Какие клетки в организме человека осуществляют синтез антитела

Обновлено: 02.07.2024

Эта статья — об иммунологии. Об украинской поп-рок группе см. Антитела (группа); о фильме см. Антитела (фильм, 2005).

Антитела (иммуноглобулины, ИГ, Ig) — это особый класс гликопротеинов, присутствующих на поверхности В-клеток в виде мембраносвязанных рецепторов и в сыворотке крови и тканевой жидкости в виде растворимых молекул. Они являются важнейшим фактором специфического гуморального иммунитета. Антитела используются иммунной системой для идентификации и нейтрализации чужеродных объектов — например, бактерий и вирусов. Антитела выполняют две функции: антиген-связывающую и эффекторную (вызывают тот или иной иммунный ответ, например, запускают классическую схему активации комплемента).

Антитела синтезируются плазматическими клетками, которыми становятся В-лимфоциты в ответ на присутствие антигенов. Для каждого антигена формируются соответствующие ему специализировавшиеся плазматические клетки, вырабатывающие специфичные для этого антигена антитела. Антитела распознают антигены, связываясь с определённым эпитопом — характерным фрагментом поверхности или линейной аминокислотной цепи антигена.

Антитела состоят из двух лёгких цепей и двух тяжелых цепей. У млекопитающих выделяют пять классов антител (иммуноглобулинов) — IgG, IgA, IgM, IgD, IgE, различающихся между собой по строению и аминокислотному составу тяжёлых цепей и по выполняемым эффекторным функциям.

Содержание

История изучения

Самое первое антитело было обнаружено Берингом и Китазато в 1890 году, однако в это время о природе обнаруженного столбнячного антитоксина, кроме его специфичности и его присутствия в сыворотке иммунного животного, ничего определенного сказать было нельзя. Только с 1937 года — исследований Тизелиуса и Кабата, начинается изучение молекулярной природы антител. Авторы использовали метод электрофореза белков и продемонстрировали увеличение гамма-глобулиновой фракции сыворотки крови иммунизированных животных. Адсорбция сыворотки антигеном, который был взят для иммунизации, снижала количество белка в данной фракции до уровня интактных животных.

Строение антител


Общий план строения иммуноглобулинов: 1) Fab; 2) Fc; 3) тяжелая цепь; 4) легкая цепь; 5) антиген-связывающийся участок; 6) шарнирный участок

Антитела являются относительно крупными (~150 кДа — IgG) гликопротеинами, имеющими сложное строение. Состоят из двух идентичных тяжелых цепей (H-цепи, в свою очередь состоящие из VH, CH1, шарнира, CH2 и CH3 доменов) и из двух идентичных лёгких цепей (L-цепей, состоящих из VL и CL доменов). К тяжелым цепям ковалентно присоединены олигосахариды. При помощи протеазы папаина антитела можно расщепить на два Fab (англ. fragment antigen binding — антиген-связывающий фрагмент) и один Fc (англ. fragment crystallizable — фрагмент, способный к кристаллизации). В зависимости от класса и исполняемых функций антитела могут существовать как в мономерной форме (IgG, IgD, IgE, сывороточный IgA) так и в олигомерной форме (димер-секреторный IgA, пентамер — IgM). Всего различают пять типов тяжелых цепей (α-, γ-, δ-, ε-и μ- цепи) и два типа легких цепей (κ-цепь и λ-цепь).

Классификация по тяжелым цепям

Различают пять классов (изотипов) иммуноглобулинов, различающихся:

  • величиной
  • зарядом
  • последовательностью аминокислот
  • содержанием углеводов

Класс IgG классифицируют на четыре подкласса (IgG1, IgG2, IgG3, IgG4), класс IgA — на два подкласса (IgA1, IgA2). Все классы и подклассы составляют девять изотипов, которые присутствуют в норме у всех индивидов. Каждый изотип определяется последовательностью аминокислот константной области тяжелой цепи.

Функции антител

Иммуноглобулины всех изотипов бифункциональны. Это означает, что иммуноглобулин любого типа

  • распознает и связывает антиген, а затем
  • усиливает киллинг и/или удаление иммунных комплексов, сформированных в результате активации эффекторных механизмов.

Одна область молекулы антител (Fab) определяет ее антигенную специфичность, а другая (Fc) осуществляет эффекторные функции: связывание с рецепторами, которые экспрессированы на клетках организма (например, фагоцитах); связывание с первым компонентом (C1q) системы комплемента для инициации классического пути каскада комплемента.

  • IgG является основным иммуноглобулином сыворотки здорового человека (составляет 70-75 % всей фракции иммуноглобулинов), наиболее активен во вторичном иммунном ответе и антитоксическом иммунитете. Благодаря малым размерам (коэффициент седиментации 7S, молекулярная масса 146 кДа) является единственной фракцией иммуноглобулинов, способной к транспорту через плацентарный барьер и тем самым обеспечивающей иммунитет плода и новорожденного. В составе IgG 2-3 % углеводов; два антигенсвязывающих Fab-фрагмента и один FC-фрагмент. Fab-фрагмент (50-52 кДа) состоит из целой L-цепи и N-концевой половины H-цепи, соединённых между собой дисульфидной связью, тогда как FC-фрагмент (48 кДа) образован C-концевыми половинами H-цепей. Всего в молекуле IgG 12 доменов (участки, сформированные из β-структуры и α-спиралей полипептидных цепей Ig в виде неупорядоченных образований, связанных между собой дисульфидными мостиками аминокислотных остатков внутри каждой цепи): по 4 на тяжёлых и по 2 на лёгких цепях.
  • IgM представляют собой пентамер основной четырехцепочечной единицы, содержащей две μ-цепи. При этом каждый пентамер содержит одну копию полипептида с J-цепью (20 кДа), который синтезируется антителообразующей клеткой и ковалентно связывается между двумя соседними FC-фрагментами иммуноглобулина. Появляются при первичном иммунном ответе B-лимфоцитами на неизвестный антиген, составляют до 10 % фракции иммуноглобулинов. Являются наиболее крупными иммуноглобулинами (970 кДа). Содержат 10-12 % углеводов. Образование IgM происходит ещё в пре-B-лимфоцитах, в которых первично синтезируются из μ-цепи; синтез лёгких цепей в пре-B-клетках обеспечивает их связывание с μ-цепями, в результате образуются функционально активные IgM, которые встраиваются в поверхностные структуры плазматической мембраны, выполняя роль антиген распознающего рецептора; с этого момента клетки пре-B-лимфоцитов становятся зрелыми и способны участвовать в иммунном ответе.
  • IgA сывороточный IgA составляет 15-20 % всей фракции иммуноглобулинов, при этом 80 % молекул IgA представлено в мономерной форме у человека. Секреторный IgA представлен в димерной форме в комплексе секреторным компонентом, содержится в серозно-слизистых секретах (например в слюне, слезах, молозиве, молоке, отделяемом слизистой оболочки мочеполовой и респираторной системы). Содержит 10-12 % углеводов, молекулярная масса 500 кДа.
  • IgD составляет менее одного процента фракции иммуноглобулинов плазмы, содержится в основном на мембране некоторых В-лимфоцитов. Функции до конца не выяснены, предположительно является антигенным рецептором с высоким содержанием связанных с белком углеводов для В-лимфоцитов, еще не представлявшихся антигену. Молекулярная масса 175 кДа.
  • IgE в свободном виде в плазме почти отсутствует. Способен осуществлять защитную функцию в организме от действия паразитарных инфекций, обуславливает многие аллергические реакции. Механизм действия IgE проявляется через связывание с высоким сродством (10 −10 М) с поверхностными структурами базофилов и тучных клеток, с последующим присоединением к ним антигена, вызывая дегрануляцию и выброс в кровь высоко активных аминов (гистамина и серотонина — медиаторов воспаления). 200 кДа.

Классификация по антигенам

Специфичность антител

Клонально-селекционная теория имеет в виду то, что каждый лимфоцит синтезирует антитела только одной определенной специфичности. И эти антитела располагаются на поверхности этого лимфоцита в качестве рецепторов.

Как показывают опыты, все поверхностные иммуноглобулины клетки имеют одинаковый идиотип: когда растворимый антиген, похожий на полимеризованный флагеллин, связывается со специфической клеткой, то все иммуноглобулины клеточной поверхности связываются с данным антигеном и они имеют одинаковую специфичность то есть одинаковый идиотип.

Антиген связывается с рецепторами, затем избирательно активирует клетку с образованием большого количества антител. И так как клетка синтезирует антитела только одной специфичности, то эта специфичность должна совпадать со специфичностью начального поверхностного рецептора.

Специфичность взаимодействия антител с антигенами не абсолютна, они могут в разной степени перекрестно реагировать с другими антигенами. Антисыворотка, полученная к одному антигену, может реагировать с родственным антигеном, несущим одну или несколько одинаковых или похожих детерминант . Поэтому каждое антитело может реагировать не только с антигеном, который вызвал его образование, но и с другими, иногда совершенно неродственными молекулами. Специфичность антител определяется аминокислотной последовательностью их вариабельных областей.

Клонально-селекционная теория:

  1. Антитела и лимфоциты с нужной специфичностью уже существуют в организме до первого контакта с антигеном.
  2. Лимфоциты, которые участвуют в иммунном ответе, имеют антигенспецифические рецепторы на поверхности своей мембраны. У B-лимфоцитов рецепторы- молекулы той же специфичности, что и антитела, которые лимфоциты впоследствии продуцируют и секретируют.
  3. Любой лимфоцит несет на своей поверхности рецепторы только одной специфичности.
  4. Лимфоциты, имеющие антиген, проходят стадию пролиферации и формируют большой клон плазматических клеток . Плазматические клетки синтезируют антитела только той специфичности, на которую был запрограммирован лимфоцит-предшественник. Сигналами к пролиферации служат цитокины, которые выделяются другими клетками. Лимфоциты могут сами выделять цитокины.

Вариабельность антител

Антитела являются чрезвычайно вариабельными (в организме одного человека может существовать до 10 8 вариантов антител). Все разнообразие антител проистекает из вариабельности как тяжёлых цепей, так и лёгких цепей. У антител, вырабатываемых тем или иным организмом в ответ на те или иные антигены, выделяют:

  • Изотипическая вариабельность — проявляется в наличии классов антител (изотипов), различающихся по строению тяжёлых цепей и олигомерностью, вырабатываемых всеми организмами данного вида;
  • Аллотипическая вариабельность — проявляется на индивидуальном уровне в пределах данного вида в виде вариабельности аллелей иммуноглобулинов — является генетически детерминированным отличием данного организма от другого;
  • Идиотипическая вариабельность — проявляется в различии аминокислотного состава антиген-связывающего участка. Это касается вариабельных и гипервариабельных доменов тяжёлой и лёгкой цепей, непосредственно контактирующих с антигеном.

Контроль пролиферации

Наиболее эффективный контролирующий механизм заключается в том, что продукт реакции одновременно служит ее ингибитором. Этот тип отрицательной обратной связи имеет место при образовании антител. Действие антител нельзя объяснить просто нейтрализацией антигена, потому что целые молекулы IgG подавляют синтез антител намного эффективнее, чем F(ab')2 -фрагменты. Предполагают, что блокада продуктивной фазы T-зависимого B-клеточного ответа возникает в результате образования перекрестных связей между антигеном, IgG и Fc — рецепторами на поверхности B-клеток. Инъекция IgM, усиливает иммунный ответ. Так как антитела именно этого изотипа появляются первыми после введения антигена, то на ранней стадии иммунного ответа им приписывается усиливающая роль.

Дендритные клетки и лимфоциты

Примечание. На данной странице кратко рассмотрены функции и характеристики основных иммунокомпетентных клеток: Т- и В-лимфоцитов и дендритных клеток ( DCs ), а также понятия адаптивного иммунитета и врожденного иммунитета . Но в начале дана характеристика особому двойному функционалу иммунной системы, в которой основную роль играют лимфоциты. Поэтому стоит напомнить, что же из себя предсталяют эти клетки.

Лимфоциты - это клетки иммунной системы, представляющие собой разновидность лейкоцитов, которые обеспечивают гуморальный иммунитет ( выработка антител ), клеточный иммунитет (контактное взаимодействие с клетками-мишенями), а также регулируют деятельность клеток других типов. По морфологическим признакам выделяют два типа лимфоцитов: большие гранулярные лимфоциты (чаще всего ими являются NK-клетки и малые лимфоциты ( T-клетки и B-клетки ).

три типа лимфоцитов

Те или иные механизмы иммунной защиты есть практически у всех животных. Эти механизмы сильно различаются по своей структуре, сложности, эффективности и, главное, по соотношению врожденных и приобретенных компонентов. У беспозвоночных преобладает врожденный иммунитет, хотя это далеко не абсолютное правило. У позвоночных вдобавок к врожденным защитным механизмам развилась необычайно сложная адаптивная иммунная система, способная приспосабливаться (адаптироваться) к всевозможным новым инфекциям, вырабатывать новые средства борьбы с ними и обладающая к тому же хорошей памятью (именно благодаря иммунной памяти мы получаем стойкий иммунитет ко многим болезням, однажды переболев ими).

T- и B-лимфоциты высших позвоночных обмениваются между собой разнообразными химическими сигналами (см. ниже интерлейкины). В соответствии с этим у разных типов лимфоцитов активны строго определенные гены, ответственные за прием и передачу этих сигналов.

Интерлейкины - группа цитокинов (белков), синтезируемая и секретируемая Т-лимфоцитами, В-лимфоцитами и NK-клетками, а также взаимодействующими с ними клетками. Цитокины - это небольшие пептидные информационные молекулы. Цитокины имеют молекулярную массу, не превышающую 30 кD. Цитокин выделяется на поверхность клетки А и взаимодействует с рецептором находящейся рядом клетки В. Таким образом, от клетки А к клетке В передается сигнал, который запускает в клетке В дальнейшие реакции. Их основными продуцентами являются лимфоциты (дополнительно о цитокинах см. здесь → ).

cytokines

Более подробно о цитокинах см. в отдельном разделе:

liniya.jpg

Активация иммунитета и Дендритные клетки

В 2011 году Нобелевская премия по физиологии и медицине присуждена Брюсу Бойтлеру и Жюлю Хоффманну за открытие механизмов активации врождённого иммунитета, и Ральфу Штайнману за открытие дендритных клеток и их роли в активации адаптивного иммунитета. Эти исследования называют революционными, поскольку открытие врождённого иммунитета в корне изменило представление о функционировании иммунной системы.

В природе существуют две линии защиты, два вида иммунитета.

Процесс выработки антител запускается не сразу, у него есть определённый инкубационный период, зависящий от типа патогена. Зато, если уж процесс активации пошёл, как только та же самая инфекция попытается проникнуть в организм ещё раз, B-клетки моментально отреагируют выработкой антител, и инфекция будет уничтожена немедленно, не причинив никакого вреда. Именно поэтому на некоторые виды инфекций у человека вырабатывается иммунитет на всю оставшуюся жизнь.

Каким образом система врождённого иммунитета подаёт знак системе приобретённого иммунитета на выработку специфических антител? Вот за решение этого ключевого вопроса иммунологии и присуждена Нобелевская премия 2011 года.

Таким образом, открытие врождённого иммунитета привело к появлению новых подходов в профилактике и лечении заболеваний, в разработке новых вакцин и противоопухолевых препаратов.

Активация адаптивной иммунной системы

активация адаптивной иммунной системы

Адаптивный иммунитет может дифференцировать между конкретными патогенами и нацелить ответ, который является специфическим для данного патогена. Он может быстро реагировать при повторном воздействии конкретного патогена, предотвращая развитие симптомов (иммунологическая память). Адаптивная иммунная система координируется лимфоцитами (класс лейкоцитов) и приводит к выработке антител. В-лимфоциты (В-клетки) являются антитело-продуцирующими клетками, которые распознают и нацеливают определенный фрагмент патогена (антиген). Хелперные Т-лимфоциты (Т-клетки) являются регуляторными клетками , которые высвобождают химические вещества ( цитокины ) для активации специфических В-лимфоцитов

  1. Когда фагоцитарные лейкоциты поглощают патоген, некоторые из них представляют переваренные фрагменты (антигены) на их поверхности
  2. Эти антигенпрезентирующие клетки ( дендритные клетки ) мигрируют в лимфатические узлы и активируют специфические хелперные Т-лимфоциты
  3. Затем хелперные Т-клетки высвобождают цитокины для активации конкретной В-клетки, способной продуцировать антитела, специфичные к антигену
  4. Активированная В-клетка будет делиться и дифференцироваться с образованием короткоживущих плазматических клеток, которые производят большое количество специфических антител
  5. Антитела будут нацелены на их специфический антиген, повышая способность иммунной системы распознавать и уничтожать патоген.

Небольшая доля активированной B-клетки (и активированной TH-клетки) будет развиваться в клетки памяти, чтобы обеспечить длительный иммунитет.

См. дополнительно:

liniya.jpg

B- и T-лимфоциты. Общая характеристика

1. Общая характеристика B-лимфоцитов

B-лимфоциты продуцируют и секретируют в кровоток молекулы антител, являющиеся измененными формами антигенраспознающих рецепторов этих лимфоцитов

B-лимфоциты (B-клетки) - функциональный тип лимфоцитов, играющих важную роль в обеспечении гуморального иммунитета. При контакте с антигеном или стимуляции со стороны T-клеток некоторые B-лимфоциты трансформируются в плазматические клетки, способные к продукции антител . Другие активированные B-лимфоциты превращаются в B-клетки памяти. Помимо продукции антител, В-клетки выполняют множество других функций: выступают в качестве антигенпрезентирующих клеток, продуцируют цитокины и экзосомы.

B-лимфоциты продуцируют и секретируют в кровоток молекулы антител, являющиеся измененными формами антигенраспознающих рецепторов этих лимфоцитов. Возникновение антител в крови после появления любого чужеродного белка- антигена - независимо от того, вреден он или безвреден для организма, и представляет собой иммунный ответ. Появление антител не просто защитная реакция организма против инфекционных заболеваний, но явление, имеющее широкое биологическое значение: это общий механизм распознавания "чужого". Например, иммунная реакция распознает как чужой и постарается удалить из организма любой аномальный и, следовательно, потенциально опасный вариант клетки, в которой в результате мутации в хромосомной ДНК образуется мутантная белковая молекула.

B-лимфоциты млекопитающих дифференцируются сначала в печени плода, а после рождения - красном костном мозге. В цитоплазме покоящихся B-клеток отсутствуют гранулы, но имеются рассеянные рибосомы и канальцы шероховатого эндоплазматического ретикулума. Каждая B-клетка генетически запрограммирована на синтез молекул иммуноглобулина, встроенных в цитоплазматическую мембрану. Иммуноглобулины функционируют как антигенраспознающие рецепторы, специфичные к определенному антигену. На поверхности каждого лимфоцита экспрессируется около ста тысяч молекул рецепторов. Встретив и распознав антиген, соответствующий структуре антигенраспознающего рецептора B-клетки размножаются и дифференцируются в плазматические клетки, которые образуют и выделяют в растворимой форме большие количества таких рецепторных молекул - антител. Антитела представляют собой крупные гликопротеины и содержатся в крови и тканевой жидкости. Благодаря своей идентичности исходным рецепторным молекулам они взаимодействуют с тем антигеном, который первоначально активировал B-клетки, проявляя таким образом строгую специфичность.

После связывания антигена с рецепторами B-клетки клетка активируется. Активация B-клеток состоит из двух фаз: пролиферации и дифференцировки; все процессы индуцируются контактом с антигеном и T- хелперами.

В результате пролиферации увеличивается число клеток, способных реагировать с введенным в организм антигеном. Значение пролиферации велико, поскольку в неиммунизированном организме очень мало B-клеток, специфичных для определенных антигенов.

Часть клеток, пролиферирующих под действием антигена, созревает и дифференцируется последовательно в антителообразующие клетки нескольких морфологических типов, в том числе и плазматические клетки . Промежуточные стадии дифференцировки B-клеток отмечены меняющейся экспрессией разнообразных белков клеточной поверхности, необходимых для взаимодействия B-клеток с другими клетками.

Каждый лимфоцит, относящийся к B-лимфоцитам и дифференцирующийся в костном мозге, запрограмирован на образование антител только одной специфичности.

Молекулы антител не синтезируются никакими другими клетками организма, и все их многообразие обусловлено образованием нескольких миллионов клонов B-клеток. Они (молекулы антител) экспрессируются на поверхностной мембране лимфоцита и функционируют как рецепторы. При этом на поверхности каждого лимфоцита экспрессируется около ста тысяч молекул антител. Кроме того, B-лимфоциты секретируют в кровоток продуцированные ими молекулы антител, являющиеся измененными формами поверхностных рецепторов этих лимфоцитов.

Антитела формируются до появления антигена, и антиген сам отбирает для себя антитела. Как только антиген проникает в организм человека, он встречается буквально с войском лимфоцитов, несущих различные антитела, причем у каждого есть свой индивидуальный распознающий участок. Антиген соединяется только с теми рецепторами, которые в точности ему соответствуют. Лимфоциты, связавшие антиген, получают пусковой сигнал и дифференцируются в плазматические клетки, продуцирующие антитела. Поскольку лимфоцит запрограммирован на синтез антител только одной специфичности, антитела, секретируемые плазматической клеткой, будут идентичны своему оригиналу, т.е. поверхностному рецептору лимфоцита и, следовательно, будут хорошо связываться с антигеном. Так антиген сам отбирает антитела, распознающие его с высокой эффективностью.

2. Общая характеристика T-лимфоцитов

t-limfocit.jpg

Дополнительно см.:

В образовании антител центральная роль принадлежит B-лимфоцитам. При этом B-лимфоциты обеспечивают специфический приобретенный иммунитет совместно с другими малыми лимфоцитами - T-лимфоцитами, используя разнообразные механизмы, направленные в большинстве случаев на расширение пределов эффективности врожденного иммунитета.

T-лимфоциты подразделяются на ряд подклассов. Главные из них это две различные, неперекрывающиеся субпопуляции: клетки одной из них несут маркер CD4 и в основном "помогают" в осуществлении иммунного ответа или индуцируют его ( T-хелперы ), клетки другой несут маркер CD8 и обладают преимущественно цитотоксической активностью (цитотоксические T-лимфоциты ( T-киллеры )). При этом, Т-хелперы стимулируют выработку антител, а Т-супрессоры тормозят её.

Одни CD4 T-клетки участвуют в регуляции дифференцировки B-лимфоцитов и образования антител. Другие CD4 T-клетки взаимодействуют с фагоцитами, помогая им в разрушении микробных клеток. Обе эти субпопуляции CD4 T-клеток названы хелперными T-клетками. Получены очевидные функциональные доказательства существования отдельной субпопуляции антигенспецифичных T-супрессоров, способных подавить иммунный ответ либо путем прямого цитотоксического воздействия на антигенпрезентирующие клетки, либо путем выделения "супрессивных" растворимых белков - цитокинов, либо путем передачи сигнала отрицательной регуляции.

Третья группа T-лимфоцитов распознает и разрушает клетки, инфицированные вирусами или иными внутриклеточно размножающимися патогенами. Этот тип CD8 T-лимфоцитов назван цитотоксическими T-лимфоцитами. Как правило, распознавание антигена T-клетками происходит только при условии его презентации на поверхности других клеток в ассоциации с молекулами MHC . В распознавании участвует специфичный к антигену T-клеточный рецептор, функциональнои структурно сходный с тем поверхностным иммуноглобулином sIg, который у B-клеток служит антигенраспознающим рецептором.

Свои функции воздействия на другие клетки T-лимфоциты осуществляют путем выделения цитокинов , которые передают сигналы другим клеткам, или в результате прямых межклеточных контактов. Как и в случае B-лимфоцитов, отбор и активация T-лимфоцитов происходят после контакта с антигеном, затем они проходят стадию клональной экспансии и превращаются в зрелые T-хелперы и цитотоксические T-лимфоциты, а также формируют обширную популяцию клеток памяти.

Одна из важных регуляторных функций T-лимфоцитов - это их способность стимулировать B-клетки к пролиферации и дифференцировке. Другая важная регуляторная функция T-клеток состоит в их способности угнетать иммунный ответ. При этом T-хелперы и T-супрессоры обнаруживают комплексный тип антигенной специфичности.

Фундаментальным свойством T-клеток является их специфичность по отношению к продуктам главного комплекса гистосовместимости MHC . Специфическое иммунологическое распознавание патогенных организмов - это всецело прерогатива лимфоцитов, поэтому именно они инициируют реакции приобретенного (специфического) иммунитета.

Отдельно стоит отметить т.н. NK-клетки (естественные киллеры или натуральные киллеры)

В настоящее время NK-клетки рассматривают как отдельный класс лимфоцитов. NK являются одним из важнейших компонентов клеточного врождённого иммунитета. Естественные киллерные (NK) клетки - это лимфоциты, которые могут опосредовать лизис определенных опухолевых клеток и вирусно-инфицированных клеток без предварительной активации. Они также могут регулировать специфический гуморальный и клеточно-опосредованный иммунитет. Основная функция NK - уничтожение клеток организма, не несущих на своей поверхности MHC и таким образом недоступных для действия основного компонента противовирусного иммунитета - Т-киллеров.

Дополнительно о Т- и В-лимфоцитах см. здесь →

Дополнительно см.:

К разделам:

  • Иммуноглобулин А, активный связующий элемент для гомеостаза микробиоты хозяина
  • Вклад комменсальной микрофлоры в иммунологический гомеостаз
  • Роль микробиоты в иммунитете и воспалении ( + видео )
  • Микробиота кишечника и воспаление
  • Микробиота кишечника и хроническое системное воспаление низкой степени
  • Кишечный дисбиоз и иммунометаболические нарушения
  • Микробиом, иммунитет и пробиотики
  • Роль кишечной микробиоты и метаболитов в гомеостазе кишечника и заболеваниях человека
  • Эпигенетика, короткоцепочечные жирные кислоты и врожденная иммунная память

Будьте здоровы!

ССЫЛКИ К РАЗДЕЛУ О ПРЕПАРАТАХ ПРОБИОТИКАХ

Иммунная система состоит из клеточных и молекулярных компонентов. Роль особых молекул рассмотрим в следующем материале, потихоньку вводя их названия и связанные с ними иммунные клетки.

В костном мозге основные иммунные клетки рождаются из кроветворной стволовой клетки. Процесс называется гемопоэз – рождение клеток крови. Часть иммунных клеток известна всем как белые клетки крови – лейкоциты. Это большая группа клеток, разделяющаяся во время гемопоэза. Иммунные клетки врожденного иммунитета образовываются непосредственно в тканях и в костном мозге как из стволовых клеток, так и из клеток крови, других клеток кожи и слизистых оболочек.

Гранулоциты

Имеют такое название, поскольку содержат гранулы. Процесс выхода содержимого гранул называется дегрануляция. Вещества гранул обладают токсическим действием, являются регуляторами острого воспаления, приводя к развитию клинических симптомов (отек, зуд, спазм сосудов и т.п.). Составляют основу лейкоцитарной формулы крови.

Нейтрофилы

Эозинофилы

Базофилы

Лейкоцитарная формула (циркуляция в крови)

Во время острого воспалительного процесса нейтрофилы выходят в ткани. Их цель – фагоцитировать и разрушать антигены.

Атакуют крупные микроорганизмы, которые не могут быть поглощены. Источник регуляторов острого воспаления

Работают как тучные клетки тканей, обуславливая аллергическую воспалительную реакцию. Источник регуляторов острого воспаления

Повышаются в крови

При острых бактериальных и грибковых инфекциях; при системных воспалительных заболеваниях; при онкологии костного мозга

При аллергических заболеваниях; при паразитарных заболеваниях; при системных воспалительных заболеваниях.

При аллергических заболеваниях; при онкологических заболеваниях костного мозга

Снижаются в крови

При тяжелой инфекции с развитием сепсиса; при многих вирусных инфекциях; при иммунодефиците и повреждении костного мозга.

При острых бактериальных инфекциях; при болезнях надпочечников.

При острых бактериальных инфекциях.

Тучные клетки

Ранее предполагалось, что образуются из базофилов крови, но выявлены их различия. Тучные клетки постоянно живут в тканях, как и базофилы играют ведущую роль в остром аллергическом воспалении.

Естественные клетки-киллеры

Моноциты крови как часть лейкоцитарной формулы (до 8%) коротко циркулируют в крови и в основном преобразуются в тканевые макрофаги (фагоцитирующие клетки), но от 5 до 15% моноцитов лейкоцитарной формулы на самом деле – естественные клетки-киллеры (ЕК-клетки). Они созревают в костном мозге и имеют колоссальное значение в уничтожении зараженных, отработанных и опухолевых клеток, умея распознавать их и участвуя в процессе апоптоза. Это важный компонент безопасной гибели клеток, ограничивающий выход ее содержимого. Также они являются источником некоторых молекулярных компонентов (ИФН-гамма, ИЛ-1, ФНО-альфа).

Антиген-презентирующие клетки

Не являются какой-то одной группой клеток. Скорее это способность многих клеток, обладающих фагоцитозом – процессом поглощения и переваривания антигенов. К ним относят тканевые макрофаги (образующиеся из моноцитов крови), клетки Лангерганса в коже, дендритные клетки, интердигитальные клетки, являющиеся клетками врожденного иммунитета. Для реализации приобретенного иммунитета требуется специальная обработка антигенов и представление их на поверхности клетки в связке с особыми рецепторами – презентация антигена.

Клетки, способные это делать, называют антиген-презентирующие. После поглощения антигена они устремляются в лимфатические узлы для встречи с Т-лимфоцитами. Именно для них нужна презентация антигена, чтобы информацию о нем передать В-лимфоцитам для синтеза антител. Кроме того, антиген-презентирующие клетки выделяют особые молекулы, необходимые для формирования популяций Т-лимфоцитов, определяющих направление иммунного ответа – клеточный или гуморальный.

Еще в древнем Египте и Греции за больными чумой ухаживали люди, прежде переболевшие этой болезнью: опыт показывал, что они уже не подвержены заражению.

Люди интуитивно пытались обезопасить себя от инфекционных болезней. Несколько веков назад в Турции, на Ближнем Востоке, в Китае для профилактики оспы втирали в кожу и слизистые оболочки носа гной из подсохших оспенных гнойников. Люди надеялись, что, переболев каким-то инфекционным заболеванием в легкой форме, они приобретут устойчивость к действию возбудителей в последующем.

Так зарождалась иммунология – наука, изучающая реакции организма на нарушение постоянства его внутренней среды.

Нормальное состояние внутренней среды организма является залогом правильного функционирования клеток, не общающихся напрямую с внешним миром. А такие клетки образуют большинство наших внутренних органов. Внутреннюю среду составляют межклеточная (тканевая) жидкость, кровь и лимфа, а их состав и свойства во многом контролирует иммунная система.

Трудно найти человека, который не слышал бы слово “иммунитет”. Что же это такое?

Иммунитет (от латинского immunitas – освобождение, избавление) – защита организма от внешних и внутренних биологически активных агентов (антигенов), направленная на сохранение постоянства внутренней среды (гомеостаза) организма.

Другими словами, это невосприимчивость организма к инфекционным агентам и веществам, обладающим антигенными свойствами.

Антигены – общее название чужеродных для организма агентов и веществ. Ими могут быть продукты жизнедеятельности микроорганизмов – возбудителей различных заболеваний, ядовитые соединения растительного и животного происхождения, погибшие или переродившиеся клетки самого организма и другие вещества.

В жизни нас окружает бесчисленное множество невидимых простым глазом микроорганизмов, многие из которых очень опасны для организма. Поражает их воспроизводство. Одна бактерия в течение 1 ч порождает 8 себе подобных особей, через 2 ч их образуется уже 64, через 24 ч – 4772 триллиона. При размножении в течение 1 года получилась бы масса бактерий, равная массе Солнца. Но в природе все находится в равновесии и беспрепятственного увеличения числа микробов не происходит. Научился сопротивляться этим агрессорам и наш организм.

В нашем организме есть особые механизмы, препятствующие проникновению в него микробов и развитию инфекций. Так, слизистые оболочки выполняют роль барьера, через который проходят далеко не все микробы, а выделяемые кожным эпителием и слизистыми оболочками вещества понижают активность микробов или полностью их инактивируют. Одним из главных механизмов сопротивления является иммунная система.

Строение и состав иммунной системы. Иммунная система человека (рисунок 1.5.13) включает центральные органы – костный мозг и вилочковую железу (тимус) – и периферические – селезенку, лимфатические узлы, лимфоидную ткань. Эти органы вырабатывают несколько типов клеток, которые и осуществляют надзор за постоянством клеточного и антигенного состава внутренней среды.

Рисунок 1.5.13. Основные органы иммунной системы человека

Основные клетки иммунной системы – фагоциты и лимфоциты (В- и Т-лимфоциты). Они циркулируют по кровеносной и лимфатической системе, некоторые из них могут проникать в ткани. Все клетки иммунной системы имеют определенные функции и работают в сложном взаимодействии, которое обеспечивается выработкой специальных биологически активных веществ – цитокинов. Вы, наверное, слышали такие названия, как интерфероны, интерлейкины и тому подобные. Это так называемые цитокины, с помощью которых клетки иммунной системы могут обмениваться информацией и осуществлять координацию своих действий.

Фагоциты (в переводе на русский язык – “пожирающие”) бросаются на пришельцев, поглощая и разрушая микробы, ядовитые вещества и другие чужеродные для организма клетки и ткани. При этом погибают и сами фагоциты, высвобождая вещества (медиаторы), вызывающие местную воспалительную реакцию и привлекающие новые группы фагоцитов на борьбу с антигенами.

Впервые фагоциты – “подвижные клетки” открыл в 1882 году И.И. Мечников, когда проводил опыт, вводя в тело личинок морских звезд шип от розы. Он увидел, как занозу быстро окружают клетки и пытаются ее уничтожить.

Этот процесс был назван И.И. Мечниковым фагоцитозом, а клетки, осуществляющие эту функцию, – фагоцитами. Установлено, что один фагоцит может захватить 15-20 бактерий. Если он поглощает больше микробов, чем может их переварить, то клетка гибнет. Смесь погибших и живых фагоцитов и бактерий называется гноем.

Известно, что при многих заболеваниях повышается температура, возникает воспалительный процесс.

Лимфоциты вырабатывают специфические белки (антитела) – иммуноглобулины, взаимодействующие с определенными антигенами и связывающие их. Антитела нейтрализуют активность ядов, микробов, делают их более доступными для фагоцитов.

Иммунная система “запоминает” те чужеродные вещества, с которыми она хоть раз встречалась и на которые реагировала. От этого зависит формирование невосприимчивости к “чужим” агентам, терпимости к собственным биологически активным веществам и повышенной чувствительности к аллергенам. Нормально функционирующая иммунная система не реагирует на внутренние факторы и, в то же время, отторгает чужеродные воздействия на организм. Она формирует иммунитет – противоинфекционный, трансплантационный, противоопухолевый. Иммунитет защищает организм от инфекционных болезней, освобождает его от погибших, переродившихся и ставших чужеродными клеток. Иммунные реакции являются причиной отторжения пересаженных органов и тканей. При врожденных или приобретенных дефектах иммунной системы возникают заболевания – иммунодефицитные, аутоиммунные или аллергические, вызванные повышенной чувствительностью организма к аллергенам.

Виды иммунитета. Различают естественный и искусственный иммунитет (смотри рисунок 1.5.14).

Рисунок 1.5.14. Виды иммунитета

Человек уже с рождения невосприимчив ко многим болезням. Такой иммунитет называют врожденным. Например, люди не болеют чумой животных, потому что у них в крови уже содержатся готовые антитела. Врожденный иммунитет передается по наследству от родителей. Организм получает антитела от матери через плаценту или с материнским молоком. Поэтому часто у детей, находящихся на искусственном вскармливании, ослаблен иммунитет. Они больше подвержены инфекционным заболеваниям и чаще страдают от диабета. Врожденный иммунитет сохраняется всю жизнь, но он может быть преодолен, если дозы заражающего агента увеличатся или ослабеют защитные функции организма.

В некоторых случаях иммунитет возникает после перенесенных заболеваний. Это приобретенный иммунитет. Переболев один раз, люди приобретают невосприимчивость к возбудителю. Такой иммунитет может сохраняться десятки лет. Например, после кори остается пожизненный иммунитет. Но при других инфекциях, например при гриппе, ангине, иммунитет сохраняется относительно недолго, и человек может перенести эти заболевания несколько раз в течение жизни. Врожденный и приобретенный иммунитет называют естественным.

Инфекционный иммунитет всегда конкретен или, другими словами, специфичен. Он направлен только против определенного возбудителя и не распространяется на прочих.

Существует также искусственный иммунитет, который возникает в результате введения в организм готовых антител. Это происходит, когда заболевшему человеку вводят сыворотку крови переболевших людей или животных, а также при введении ослабленных микробов – вакцины. В этом случае организм активно участвует в выработке собственных антител, и такой иммунитет остается на длительное время. Об этом подробнее будет сказано в главе 3.10.

Такие разные антитела

Нужна ли вакцинация от COVID-19? Какую вакцину предпочесть? Чем отличаются антитела, которые вырабатываются в результате болезни от тех, которые должны появиться после вакцинации? Надолго ли они вас защитят и защитят ли? Об этом – наш разговор с Петром Михайловичем Чумаковым, главным научным сотрудником Института молекулярной биологии имени В.А. Энгельгардта Российской академии наук, членом-корреспондентом РАН.


– Многие думают, что импортные вакцины априори лучше отечественных. Действительно ли это так или наши вакцины ничем не уступают?

Что касается зарубежных аналогов. Действительно, мы часто относимся с пиететом ко всему, что выходит с Запада. Но там есть тоже очень много проблем – и организационных, и медицинских.


– В принципе, ничего страшного в этом нет. Если учесть экономический аспект, надо понимать, что эти тесты довольно дорогие. Если их проводить всем поголовно, процедура значительно подорожает. Есть ли в этом смысл с точки зрения медицинской? Здесь тоже нет однозначного ответа. Во-первых, любой тест дает ошибки. Может быть, человек и не переболел, но у него проявился ложнопозитивный результат или, наоборот, человека переболел, но тест ничего не показывает. Поэтому я думаю, что в любом случае следует прививаться, даже если человек переболел, особенно в легкой форме.

– А если в тяжелой?

– Если он переболел в тяжелой форме, наверное, надо подождать. Сейчас пока нет надежных данных о том, что можно серьезно заболеть после перенесенного заболевания повторно. Думаю, что тем, кто действительно переболел, не стоит сейчас вакцинироваться. Всем остальным, которые сомневаются, даже если они не тестировались, надо прививаться.

– Но ведь прививка может быть бесполезной, если у человека, например, высокие иммуноглобулины класса G. Зачем же подвергать свой организм лишней нагрузке? Все-таки вакцинация – это не витамин выпить.

– Если у вас был какой-то уровень антител, а вы сделаете прививку, это в иммунологии называется буст – мощное добавление антигена уже на фоне того, что был первичный ответ. При этом очень сильно поднимется уровень антител. Ничего плохого в этом нет. Никакой опасности это не представляет, но возможно защита будет более длительной.

Многие боятся такого тяжелого осложнения вакцинации, как антителозависимое усиление инфекции (ADE). Что это за состояние и как себя от него застраховать?

– Следующий важный для многих вопрос. Люди записываются на тестирование антител в обычной районной поликлинике и видят следующую информацию: вы можете таким образом проверить, болели вы, в том числе бессимптомно, или болеете сейчас. Но вы не можете выяснить уровень антител в результате вакцинации. Возникает вопрос: почему? Это что, какие-то разные антитела?

– То есть этот класс антител не вырабатывается в результате вакцинации?

– Мы знаем, что антитела вырабатываются не всегда и не у всех как в результате болезни, так и в результате вакцинации. Есть люди невосприимчивые как к вакцинации, так и вообще к определенным вирусам. И вот, допустим, человек прошел вакцинацию, антитела у него не выработались. Какой ему из этого делать вывод – что он по-прежнему не защищен перед болезнью и ему надо принимать какие-то меры или, наоборот, он защищен и этот вирус ему не грозит?

– Именно другой?

– Той же самой вакциной не стоит прививаться, потому что уже есть антитела к аденовирусу, и, возможно, эта прививка не будет эффективной. Ведь титр антител к аденовирусному вектору вскоре после прививки будет очень большим, и это может помешать вакцинации. Но все люди разные, и иммунная система реагирует на всё по-разному. У некоторых во время вакцинации могли быть сопутствующие заболевания, на которые не обратили внимания, но которые помешали образованию антител. Конечно, об этом нельзя забывать. Это еще касается часто болеющих, ослабленных людей, людей пожилого возраста, у которых и иммунная система также не на высоте. Наверное, в этом случае имеет смысл узнать, насколько хорошо образовались антитела.

Второй аспект – если прошло достаточно много времени после вакцинации, и антитела упали и даже не обнаруживаются. Это тоже мало о чем говорит. Обычно после вакцинации, даже после перенесенного заболевания уровень антител вначале подымается, но затем падает, но в высоких уровнях и нет необходимости. Если бы не было такого снижения, у нас в крови были бы сплошные антитела от всех перенесенных столкновений с антигенами.

Низкие уровни антител спустя время не означают, что человек не защищен, потому что у него остаются клетки памяти, которые хранят информацию об этих антителах. И как только человек сталкивается с вирусом повторно, они начинают очень быстро размножаться и продуцировать эти антитела. Инкубационный период, который всегда бывает при заражении, обычно достаточен для того, чтобы за это время наработалось нужное количество антител.

Хотя многое еще неизвестно. Например, непонятно, что будет, если человек столкнулся с огромной дозой вируса? Поможет ли вакцинация преодолеть имеющийся антительный барьер? Может быть, и нет. Но я думаю, в любом случае человек перенесет заболевание в более легкой форме.

– В каком случае человеку нужно принимать решение, что, пожалуй, стоит попробовать вакцинироваться другой вакциной, поскольку антитела низкие?

– Если через 45-60 дней после вакцинации антитела все равно низкие или их нет, наверно, надо прививаться другой вакциной. Из тех, что я бы сейчас рекомендовал, это вакцина центра им. М.П. Чумакова.

– А для себя вы какую выбрали вакцину или пока что обходитесь теми неспецифическими средствами профилактики, которые вслед за своими замечательными родителями продолжаете разрабатывать?

– Вы думаете, гриппа не было потому, что маски носили, а не потому что грипп и ковид – конкурирующие вирусы?

– Ну, какая тут конкуренция! Если бы, предположим, этот вирус широко циркулировал и у большинства людей не вызывал болезненных симптомов, то да, наверное, это была бы конкуренция. А в данном случае человек, сталкиваясь с вирусом, в большинстве случаев болеет. Поэтому я не думаю, что это конкуренция. Скорее всего, решающую роль тут сыграли меры предосторожности – и дистанционность, и отсутствие близких контактов, и маски. Всё это привело к тому, что гриппа в этом году практически нет.

Читайте также: