Каким образом получают азот растения и животные раскройте роль бобовых растений в обеспечении

Обновлено: 04.07.2024

Какие организмы принимают участие в круговороте азота

Значение круговорота N2 для биосферы

Для того чтобы дать описание и схему круговорота азота в природе, нужно помнить, что этот элемент — важная часть белков и ДНК. Без него жизни, какой её знает человечество, могло и не быть. Но биологические существа способны усвоить его только в определённом виде. В результате различных геологических процессов этот элемент принимает ту форму, которой могут воспользоваться организмы. Обмен элементами между живыми существами, воздухом, водой и земной корой получил название биогеохимических циклов.

Круговорот азота в природе

Таким образом, микроэлементы, являющиеся частью биологического организма, возвращаются в природу. В этом процессе частицы постоянно перемещаются между воздухом, водой и живыми организмами, в противном случае жизнь давно бы истратила свои ресурсы.

N2 входит в состав всего живого. Это один из самых популярных в природе элементов. Атмосфера земли на 78% состоит из N2. Он также содержится в воде и почве и входит в состав белков.

Этот элемент включается в синтез важнейших органических молекул, белков и нуклеиновых кислот. Азот в виде газа, содержащийся в атмосфере, довольно инертен и немногие организмы способны получать его из воздуха. Растения могут поглощать лишь связанный микроэлемент, то есть в составе химических соединений.

Молекулярный азот — очень стойкое соединение. Для его разрушения необходимо большое количество энергии.

Связывание или фиксация происходит тремя способами:

Круговорот азота в природе схема и описание

  1. За счёт электрических разрядов молний. Они расщепляют молекулы, позволяя вступать в соединения с кислородом. Образованный таким способом оксид азота растворяется в дождевой воде и поступает в почву, откуда его поглощают растения. Именно вспышки молний играют важную роль в развитии жизни на нашей планете.
  2. Человек — ещё один источник. Человеческая деятельность значительно увеличила его количество в природе. Сегодня треть этого связанного азота попадает в биосферу, благодаря широкому применению искусственных удобрений, содержащих нитраты. В промышленности связывание этого элемента с водородом происходит при температуре от 400 до 600 градусов по Цельсию и давлении до 1 тысячи атмосфер.
  3. В природе основными азотфиксаторами являются бактерии, особенно те из них, которые образуют симбиоз с корнями бобовых растений. Горох, фасоль, соя, клевер — все они относятся к данному типу. Благодаря симбиозу, они могут жить на очень бедных почвах, обогащая их. У этих растений есть механизм, который позволяет им совместно с клубеньковыми бактериями усваивать вещество из воздуха.

Для того чтобы понять, какие организмы принимают участие в круговороте азота, надо вспомнить класс биологии. Существуют важнейшие азотфиксаторы цианобактерии. Они играют важную роль в водных экосистемах. N2 также свободно фиксируется свободноживущими почвенными бактериями. При помощи специального фермента бактерии фиксируют атмосферный азот, синтезируя аммиак и нитраты. Получается взаимовыгодное существование. Микроорганизмы обеспечивают растения азотом, а растения питают бактерии сахарами.

Большинство видов растений получает нитраты из почвы. Растительные белки становятся частью травоядных животных, а затем хищников. В круговороте бактерии играют важнейшую роль, разлагая сложные азотсодержащие соединения, чтобы их усвоили растения. В условиях недостатка кислорода некоторые бактерии разлагают органические вещества до получения газообразного азота. Он возвращается в атмосферу и весь цикл повторяется вновь.

Этапы круговорота атмосферного азота

Для того чтобы кратко описать и понять этот процесс, нужно представить биосферу, как два соединяющихся сосуда разных размеров. В большом находится вещество из воздуха и воды, в маленьком — элементы, участвующие в жизнедеятельности организмов. В трубке, которая их соединяет — переходящий в разные состояния азот. Так в живой природе происходит его поступление в организм.

Роль азота в природе

Процесс круговорота очень медленный. Он имеет определённую последовательность:

  • Поглощение вещества бактериями биосферы.
  • Переход из свободного состояния в связанный.
  • Усвоение растениями его соединений.
  • Поглощение элемента животными.
  • Восстановление концентрации микроорганизмами.

Азот в живой природе

Роль азота в природе ещё не изучена до конца. Любая экологическая система усваивает небольшое количество вещества. Поэтому при производстве удобрений нарушается баланс между газом из органических соединений, вернувшимся в атмосферу, и элементами из воздушной среды.

Было отмечено, что его состояние может переходить из техногенного потока в природный. Лишнее количество газа накапливается в природе и вызывает отрицательные последствия. Выявлена закономерная связь между сельским хозяйством, например, применением различных добавок, и загрязнением окружающей среды.

Молекулярный азот

Приблизительно 36% азота, который проникает в землю с удобрениями, просачивается в сточные воды. В них оказывается большое количество нитратов азота, которые, попадая в реки и озёра, вызывают усиленное размножение растений.

Этот процесс получил название эвтрофикация, то есть загрязнение водных ресурсов водорослями. Это одно из самых важных экологических последствий в применении этого вещества. Молекулы служат питательной средой для водяных растений. Путём накапливания они разрастаются очень быстро, затемняют водоём и не дают развиваться другим растениям. Со временем водоросли отмирают. Для их разложения необходимо очень большое количество воздуха.

Водный фонд становится бедным на наличие кислорода. Из неё уходят все возможные живые организмы, такие как ракообразные и рыба. Вода заболачиваются, превращаясь со временем в болото, и пересыхает.

Ещё одной причиной загрязнения являются фермы. Есть три фактора:

Этапы круговорота атмосферного азота

  1. Навоз оставляют на замёрзшей земле.
  2. Избыточное количество химических веществ.
  3. Не заделывают удобрения в почву.

При этом в воздух попадает аммиак. На расстоянии двух километров от ферм наблюдается его распространение и загрязнение воздуха. В результате близлежащие водоёмы оказываются загрязнены. Для предотвращения этого ниже по склону устраиваются пруды. А площадки откорма скота обязательно проектируются с учётом отметки грунтовых вод.

Последствием нарушения баланса азота в атмосфере является увеличение количества нитратов в продуктах питания. В культурах, которые выращивают в сельском хозяйстве, могут содержаться большие дозы нитратного азота. Его образование возможно при неправильной транспортировке, а также при помощи бактерий. При попадании в организм и взаимодействии с гемоглобином они нарушают проникновение кислорода в кровь. Это серьёзно отражается на здоровье человека.

Окислы также входят в состав азотного соединения. Соединения образуются и оказываются в атмосфере путём сжигания газа, выделяются при использовании автомобиля или турбинных самолётов. Они не причиняют вреда только в том случае, если не окисляются озоном до двуокиси азота. Нахождение большой концентрации в организме приводит к тяжёлым заболеваниям.

Для предотвращения чудовищных последствий этой проблемы необходимо тщательно изучать круговорот азота. Нужно найти способы соблюдения баланса между экосистемой и человеком. Можно заметить, что в современном мире при описании круговорота элементов возникают определённые затруднения, так как не все его процессы до конца изучены.

Влияние человека на круговорот

Деятельность людей имеет непосредственное отношение к этому. Промышленность является самым интенсивным вмешательством в этот процесс. Главным источником распространения лишнего объёма газа в атмосфере считается сельское хозяйство. Выращиваемые культуры поглощают множество питательных веществ, тем самым обедняя её. Картофель, свёкла, зерновые, каждый год потребляют до 200 кг вещества с одного гектара земли.

Если применение органических удобрений недостаточно или полностью отсутствуют бобовые растения, то при исчерпании резервных сил и вымывании полезных элементов из почвы ухудшается ее состояние и плодородие. И наоборот. Чрезмерное накопление удобрений приводит к увеличению количества вещества для наземных растений и уменьшению свободного азота, попадающего в атмосферу.


Азотистый обмен почвы – это круговорот в почве азота, который присутствует там не только в виде простого вещества (газа – N2), но и в виде ионов: нитритов (), нитратов () и аммония (). Концентрации этих ионов отражают состояние почвенных сообществ, поскольку на эти показатели влияет состояние биоты (растений, микрофлоры), состояние атмосферы, вымывание из почвы различных веществ (рис. 1.1).

Очень большую роль в круговороте азота играют почвенные микроорганизмы. Они способны снижать концентрации азотсодержащих веществ, губительные для других живых организмов. Они могут переводить токсичный для живых существ аммиак в менее токсичные нитраты и в биологически инертный атмосферный азот. Таким образом, микрофлора почвы способствует поддержанию стабильности её химических показателей.

Роль почвенных микроорганизмов в круговороте азота

Запасы азота в природе очень велики. Общее содержание этого элемента в организмах составляет более 25 млрд. тонн, большое количество азота находится также в почве. В воздухе азот присутствует в виде газа N2. Однако газ азот (N2), содержание которого в атмосфере достигает 78 % по объёму, эукариоты сами по себе ассимилировать не могут. А уникальной способностью превращать N2 в азотсодержащие соединения обладают некоторые бактерии, которые называют азотфиксирующими, или азотфиксаторами. Фиксация азота возможна многими бактериями и цианобактериями. Они живут или в почве, или в симбиозе с растениями, или с несколькими разновидностями животных. Например, семья бобовых растений (Fabaceae) содержит такие бактерии на своих корнях. Типичным представителем свободноживущих азотфиксирующих микроорганизмов является Azotobacter – грамотрицательная бактерия, связывающая азот воздуха. Продукты фиксации азота – аммиак (NH3), нитриты.

рис_1_1.tif

Рис. 1.1. Общий цикл азота в биосистемах

рис_1_2.tif

Рис. 1.2. Схематическое представление прохождения азота через биосферу. Ключевым элементом цикла являются разные виды бактерий

Азот в форме аммиака и соединений аммония, получающийся в процессах биогенной азотфиксации, быстро окисляется до нитратов и нитритов. Этот процесс носит название нитрификации, он осуществляется нитрифицирующими бактериями. Однако нет такой бактерии, которая бы прямо превращала аммиак в нитрат. В его окислении всегда участвуют две группы бактерий: одни окисляют аммиак, образуя нитрит, а другие окисляют нитрит в нитрат. Наиболее известные виды нитрифицирующих бактерий –
это Nitrosomonas и Nitrobacter. Nitrosomonas окисляет аммиак:

37.wmf

Nitrobacter окисляют нитрит:

38.wmf

Бактерии, окисляющие аммиак, поставляют субстрат для бактерий, окисляющих нитрит. Поскольку высокие концентрации аммиака оказывают на Nitrobacter токсическое действие, Nitrosomonas, используя аммиак и образуя кислоту, тем самым улучшает и условия существования для Nitrobacter.

Нитрификаторы – грамотрицательные бактерии, принадлежащие к семейству Nitrobacteracea. Им не нужны восстановленные соединения углерода для нормального роста и размножения, они способны восстанавливать CO2 до органических соединений, используя для этого энергию окисления минеральных соединений азота – аммиака и нитритов. Таким образом, нитрификато-
ры – бактерии, которые способны питаться исключительно неорганическими соединениями и осуществляют процесс хемосинтеза, синтеза органических соединений из минеральных. Хемосинтез – путь усвоения живыми существами неорганического углерода, альтернативный фотосинтезу. Растения используют нитраты для образования разных органических веществ. Животные потребляют с пищей растительные белки, аминокислоты и др. азотсодержащие вещества. Таким образом, растения делают органический азот доступным для других организмов-консументов.

Все живые организмы поставляют азот в окружающую среду. С одной стороны, все они выделяют в ходе жизнедеятельности продукты азотистого обмена: аммиак, мочевину и мочевую кислоту. Последние два соединения разлагаются в почве с образованием аммиака (который при растворении в воде дает ионы
аммония).

36.wmf

Мочевая кислота, выделяемая птицами и рептилиями, также быстро минерализуется особыми группами микроорганизмов с образованием NH3 и СО2. С другой стороны, азот, включённый в состав живых существ, после их гибели подвергается аммонификации (разложение содержащих азот сложных соединений с выделением аммиака и ионов аммония()) и нитрификации.

Продукты нитрификации – и в дальнейшем подвергаются денитрификации. Этот процесс целиком происходят благодаря деятельности денитрифицирующих бактерий, которые обладают способностью восстанавливать нитрат через нитрит до газообразной закиси азота (N2O) и азота (N2). Эти газы свободно переходят в атмосферу.

39.wmf

В отсутствии кислорода нитрат служит конечным акцептором водорода. Способность получать энергию путем использования нитрата как конечного акцептора водорода с образованием молекулы азота широко распространена у бактерий. Временные потери азота на ограниченных участках почвы, несомненно, связаны с деятельностью денитрифицирующих бактерий. Таким образом, круговорот азота невозможен без участия почвенной микрофлоры.

Усваиваемые соединения азота могут накапливаться в почве в неорганической форме (нитрат) или могут быть включены в живой организм как органический азот. Ассимиляция и минерализация определяет поглощение соединений азота из почвы, объединение их в биомолекулы растений и конверсию в неорганический азот после отмирания растений, соответственно. Ассимиляция – переход неорганического азота (типа нитрата) в органическую форму азота как, например, аминокислоты. Нитрат переходит с помощью ферментов сначала в нитрит (редуктаза нитрата), затем в аммиак (редуктаза нитрита). Аммиак входит в состав аминокислот.

Факторы, влияющие на круговорот азота в антропогенных биоценозах

В отсутствие деятельности человека процессы связывания азота и нитрификации практически полностью уравновешены противоположными реакциями денитрификации. Часть азота поступает в атмосферу из мантии с извержениями вулканов, часть прочно фиксируется в почвах и глинистых минералах, кроме того, постоянно идёт утечка азота из верхних слоёв атмосферы в межпланетное пространство. Но в настоящее время на круговорот азота влияют многочисленные антропогенные факторы. Во-первых, это кислотные дожди – явление, при котором наблюдается понижение pH дождевых осадков и снега из-за загрязнений воздуха кислотными оксидами (например, оксидами азота). Химизм этого явления состоит в следующем. Для сжигания органического топлива в двигатели внутреннего сгорания и котлы подается воздух или смесь топлива с воздухом. Почти на 4/5 воздух состоит из газа азота и на 1/5 – из кислорода. При высоких температурах, создаваемых внутри установок, неизбежно происходит реакция азота с кислородом и образуется оксид азота:

Эта реакция эндотермическая и в естественных условиях происходит при грозовых разрядах, а также сопутствует другим подобным магнитным явлениях в атмосфере. В наши дни человек в результате своей деятельности сильно увеличивает накопление оксида азота (II) на планете. Оксид азота (II) легко окисляется до оксида азота (IV) уже при нормальных условиях:

Далее оксид азота реагирует с атмосферной водой с образованием азотной и азотистой кислот:

2NO2 + H2O = HNO3 + HNO2

В каплях атмосферной воды эти кислоты диссоциируют с образованием, соответственно нитрат- и нитрит-ионов, а ионы попадают с кислотными дождями в почву. Вторая группа антропогенных факторов, влияющих на азотистый обмен почв, – это технологические выбросы. Оксиды азота – одни из самых распространенных загрязнителей воздуха. Неуклонный рост производства аммиака, серной и азотной кислоты напрямую связан с увеличением объёма отходящих газов, а, следовательно, с увеличением количества выбрасываемых в атмосферу оксидов азота. Третья группа факторов – переудобрение почв нитритами, нитратами (селитрой) и органическими удобрениями. И, наконец, на азотистый обмен почв отрицательно влияет повышенный уровень биологического загрязнения. Возможные его причины: сброс сточных вод, несоблюдение санитарных норм (выгул собак, неконтролируемые свалки органических отходов, плохое функционирование канализационных систем и др.). Как следствие почва загрязняется аммиаком, солями аммония, мочевиной, индолом, меркаптанами и другими продуктами разложения органики. В почве образуется дополнительное количество аммиака, который затем перерабатывается бактерииями в нитраты.

Актуальность изучения круговорота азота в антропогенных биоценозах

Между литосферой, гидросферой, атмосферой и живыми организмами Земли постоянно происходит обмен химическими элементами. Этот процесс имеет циклический характер: переместившись из одной сферы в другую, элементы вновь возвращаются в первоначальное состояние.

Очень важно изучать и контролировать круговорот азота, особенно в антропогенных биоценозах, потому что небольшой сбой в какой-либо части цикла может привести к серьёзным последствиям: сильным химическим загрязнениям почв, зарастанию водоемов и загрязнению их продуктами разложения отмершей органики (аммиак, амины и др.), высокому содержанию растворимых соединений азота в питьевой воде.

Для изучения особенностей круговорота азота можно использовать комплексную методику по изучению содержания ионов нитритов (), нитратов () и аммония () в почве и её микробиологических показателях.

Азотфиксация. Круговорот азота в природе.

Воздух, которым дышат все живые существа, на 78% состоит именно из азота, но воздушный азот не доступен для питания, ни людям, ни животным, ни растениям. Чтобы воздушный азот лучше усваивался, на помощь приходят микроорганизмы, которые помогают перевести воздушный азот в такую форму, которая будет доступна всем растениям. После того, как растение погибает, все азотосодержащие вещества, находящиеся в растительных остатках перерабатываются микроорганизмами. Белки и аминокислоты под действием микроорганизмов переходят в аммиак и аммонийные соединение, те в свою очередь переходят в состояние нитритов и нитратов, после чего последующие растения с помощью корневой системы употребляют эти нитраты.

Неизрасходованные нитраты идут на процесс денитрификации, при котором с помощью микроорганизмов нитрат переходит в газообразный азот и обратно возвращается в атмосферу. Во время грозы и при высоких температурах азот с кислородом объединяются и образуют оксид азота, который в свою очередь соединяется с воздушной влагой и в виде раствора азотной кислоты, а так же раствора азотистой кислоты во время дождей попадают на поверхность почвы. Помимо этого, оксид азота образуется при извержении вулканов и при пожарах.

В процессе промышленной жизнедеятельности человека и с выбросами транспорта так же образуется оксид азота, взаимодействующий с воздушной влагой, которая выпадает в виде раствора азотной кислоты, а так же раствора азотистой кислоты на поверхность почвы, нарушая тем самым естественный круговорот азота в природе. Обильные дожди приводят к сильному закислению почвы, особенно той почвы, которая располагается рядом с крупными предприятиями или крупными городами. Бороться с этим можно только с помощью известкования.

По мнению агрономов азотфиксация – это чудо природы. Если человек в процессе производства азотных удобрений преобразует воздушный азот в аммиак при большой температуре и большом давлении, то в природе микроорганизмами этот процесс протекает в естественных условиях, то есть при нормальной температуре и при оптимальном атмосферном давлении.

Все азотфиксаторы делятся на три группы:

  • Симбиотические азотфиксаторы (взаимодействуют с культурными растениями, вступают с ними в симбиоз и образуют на корнях растений дополнительные органы, например у бобовых – это образование клубеньков)
  • Ассоциативные азотфиксаторы (такие микроорганизмы находятся либо на поверхности, либо внутри растения или же живут на поверхности корневой системы культурного растения)
  • Не симбиотические или свободноживущие азотфиксаторы (такие микроорганизмы не взаимодействуют с высшими растениями, они свободно живут в почве и преобразуют азот до аммиака)

Симбиотические азотфиксаторы

Наибольший интерес в сельском хозяйстве представляет симбиоз между бобовыми растениями и клубеньковыми бактериями в почве. После уборки бобовых, в почве дополнительного азота остается от пятидесяти до трех ста килограмм действующего вещества азота. Если перевести на селитру, то это дополнительные от ста пятидесяти до почти тонны аммиачной селитры.

Как они взаимодействуют?

При прорастании семян бобовых растений, корневые волоски растения способствуют проникновению клубеньковых бактерий внутрь растения, образуя на корнях клубеньки, которые являются домом для клубеньковых бактерий. Те, в свою очередь могут интегрировать атмосферный азот в аммиак, и потом бобовое растение этот аммиак использует для своих нужд. Взамен клубеньковые бактерии получают питание от бобовых культур в виде органических кислот, витаминов, углеводов получаемых в процессе фотосинтеза от надземной части растения. Преобразование атмосферного азота в аммиак у клубеньковых бактерий, как и у любых других азотфиксаторов, происходит с помощью фермента нитрогеназа.

В нитрогеназу входят два белка, один из которых содержит молибден и железо, другой – железо. Поэтому два этих микроэлемента крайне важны в процессе азотфиксации. Меньше всего молибдена содержится в кислых почвах, поэтому на Дальнем востоке, где почвы кислые из-за большого количества осадков, часто обрабатывают семена бобовых растений молибдатом аммония. Недостаток железа характерен для щелочных почв, то есть недостаток железа в почве или молибдена сильно влияет на азотфиксацию. Так же для нормального протекания азотфиксации требуется достаточное количество серы, кальция, фосфора, магния, калия и других микроэлементов.

Преобразование атмосферного азота до аммиака с помощью нитрогеназы является анаэробным процессом (без доступа кислорода). Оградить процесс азотфиксации в клубеньках от доступа кислорода помогает фермент – леггемоглобин. Этот фермент регулирует поступление кислорода в клубеньки и окрашивает в красный цвет их. Если на разрезе клубенёк серого цвета, то это означает, что в таком клубеньке азотфиксация не протекает, либо протекает очень слабо.

Если клубенёк на разрезе розового или ярко красного цвета, то это значит, что азотфиксация в таком клубеньке активно протекает.

Как усилить азотфиксацию у бобовых культур?

Агроприемы позволяющие усилить азотфиксацию:

Достаточная обеспеченность бобовых культур минеральным питанием.

Под бобовые культуры в обязательном порядке вносят фосфорно-каллийные удобрения. Азотные удобрения вносят не более 30-40 кг действующего вещества азота на гектар. Большие дозы могут подавлять образование клубеньков и азотфиксацию. От момента заражения корней растений клубеньковыми бактериями, до момента начала образования клубеньков все полученное питание тратится на то, чтобы клубеньковых бактерий в клубеньке стало больше, в этот период бобовые растения останавливают рост.

Чтобы компенсировать недостаток питания, агрономы рекомендуют вносить азотные удобрения. Важно помнить и про листовые подкормки, так как они улучшают процесс фотосинтеза за счет дополнительного питания и за счет снятия стрессов. Чем активнее протекает процесс фотосинтеза, тем больше питательных веществ поступает в клубенек, за счет этого усиливается азотфиксация.

Обработка (инокуляция) семян биопрепаратами, которые содержат клубеньковые бактерии.

Чем больше количество клубеньковых бактерий присутствует в грунте, тем быстрее происходит заражение бактериями корневой системы бобовых, тем меньше образуется клубеньков на поверхности корней. При посеве новых культур, таких как: соя, козлятник, который до этого в странах СНГ не выращивались, клубеньковых бактерии такого типа вообще нет, поэтому при посеве новых культур обработка семян биопрепаратами – это обязательное условие. Если вы выращиваете сою или козлятник первый год, то лучшим вариантом будет обработка не семян, а внесение препарата в разбавленном виде непосредственно в почву при посеве.

Так же обрабатывать бобовые культуры инокулянтами стоит из-за эффективности аборигенной микрофлоры (дикие штаммы, находящиеся в почве). У любого предприятия, которое производит биопрепараты, основная задача заключается в том, чтобы найти те штаммы, которые максимально эффективно работают с той или иной бобовой культурой. Поэтому по эффективности аборигенные штаммы всегда будут проигрывать тем штаммам, которые специально выведены в лабораторных условиях.


Обращая внимание на таблицу, можно понять, что применение инокулянтов в некоторых случаях давало прибавку даже больше, чем внесение минеральных удобрений.

КМУ – комплексное микробиологическое удобрение.

Водородный показатель почвы.

Для оптимальной жизни и процветания клубеньковых бактерий в грунте, водородный показатель в почве должен составлять от 6,5 до 7,2. Если почва кислая (меньше 5,5), то в таких почвах численность клубеньковых бактерий будет минимальная и именно поэтому в кислых почвах инокуляция семян работает наилучшим образом.

Температура и влажность почвы.

У каждого региона есть свои рекомендуемые сроки сева бобовых культур и если позволяют осадки и влага в почве, то эти сроки нужно сдвигать на более позднее время.


Смотря на рисунок, можно сказать, что слишком ранний посев гороха привел к тому, что клубеньки у гороха не образовались, так же клубеньки не образовались по паровому предшественнику, т.к. в этом случае гороху требовался дополнительный азот, он брал весь из почвы.

Минимальная температура для азотфиксации составляет 10 градусов, оптимальная — от 20 до 25 градусов. При температуре почвы выше 30 градусов эффективность азотфиксации с помощью клубеньков будет снижаться.

Оптимальная влажность почвы для азотфиксации составляет 60-70% от полной емкости почвы. Минимальный порог, при котором происходит азотфиксация, составляет 20%, так же азотфиксация будет замедляться на очень влажных почвах, т.к. в этом случае корни бобовых культур не получают кислород.

Ассоциативные азотфиксаторы.

Ассоциативные азотфиксаторы работают по такому же принципу, как и симбиотические, т.е. они от культурного растения получают питание в виде органических кислот, витаминов и углеводов и взамен при процессе азотфиксации, при переводе воздушного азота в аммиак отдают этот аммиак обратно растению. Не бобовые культуры с помощью ассоциативных азотфиксаторов способны удовлетворять потребность азота до 45%.

Преобразование воздушного азота в аммиак у ассоциативных азотфиксаторов происходит так же с помощью фермента нитрогеназа. Ассоциативные азотфиксаторы делятся на: эндофитные, эпифитные и ризосферные.

Эндофитные бактерии поселяются внутри самого растения, обычно в межклеточном пространстве и никак не вредят растению.

Эпифитные азотфиксирующие бактерии живут на поверхности растения, они так же питаются выделениями и обратно через листовую поверхность отдают азот.

Ризосферные азотфиксирующие бактерии поселяются на поверхности корня и питаются гелеобразными корневыми выделениями, которые содержат углеводы, органические кислоты, витамины и защищают азотфиксирующие бактерии от чрезмерного доступа кислорода.

Ассоциативные бактерии в жизни растений выполняют ряд очень важных функций. В процессе своей жизнедеятельности они вырабатывают вещества, которые стимулируют рост корневой системы у культурного растения, тем самым улучшая минеральное питание и доступа к влаге. Так же микроорганизмы вырабатывают антибиотические вещества, которые не дают развиться патогенной микрофлоре на поверхности корня. Другие вещества, которые вырабатываются в процессе жизнедеятельности азотфиксаторами, позволяют растению пережить стрессовые ситуации, такие как: засуха, увлажнение почвы, высоки и низкие температуры, засоления почвы, загрязненная почва тяжелыми металлами и т.д.

В каких случаях биопрепараты и аборигенные ассоциативные азотфиксаторы будут работать в полную силу?

Наличие доступных макро и микроэлементов в почве.

То есть чем лучше себя чувствует надземная часть растения, тем больше питания получают азотфиксаторы, но нужно учитывать, что дозы азотных удобрений больше 100-150 кг действующего вещества азота способны подавить азотфиксацию. Так же улучшить азотфиксацию помогают листовые подкормки.

Плодородие почвы.

Максимально эффективная азотфиксация наблюдается в типичных черноземах, как в наиболее плодородных почвах.

Температура, водородный показатель и влажность почвы.

Внесение органических удобрений и посев покровных культур.

В процессе гниения и минерализации органических удобрений происходит высвобождение питательных веществ, как для самих растений, так и для почвенной микрофлоры, что положительно сказывается на численности полезных бактерий, в частности азотфиксаторов. Вторым положительным моментом от внесения органических удобрений – это то, что в процессе гниения в атмосферу выделяется углекислый газ, который усиливает фотосинтез, а чем лучше работает фотосинтез, тем больше еды получают азотфиксаторы. Покровные культуры – это источник питания для азотфиксаторов. Чтобы азотфиксаторов было много, на поверхности почвы должно постоянно что-то расти.

Минимальная азотфиксация наблюдается в засушливые периоды, а максимальная азотфиксация наблюдается в годы с достаточным увлажнением.

Сколько можно дополнительно получить азота при применении биопрепаратов, которые содержат ассоциативные азотфиксаторы?

При осадках близких к средней годовой норме, применение таких биопрепаратов эквивалентно внесению азотных удобрений под озимую пшеницу, рож, ячмень, овес – 30 кг действующего вещества азота на гектар. Под яровую пшеницу эта цифра от 30 до 45 кг, под кукурузу сорго от 45 до 60 кг действующего вещества азота на гектар, то есть эти две культуры наибольшим образом отзываются на биопрепараты. Под картофель эта цифра будет составлять от 40 до 45 кг действующего вещества азота на гектар.

Не симбиотические или свободно живущие азотфиксаторы.

Источником питания для таких микроорганизмов является, грубо говоря, все, что придется, то есть они способны усваивать углеводы как из соломы, так и из спиртов и ацетонов. В среднем свободноживущие микроорганизмы способны за год продуцировать примерно 10-13 кг действующего вещества азота, то есть их вклад в круговорот азота в природе минимален по сравнению с другими видами азотфиксаторов.

Так как получение азота в почве наиболее эффективно от возделывания бобовых культур, с них и начнем.

Чем больше в севообороте будет бобовых культур, тем меньше можно применять азотных удобрений или же полностью отказаться от них. В севооборот можно бобовые культуры вводить как самостоятельную единицу, можно бобовые сеять как бинарные посевы (совместный посев бобовой культуры с не бобовой). Инокуляция семян бобовых культур специальными препаратами позволяет увеличить урожай, как самих бобовых культур, так и последующих за счет того, что бобовые культуры оставляют после себя больше азота.

При введении в севооборот бобовых, как самостоятельной культуры, после их уборки нужно обязательно сеять покровные культуры, причем в смеси покровных культур нужно делать упор на те культуры, которые максимально потребляют азот. К таким культурам относятся: овес, рапс, пшеница, ячмень. Связано это с тем, что минерализация растительных остатков после уборки бобовых культур протекает очень быстро, то есть после уборки в почве образуется много нитратов. Если после бобовых культур сеять покровные, то покровные культуры через корневую систему забирают большую часть нитратов, сводя потери к минимуму.

Для нормального протекания азотфиксации нужна рыхлая структурированная почва. Рыхлой почву можно сделать двумя способами: механическим способом и правильным выстраиванием севооборота. Агрономы считают, что правильное выстраивание севооборота – это наиболее разумный и наименее затратный способ.

Чтобы повысить численность аборигенных штаммов азотфиксаторов, которые находятся в почве, нужно чтобы на поле постоянно что-то росло, поэтому введение в севооборот покровных культур – это самое лучшее решение.

Можно влиять на растение с разных сторон, применяя биопрепараты которые содержат ассоциативные эндофитные, эпифитные и ризосферные бактерии. Если применять все три вида бактерий, то эффект будет максимальным. Нельзя забывать и про минеральные удобрения, особенно фосфорно-калийные и листовые подкормки.

Биопрепараты, которые содержат свободноживущие бактерии можно использовать только в случае, когда не вывозят солому с поля после уборки, так как основным источником питания для таких бактерий является свежая солома. Так же стоит учитывать условия, при которых микроорганизмы, содержащиеся в биопрепарате, максимально эффективны, например азотобактер максимально эффективен в почвах с водородным показателем от 7,2 до 8,2 и при наличии большого количества доступного фосфора.

До двадцатого века основными видами удобрений, которые вносили в почву, были органические, двадцатый век был эпохой минеральных удобрений. По мнению агрономов двадцать первый и двадцать второй век будет эпохой биоудобрений. Есть уже несколько предприятий, которые полностью перешли на биопрепараты и более того, они выращивают их самостоятельно. Эти предприятия полностью отказались от минеральных удобрений и от химических средств защиты растений, тем самым получая очень достойные урожаи.

Круговорот азота в природе - описание, этапы и значение процесса

Значение круговорота N2 для биосферы

Для того чтобы дать описание и схему круговорота азота в природе, нужно помнить, что этот элемент — важная часть белков и ДНК. Без него жизни, какой её знает человечество, могло и не быть. Но биологические существа способны усвоить его только в определённом виде. В результате различных геологических процессов этот элемент принимает ту форму, которой могут воспользоваться организмы. Обмен элементами между живыми существами, воздухом, водой и земной корой получил название биогеохимических циклов.

Круговорот азота в природе - описание, этапы и значение процесса

Таким образом, микроэлементы, являющиеся частью биологического организма, возвращаются в природу. В этом процессе частицы постоянно перемещаются между воздухом, водой и живыми организмами, в противном случае жизнь давно бы истратила свои ресурсы.

N2 входит в состав всего живого. Это один из самых популярных в природе элементов. Атмосфера земли на 78% состоит из N2. Он также содержится в воде и почве и входит в состав белков.

Этот элемент включается в синтез важнейших органических молекул, белков и нуклеиновых кислот. Азот в виде газа, содержащийся в атмосфере, довольно инертен и немногие организмы способны получать его из воздуха. Растения могут поглощать лишь связанный микроэлемент, то есть в составе химических соединений.

Молекулярный азот — очень стойкое соединение. Для его разрушения необходимо большое количество энергии.

Связывание или фиксация происходит тремя способами:

Круговорот азота в природе - описание, этапы и значение процесса

Для того чтобы понять, какие организмы принимают участие в круговороте азота, надо вспомнить класс биологии. Существуют важнейшие азотфиксаторы цианобактерии. Они играют важную роль в водных экосистемах. N2 также свободно фиксируется свободноживущими почвенными бактериями. При помощи специального фермента бактерии фиксируют атмосферный азот, синтезируя аммиак и нитраты. Получается взаимовыгодное существование. Микроорганизмы обеспечивают растения азотом, а растения питают бактерии сахарами.

Большинство видов растений получает нитраты из почвы. Растительные белки становятся частью травоядных животных, а затем хищников. В круговороте бактерии играют важнейшую роль, разлагая сложные азотсодержащие соединения, чтобы их усвоили растения. В условиях недостатка кислорода некоторые бактерии разлагают органические вещества до получения газообразного азота. Он возвращается в атмосферу и весь цикл повторяется вновь.

Этапы круговорота атмосферного азота

Для того чтобы кратко описать и понять этот процесс, нужно представить биосферу, как два соединяющихся сосуда разных размеров. В большом находится вещество из воздуха и воды, в маленьком — элементы, участвующие в жизнедеятельности организмов. В трубке, которая их соединяет — переходящий в разные состояния азот. Так в живой природе происходит его поступление в организм.

Круговорот азота в природе - описание, этапы и значение процесса

Процесс круговорота очень медленный. Он имеет определённую последовательность:

  • Поглощение вещества бактериями биосферы.
  • Переход из свободного состояния в связанный.
  • Усвоение растениями его соединений.
  • Поглощение элемента животными.
  • Восстановление концентрации микроорганизмами.

Азот в живой природе

Роль азота в природе ещё не изучена до конца. Любая экологическая система усваивает небольшое количество вещества. Поэтому при производстве удобрений нарушается баланс между газом из органических соединений, вернувшимся в атмосферу, и элементами из воздушной среды.

Было отмечено, что его состояние может переходить из техногенного потока в природный. Лишнее количество газа накапливается в природе и вызывает отрицательные последствия. Выявлена закономерная связь между сельским хозяйством, например, применением различных добавок, и загрязнением окружающей среды.

Круговорот азота в природе - описание, этапы и значение процесса

Приблизительно 36% азота, который проникает в землю с удобрениями, просачивается в сточные воды. В них оказывается большое количество нитратов азота, которые, попадая в реки и озёра, вызывают усиленное размножение растений.

Этот процесс получил название эвтрофикация, то есть загрязнение водных ресурсов водорослями. Это одно из самых важных экологических последствий в применении этого вещества. Молекулы служат питательной средой для водяных растений. Путём накапливания они разрастаются очень быстро, затемняют водоём и не дают развиваться другим растениям. Со временем водоросли отмирают. Для их разложения необходимо очень большое количество воздуха.

Водный фонд становится бедным на наличие кислорода. Из неё уходят все возможные живые организмы, такие как ракообразные и рыба. Вода заболачиваются, превращаясь со временем в болото, и пересыхает.

Ещё одной причиной загрязнения являются фермы. Есть три фактора:

Круговорот азота в природе - описание, этапы и значение процесса

При этом в воздух попадает аммиак. На расстоянии двух километров от ферм наблюдается его распространение и загрязнение воздуха. В результате близлежащие водоёмы оказываются загрязнены. Для предотвращения этого ниже по склону устраиваются пруды. А площадки откорма скота обязательно проектируются с учётом отметки грунтовых вод.

Последствием нарушения баланса азота в атмосфере является увеличение количества нитратов в продуктах питания. В культурах, которые выращивают в сельском хозяйстве, могут содержаться большие дозы нитратного азота. Его образование возможно при неправильной транспортировке, а также при помощи бактерий. При попадании в организм и взаимодействии с гемоглобином они нарушают проникновение кислорода в кровь. Это серьёзно отражается на здоровье человека.

Окислы также входят в состав азотного соединения. Соединения образуются и оказываются в атмосфере путём сжигания газа, выделяются при использовании автомобиля или турбинных самолётов. Они не причиняют вреда только в том случае, если не окисляются озоном до двуокиси азота. Нахождение большой концентрации в организме приводит к тяжёлым заболеваниям.

Для предотвращения чудовищных последствий этой проблемы необходимо тщательно изучать круговорот азота. Нужно найти способы соблюдения баланса между экосистемой и человеком. Можно заметить, что в современном мире при описании круговорота элементов возникают определённые затруднения, так как не все его процессы до конца изучены.

Влияние человека на круговорот

Деятельность людей имеет непосредственное отношение к этому. Промышленность является самым интенсивным вмешательством в этот процесс. Главным источником распространения лишнего объёма газа в атмосфере считается сельское хозяйство. Выращиваемые культуры поглощают множество питательных веществ, тем самым обедняя её. Картофель, свёкла, зерновые, каждый год потребляют до 200 кг вещества с одного гектара земли.

Если применение органических удобрений недостаточно или полностью отсутствуют бобовые растения, то при исчерпании резервных сил и вымывании полезных элементов из почвы ухудшается ее состояние и плодородие. И наоборот. Чрезмерное накопление удобрений приводит к увеличению количества вещества для наземных растений и уменьшению свободного азота, попадающего в атмосферу.

Читайте также: