 3. Архитектура многопроцессорного ПК

Устройство компьютера: архитектура с параллельными процессорами

В такой архитектуре работает одно управляющее устройство, но под его управлением находятся несколько арифметико-логических устройств. Это подразумевает то, что команд много, но все они обрабатываются аналогичным образом.

Читайте также: