Какие функции осуществляют привилегированные программные модули

Обновлено: 30.06.2024

Под архитектурной операционной системы понимают структурную и функциональную организацию ОС на основе некоторой совокупности программных модулей. В состав ОС входят исполняемые и объектные модули стандартных для данной ОС форматов, программные модули специального формата (например, загрузчик ОС, драйверы ввода-вывода ), конфигурационные файлы, файлы документации, модули справочной системы и т.д.

На архитектуру ранних операционных систем обращалось мало внимания: во-первых, ни у кого не было опыта в разработке больших программных систем, а во-вторых, проблема взаимозависимости и взаимодействия модулей недооценивались. В подобных монолитных ОС почти все процедуры могли вызывать одна другую. Такое отсутствие структуры было несовместимо с расширением операционных систем. Первая версия ОС OS/360 была создана коллективом из 5000 человек за 5 лет и содержала более 1 млн строк кода. Разработанная несколько позже операционная система Multics содержала к 1975 году уже 20 млн строк. Стало ясно, что разработка таких систем должна вестись на основе модульного программирования.

Большинство современных ОС представляют собой хорошо структурированное модульные системы, способные к развитию, расширению и переносу на новые платформы. Какой-либо единой унифицированной архитектуры ОС не существует, но известны универсальные подходы к структурированию ОС. Принципиально важными универсальными подходами к разработке архитектуры ОС являются [4, 13, 22]:

  • модульная организация;
  • функциональная избыточность;
  • функциональная избирательность;
  • параметрическая универсальность;
  • концепция многоуровневой иерархической вычислительной системы, по которой ОС представляется многослойной структурой;
  • разделение модулей на 2 группы по функциям – ядро, модули, выполняющие основные функции ОС, и модули, выполняющие вспомогательные функции ОС;
  • разделение модулей ОС на 2 группы по размещению в памяти вычислительной системы – резидентные, постоянно находящиеся в оперативной памяти, и транзитные, загружаемые в оперативную память только на время пополнения своих функций;
  • реализация двух режимов работы вычислительной системы – привилегированного режима (или режима ядра – Kernel mode ),или режима супервизора ( supervisor mode ), и пользовательского режима ( user mode ), или режима задачи (task mode);
  • ограничение функций ядра (а следовательно, и количества модулей ядра) до минимального количества необходимых самых важных функций.

Первые ОС разрабатывались как монолитные системы без четко выраженной структуры (рис.3.4).

Для построения монолитной системы необходимо скомпилировать все отдельные процедуры, а затем связать их вместе в единый объектный файл с помощью компоновщика (примерами могут служить ранние версии ядра UNIX или Novell NetWare). Каждая процедура видит любую другую процедуру (в отличие от структуры, содержащей модули, в которой большая часть информации является локальной для модуля, процедуры модуля можно вызвать только через специально определенные точки входа).

Однако даже такие монолитные системы могут быть немного структурированными. При обращении к системным вызовам, поддерживаемым ОС, параметры помешаются в строго определенные места, такие как регистры или стек , а затем выполняется специальная команда прерывания, известная как вызов ядра или вызов супервизора. Эта команда переключает машину из режима пользователя в режим ядра, называемый также режимом супервизора, и передает управление ОС. Затем ОС проверяет параметры вызова для того, чтобы определить, какой системный вызов должен быть выполнен. После этого ОС индексирует таблицу, содержащую ссылки на процедуры, и вызывает соответствующую процедуру.

Такая организация ОС предполагает следующую структуру [28]:

  • главная программа, которая вызывает требуемые сервисные процедуры;
  • набор сервисных процедур, реализующих системные вызовы;
  • набор утилит, обслуживающих сервисные процедуры.

В этой модели для каждого системного вызова имеется одна сервисная процедура. Утилиты выполняют функции, которые нужны нескольким сервисным процедурам. Это деление процедур на три слоя показано на рис.3.5.

Классической считается архитектура ОС, основанная на концепции иерархической многоуровневой машины, привилегированном ядре и пользовательском режиме работы транзитных модулей. Модули ядра выполняют базовые функции ОС: управление процессами , памятью, устройствами ввода-вывода и т. п. Ядро составляет сердцевину ОС, без которой она является полностью неработоспособной и не может выполнить ни одну из своих функций. В ядре решаются внутрисистемные задачи организации вычислительного процесса, недоступные для приложения.

Особый класс функций ядра служит для поддержки приложений, создавая для них так называемою прикладную программную среду. Приложения могут обращаться к ядру запросами – системными вызовами – для выполнения тех или иных действий, например, открытие и чтение файла , получение системного времени, вывода информации на дисплей и т.д. Функции ядра, которые могут вызываться приложениями, образуют интерфейс прикладного программирования – API ( Application Programming Interface ).

Для обеспечения высокой скорости работы ОС модули ядра ( по крайней мере, большая их часть) являются резидентными и работают в привилегированном режиме ( Kernel mode ). Этот режим обеспечивает, вопервых, безопасность работы самой ОС от вмешательства приложений, и, во-вторых, возможность работы модулей ядра с полным набором машинных инструкций, позволяющих собственно ядру выполнять управление ресурсами компьютера, в частности, переключение процессора с задачи на задачу, управление устройствами ввода-вывода, распределением и защитой памяти и др.

Остальные модули ОС выполняют не столь важные, как ядро , функции и являются транзитными. Например, это могут быть программы архивирования данных, дефрагментации диска , сжатие дисков, очистки дисков и т.п.

Вспомогательные модули обычно подразделяются на группы:

  • утилиты – программы, выполняющие отдельные задачи управления и сопровождения вычислительной системы;
  • системные обрабатывающие программы – текстовые и графические редакторы (Paint, Imaging в Windows 2000), компиляторы и др.;
  • программы представления пользователю дополнительных услуг (специальный вариант пользовательского интерфейса, калькулятор, игры, средства мультимедиа Windows 2000);
  • библиотеки процедур различного назначения, упрощения разработку приложений, например, библиотека функций ввода-вывода, библиотека математических функций и т.п.

Эти модули ОС оформляются как обычные приложения, обращаются к функциям ядра посредством системных вызовов и выполняются в пользовательском режиме ( user mode ). В этом режиме запрещается выполнение некоторых команд, которые связаны с функциями ядра ОС ( управление ресурсами , распределение и защита памяти и т. п.).

В концепции многоуровневой (многослойной) иерархической машины структура ОС также представляется рядом слоев. При такой организации каждый слой обслуживает вышележащий слой, выполняя для него некоторый набор функций, которые образуют межслойный интерфейс . На основе этих функций следующий верх по иерархии слой строит свои функции – более сложные и более мощные и т.д. Такая организация системы существенно упрощает ее разработку, т. к. позволяет сначала "сверху вниз" определить функции слоев и межслойные интерфейсы, а при детальной реализации, двигаясь "снизу вверх", наращивать мощность функции слоев. Кроме того, модули каждого слоя можно изменять без необходимости изменений в других слоях (но не меняя межслойных интерфейсов!).

Многослойная структура ядра ОС может быть представлена, например, вариантом, показанным на рис.3.6.

В данной схеме выделены следующие слои.

  1. Средства аппаратной поддержки ОС. Значительная часть функций ОС может выполняться аппаратными средствами [13]. Чисто программных ОС сейчас не существу-ет. Как правило, в современных системах всегда есть средства аппаратной поддержки ОС, которые прямо участвуют в организации вычислительного процесса. К ним относятся: система прерываний, средство поддержки привилегированного режима, средства поддержки виртуальной памяти, системный таймер , средство переключения контекстов процессов (информация о состоянии процесса в момент его приостановки), средство защиты памяти и др.
  2. Машинно-зависимые модули ОС. Этот слой образует модули, в которых отражается специфика аппаратной платформы компьютера. Назначение этого слоя – "экранирование" вышележащих слоев ОС от особенностей аппаратуры (например, Windows 2000 – это слой HAL , Hardware Abstraction Layer , уровень аппаратных абстракций).
  3. Базовые механизмы ядра. Этот слой модулей выполняет наиболее примитивные операции ядра: программное переключение контекстов процессов , диспетчеризацию прерываний, перемещение страниц между основной памятью и диском и т.п. Модули этого слоя не принимают решений о распределении ресурсов, а только обрабатывают решения, принятые модулями вышележащих уровней. Поэтому их часто называют исполнительными механизмами для модулей верхних слоев ОС.
  4. Менеджеры ресурсов . Модули этого слоя выполняют стратегические задачи по управлению ресурсами вычислительной системы. Это менеджеры (диспетчеры) процессов, ввода-вывода, оперативной памяти и файловой системы. Каждый менеджер ведет учет свободных и используемых ресурсов и планирует их распределение в соответствии запросами приложений.
  5. Интерфейс системных вызовов. Это верхний слой ядра ОС, взаимодействующий с приложениями и системными утилитами , он образует прикладной программный интерфейс ОС. Функции API обслуживающие системные вызовы, предоставляют доступ к ресурсам системы в удобной компактной форме, без указания деталей их физического расположения.

Повышение устойчивости ОС обеспечивается переходом ядра в привилегированный режим. При этом происходит некоторое замедление выполнение системных вызовов. Системный вызов привилегированного ядра инициирует переключение процессора из пользовательского режима в привилегированный, а при возврате к приложению – обратное переключение. За счет этого возникает дополнительная задержка в обработке системного вызова (рис.3.7). Однако такое решение стало классическим и используется во многих ОС ( UNIX , VAX , VMS , IBM OS/390, OS/2 и др.).

Многослойная классическая многоуровневая архитектура ОС не лишена своих проблем. Дело в том, что значительные изменения одного из уровней могут иметь трудно предвидимое влияние на смежные уровни. Кроме того, многочисленные взаимодействия между соседними уровнями усложняют обеспечение безопасности. Поэтому, как альтернатива классическому варианту архитектуры ОС, часто используется микроядерная архитектура ОС.

Суть этой архитектуры состоит в следующем. В привилегированном режиме оста-ется работать только очень небольшая часть ОС, называемая микроядром. Микроядро защищено от остальных частей ОС и приложений. В его состав входят машинно-зависимые модули, а также модули, выполняющие базовые механизмы обычного ядра. Все остальные более высокоуровневые функции ядра оформляются как модули, работающие в пользовательском режиме. Так, менеджеры ресурсов , являющиеся неотъемлемой частью обычного ядра, становятся "периферийными" модулями, работающими в пользовательском режиме. Таким образом, в архитектуре с микроядром традиционное расположение уровней по вертикали заменяется горизонтальным. Это можно представить, как показано на рис.3.8.

Схематично механизм обращений к функциям ОС, оформленным в виде серверов, выглядит, как показано на рис.3.9.

Схема смены режимов при выполнении системного вызова в ОС с микроядерной архитектурой выглядит, как показано на рис.3.10.

Из рисунка ясно, что выполнение системного вызова сопровождается четырьмя переключениями режимов (4 t), в то время как в классической архитектуре – двумя. Следовательно, производительность ОС с микроядерной архитектурой при прочих равных условиях будет ниже, чем у ОС с классическим ядром.

В то же время признаны следующие достоинства микроядерной архитектуры [36]:

  • единообразные интерфейсы;
  • простота расширяемости;
  • высокая гибкость;
  • возможность переносимости;
  • высокая надежность;
  • поддержка распределенных систем;
  • поддержка объектно-ориентированных ОС.

По многим источникам вопрос масштабов потери производительности в микроядерных ОС является спорным. Многое зависит от размеров и функциональных возможностей микроядра. Избирательное увеличение функциональности микроядра приводит к снижению количества переключений между режимами системы, а также переключений адресных пространств процессов.

Может быть, это покажется парадоксальным, но есть и такой подход к микроядерной ОС, как уменьшение микроядра.

Для возможности представления о размерах микроядер операционных систем в ряде источников [22] приводятся такие данные:

  • типичное микроядро первого поколения – 300 Кбайт кода и 140 интерфейсов системных вызовов;
  • микроядро ОС L4 (второе поколение) – 12 Кбайт кода и 7 интерфейсов системных вызовов.

В современных операционных системах различают следующие виды ядер.

  1. Наноядро (НЯ) – крайне упрощенное и минимальное ядро, выполняет лишь одну задачу, обработку аппаратных прерываний, генерируемых устройствами компьютера. После обработки посылает информацию о результатах обработки вышележащему программному обеспечению. НЯ используются для виртуализации аппаратного обеспечения реальных компьютеров или для реализации механизма гипервизора.
  2. Микроядро (МЯ) предоставляет только элементарные функции управления процессами и минимальный набор абстракций для работы с оборудованием. Большая часть работы осуществляется с помощью специальных пользовательских процессов, называемых сервисами. В микроядерной операционной системе можно, не прерывая ее работы, загружать и выгружать новые драйверы, файловые системы и т. д. Микроядерными являются ОС Minix , GNU Hurd и системы семейства BSD.
  3. Экзоядро (ЭЯ) дает лишь набор сервисов для взаимодействия между приложениями, а также необходимый минимум функций, связанных с защитой: выделение и высвобождение ресурсов, контроль прав доступа, и т. д. ЭЯ не занимается предоставлением абстракций для физических ресурсов – эти функции выносятся в библиотеку пользовательского уровня (так называемую libOS). В отличие от микроядра ОС, базирующиеся на ЭЯ, обеспечивают большую эффективность за счет отсутствия необходимости в переключении между процессами при каждом обращении к оборудованию.
  4. Монолитное ядро (МЯ) предоставляет широкий набор абстракций оборудования. Все части ядра работают в одном адресном пространстве. МЯ требуют перекомпиляции при изменении состава оборудования. Компоненты операционной системы являются не самостоятельными модулями, а составными частями одной программы. МЯ более производительно, чем микроядро, поскольку работает как один большой процесс. МЯ является большинство Unix-систем и Linux. Монолитность ядер усложняет отладку, понимание кода ядра, добавление новых функций и возможностей, удаление ненужного, унаследованного от предыдущих версий, кода. "Разбухание" кода монолитных ядер также повышает требования к объему оперативной памяти.
  5. Модульное ядро (Мод. Я) – современная, усовершенствованная модификация архитектуры МЯ. В отличие от классических" МЯ, модульные ядра не требуют полной перекомпиляции ядра при изменении состава аппаратного обеспечения компьютера. Вместо этого они предоставляют тот или иной механизм подгрузки модулей, поддерживающих то или иное аппаратное обеспечение (например, драйверов). Подгрузка модулей может быть как динамической, так и статической (при перезагрузке ОС после переконфигурирования системы). Мод. Я удобнее для разработки, чем традиционные монолитные ядра. Они предоставляют программный интерфейс (API) для связывания модулей с ядром, для обеспечения динамической подгрузки и выгрузки модулей. Не все части ядра могут быть сделаны модулями. Некоторые части ядра всегда обязаны присутствовать в оперативной памяти и должны быть жестко "вшиты" в ядро.
  6. Гибридное ядро (ГЯ) – модифицированные микроядра, позволяющие для ускорения работы запускать "несущественные" части в пространстве ядра. Имеют "гибридные" достоинства и недостатки. Примером смешанного подхода может служить возможность запуска операционной системы с монолитным ядром под управлением микроядра. Так устроены 4.4BSD и MkLinux, основанные на микроядре Mach . Микроядро обеспечивает управление виртуальной памятью и работу низкоуровневых драйверов. Все остальные функции, в том числе взаимодействие с прикладными программами, осуществляется монолитным ядром. Данный подход сформировался в результате попыток использовать преимущества микроядерной архитектуры , сохраняя по возможности хорошо отлаженный код монолитного ядра .

Введение в планирование. Категории алгоритмов планирования. Задачи алгоритмов планирования. Планирование в системах пакетной обработки данных. Планирование в интерактивных системах. Планирование в системах реального времени.

Программное управление специальными регистрами маски (маскирование сиг­налов прерывания) позволяет реализовать различные дисциплины обслужива­ния:

· с относительными приоритетами, то есть обслуживание не прерывается даже при наличии запросов с более высокими приоритетами. После окончания об­служивания данного запроса обслуживается запрос с наивысшим приоритетом. Для организации такой дисциплины необходимо в программе обслуживания данного запроса наложить маски на все остальные сигналы прерывания или просто отключить систему прерываний;

· с абсолютными приоритетами, то есть всегда обслуживается прерывание с наивысшим приоритетом. Для реализации этого режима необходимо на вре­мя обработки прерывания замаскировать все запросы с более низким приори­тетом. При этом возможно многоуровневое прерывание, то есть прерывание программ обработки прерываний. Число уровней прерывания в этом режиме изменяется и зависит от приоритета запроса;

· по принципу стека, или, как иногда говорят, по дисциплине LCFS (last come - а прерывания по нарушению питания;

Управление ходом выполнения задач со стороны ОС заключается в организации реакций на прерывания, в организации обмена информацией (данными и про­граммами), предоставлении необходимых ресурсов, в динамике выполнения за­дачи и в организации сервиса. Причины прерываний определяет ОС (модуль, который называют супервизором прерываний), она же и выполняет действия, необходимые при данном прерывании и в данной ситуации. Поэтому в состав любой ОС реального времени прежде всего входят программы управления сис­темой прерываний, контроля состояний задач и событий, синхронизации задач, средства распределения памяти и управления ею, а уже потом средства органи­зации данных (с помощью файловых систем и т. д.). Следует, однако, заметить, что современная ОС реального времени должна вносить в аппаратно-программный комплекс нечто большее, нежели просто обеспечение быстрой реакции на прерывания.

Рассмотрим кратко основные виды ресурсов вычислительной системы и спосо­бы их разделения. Прежде всего, одним из важнейших ресурсов является сам процессор, точнее — процессорное время. Процессорное время делится попеременно (параллельно).

Вторым видом ресурсов вычислительной системы можно считать память. Опе­ративная память может быть разделена и одновременным способом (то есть в памяти одновременно может располагаться несколько процессов или, по край­ней мере, текущие фрагменты, участвующие в вычислениях), и попеременно (в разные моменты оперативная память может предоставляться для разных вы­числительных процессов). Память — очень интересный вид ресурса. Дело в том, что в каждый конкретный момент времени процессор при выполнении вычисле­ний обращается к очень ограниченному числу ячеек оперативной памяти. С этой точки зрения желательно память разделять для возможно большего числа парал­лельно исполняемых процессов. С другой стороны, как правило, чем больше оперативной памяти может быть выделено для конкретного текущего процесса, тем лучше будут условия для его выполнения. Поэтому проблема эффективного разделения оперативной памяти между параллельно выполняемыми вычисли­тельными процессами является одной из самых актуальных

Когда говорят о внешней памяти (например, память на магнитных дисках), то собственно память и доступ к ней считаются разными видами ресурса. Каждый из этих ресурсов может предоставляться независимо от другого. Но для полной работы с внешней памятью необходимо иметь оба этих ресурса. Собственно внеш­няя память может разделяться одновременно, а доступ к ней — попеременно.

Если говорить о внешних устройствах, то они, как правило, могут разделяться параллельно, если используются механизмы прямого доступа. Если же устройст­во работает с последовательным доступом, то оно не может считаться разделяемым ресурсом. Простыми и наглядными примерами внешних устройств, кото­рые не могут быть разделяемыми, являются принтер и накопитель на магнитной ленте. Действительно, если допустить, что принтер можно разделять между дву­мя процессами, которые смогут его использовать попеременно, то результаты пе­чати, скорее всего, не смогут быть использованы — фрагменты выведенного тек­ста могут перемешаться таким образом, что в них невозможно будет разобраться. Аналогично обстоит дело и с накопителем на магнитной ленте. Если один про­цесс начнет что-то читать или писать, а второй при этом запросит перемотку лен­ты на ее начало, то оба вычислительных процесса не смогут выполнить свои вы­числения.




Очень важным видом ресурсов являются программные модули. Прежде всего, мы будем рассматривать системные программные модули, поскольку именно они обычно и рассматриваются как программные ресурсы и в принципе могут быть распределены между выполняющимися процессами.

Как известно, программные модули могут быть однократно и многократно (или повторно) используемыми. Однократно используемыми называют такие про­граммные модули, которые могут быть правильно выполнены только один раз. Это означает, что в процессе своего выполнения они могут испортить себя: либо повреждается часть кода, либо — исходные данные, от которых зависит ход вы­числений. Очевидно, что однократно используемые программные модули явля­ются неделимым ресурсом. Более того, их обычно вообще не распределяют как ресурс системы. Системные однократно используемые программные модули, как правило, используются только на этапе загрузки ОС. При этом следует иметь в виду тот очевидный факт, что собственно двоичные файлы, которые обычно хранятся на системном диске и в которых и записаны эти модули, не портятся, а потому могут быть повторно использованы при следующем запуске ОС.

Повторно используемые программные модули, в свою очередь, могут быть не­привилегированными, привилегированными и реентерабельными.

Непривилегированные программные модули — это обычные программные модули, которые могут быть прерваны во время своей работы. Следовательно, в общем случае их нельзя считать разделяемыми, потому что если после прерывания вы­полнения такого модуля, исполняемого в рамках одного вычислительного про­цесса, запустить его еще раз по требованию другого вычислительного процесса, то промежуточные результаты для прерванных вычислений могут быть потеря­ны.

В противоположность этому, реентерабельные программные модули (reente­rable) допускают повторное многократное прерывание своего исполнения и по­вторный их запуск по обращению из других задач (вычислительных процессов). Для этого реентерабельные программные модули должны быть созданы таким образом, чтобы было обеспечено сохранение промежуточных вычислений для прерываемых вычислений и возврат к ним, когда вычислительный процесс во­зобновляется с прерванной ранее точки. Это может быть реализовано двумя спо­собами: с помощью статических и динамических методов выделения памяти под сохраняемые значения. Основной, наиболее часто используемый динамический — способ выделения памяти для сохранения всех промежуточных результатов вы­числения, относящихся к реентерабельному программному модулю, может быть проиллюстрирован с помощью рис. 6.

Рис. 5. Структура привилегированного программного модуля

Основная идея построения и работы реентерабельного программного модуля, структура которого представлена на рис. 6, заключается в том, что в первой (головной) своей части с помощью обращения из системной привилегированной секции осуществляется запрос на получение в системной области памяти блока ячеек, необходимого для размещения всех текущих (промежуточных) данных. При этом на вершину стека помещается указатель на начало области данных и ее объем. Все текущие переменные реентерабельного программного модуля в этом случае располагаются в системной области памяти. Поскольку в конце привиле­гированной секции система прерываний включается, то во время работы цен­тральной (основной) части реентерабельного модуля возможно ее прерывание. Если прерывание не возникает, то в третьей (заключительной) секции осуществ­ляется запрос на освобождение использованного блока системной области памя­ти. Если же во время работы центральной секции возникает прерывание и дру­гой вычислительный процесс обращается к тому же самому реентерабельному программному модулю, то для этого нового процесса вновь заказывается новый блок памяти в системной области памяти и на вершину стека записывается новый указатель. Очевидно, что возможно многократное повторное вхождение в реентерабельный программный модуль до тех пор, пока в области системной памяти, выделяемой специально для реентерабельной обработки, есть свободные ячейки, число которых достаточно для выделения нового блока.

Рис. 6. Реентабельный программный модуль

Что касается статического способа выделения памяти, то здесь речь может идти, например, о том, что заранее для фиксированного числа вычислительных про­цессов резервируются области памяти, в которых будут располагаться перемен­ные реентерабельных программных модулей: для каждого процесса - своя область памяти. Чаще всего в качестве таких процессов выступают процессы ввода/вы­вода и речь идет о реентерабельных драйверах (реентерабельный драйвер мо­жет управлять параллельно несколькими однотипными устройствами).

Кроме реентерабельных программных модулей существуют еще повторно входимые (от re-entrance). Этим термином называют программные модули, которые тоже допускают свое многократное параллельное использование, но в отличие от реентерабельных их нельзя прерывать. Повторно входимые программные мо­дули состоят из привилегированных секций и повторное обращение к ним воз­можно только после завершения какой-нибудь из таких секций. После выпол­нения очередной привилегированной секции управление может быть передано супервизору, и если он предоставит возможность выполняться другому процес­су, то возможно повторное вхождение в рассматриваемый программный модуль. Другими словами, в повторно входимых программных модулях четко предопре­делены все допустимые (возможные) точки входа. Следует отметить, что по­вторно входимые программные модули встречаются гораздо чаще реентерабель­ных (повторно прерываемых).

Наконец, имеются и информационные ресурсы, то есть в качестве ресурсов мо­гут выступать данные. Информационные ресурсы могут существовать как в виде переменных, находящихся в оперативной памяти, так и в виде файлов. Если про­цессы используют данные только для чтения, то такие информационные ресурсы можно разделять. Если же процессы могут изменять информационные ресурсы, то необходимо специальным образом организовывать работу с такими данными.

Планирование в системах реального времени

В системах реального времени, в которых главным критерием эффективности является обеспечение временных характеристик вычислительного процесса, планирование имеет особое значение. Любая система реального времени должна реагировать на сигналы управляемого объекта в течение заданных временных ограничений. Необходимость тщательного планирования работ облегчается тем, что в системах реального времени весь набор выполняемых задач известен заранее. Кроме того, часто в системе имеется информация о временах выполнения задач, моментах активизации, предельных допустимых сроках ожидания ответа и т. д. Эти данные могут быть использованы планировщиком для создания статического расписания или для построения адекватного алгоритма динамического планирования.

При разработке алгоритмов планирования для систем реального времени необходимо учитывать, какие последствия в этих системах возникают при несоблюдении временных ограничений. Если эти последствия катастрофичны, как, например, для системы управления полетами или атомной электростанцией, то операционная система реального времени, на основе которой строится управление объектом, называется жесткой (hard). Если же последствия нарушения временных ограничений не столь серьезны, то есть сравнимы с той пользой, которую приносит система управления объектом, то система является мягкой (soft) системой реального времени. Примером мягкой системы реального времени является система резервирования билетов. Если из-за временных нарушений оператору не удается зарезервировать билет, это не очень страшно — можно просто послать запрос на резервирование заново.

В жестких системах реального времени время завершения выполнения каждой из критических задач должно быть гарантировано для всех возможных сценариев работы системы. Такие гарантии могут быть даны либо в результате исчерпывающего тестирования всех возможных сценариев поведения управляемого объекта и управляющих программ, либо в результате построения статического расписания, либо в результате выбора математически обоснованного динамического алгоритма планирования. При построении расписания надо иметь в виду, что для некоторых наборов задач в принципе невозможно найти расписания, при котором бы удовлетворялись заданные временные характеристики. С целью определения возможности существования расписания могут быть использованы различные критерии. Например, в качестве простейшего критерия может служить условие, что разность между предельным сроком выполнения задачи (после появления запроса на ее выполнение) и временем ее вычисления (при условии непрерывного выполнения) всегда должна быть положительной. Очевидно, что такой критерий является необходимым, но недостаточным. Точные критерии, гарантирующие наличие расписания, являются очень сложными в вычислительном отношении.

В мягких системах реального времени предполагается, что заданные временные ограничения могут иногда нарушаться, поэтому здесь обычно применяются менее затратные способы планирования.

Кроме прерываний от таймера в системах реального времени перепланирование задач может происходить по прерываниям от внешних устройств — различного вида датчиков и исполнительных механизмов.

Вы можете изучить и скачать доклад-презентацию на тему Ядро и вспомогательные модули ОС, привилегированный режим. Презентация на заданную тему содержит 30 слайдов. Для просмотра воспользуйтесь проигрывателем, если материал оказался полезным для Вас - поделитесь им с друзьями с помощью социальных кнопок и добавьте наш сайт презентаций в закладки!

500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500

Любая сложная система должна иметь понятную и рациональную структуру, то есть разделяться на части — модули, имеющие вполне законченное функциональное назначение с четко оговоренными правилами взаимодействия. Любая сложная система должна иметь понятную и рациональную структуру, то есть разделяться на части — модули, имеющие вполне законченное функциональное назначение с четко оговоренными правилами взаимодействия. Ясное понимание роли каждого отдельного модуля существенно упрощает работу по модификации и развитию системы. Напротив, сложную систему без хорошей структуры чаще проще разработать заново, чем модернизировать. Функциональная сложность операционной системы неизбежно приводит к сложности ее архитектуры, под которой понимают структурную организацию ОС на основе различных программных модулей.

Обычно в состав ОС входят исполняемые и объектные модули стандартных для данной ОС форматов, библиотеки разных типов, модули исходного текста программ, программные модули специального формата (например, загрузчик ОС, драйверы ввода-вывода), конфигурационные файлы, файлы документации, модули справочной системы и т. д. Обычно в состав ОС входят исполняемые и объектные модули стандартных для данной ОС форматов, библиотеки разных типов, модули исходного текста программ, программные модули специального формата (например, загрузчик ОС, драйверы ввода-вывода), конфигурационные файлы, файлы документации, модули справочной системы и т. д. Большинство современных операционных систем представляют собой хорошо структурированные модульные системы, способные к развитию, расширению и переносу на новые платформы. Какой-либо единой архитектуры ОС не существует, но существуют универсальные подходы к структурированию ОС.

Наиболее общим подходом к структуризации операционной системы является разделение всех ее модулей на две группы: Наиболее общим подходом к структуризации операционной системы является разделение всех ее модулей на две группы: ядро — модули, выполняющие основные функции ОС; модули, выполняющие вспомогательные функции ОС. Модули ядра выполняют такие базовые функции ОС, как управление процессами, памятью, устройствами ввода-вывода и т. п. Ядро составляет сердцевину операционной системы, без него ОС является полностью неработоспособной и не сможет выполнить ни одну из своих функций.

В состав ядра входят функции, решающие внутрисистемные задачи организации вычислительного процесса, такие как переключение контекстов, загрузка/выгрузка страниц, обработка прерываний. В состав ядра входят функции, решающие внутрисистемные задачи организации вычислительного процесса, такие как переключение контекстов, загрузка/выгрузка страниц, обработка прерываний. Эти функции недоступны для приложений. Другой класс функций ядра служит для поддержки приложений, создавая для них так называемую прикладную программную среду.

Приложения могут обращаться к ядру с запросами — системными вызовами — для выполнения тех или иных действий, например для открытия и чтения файла, вывода графической информации на дисплей, получения системного времени и т. д. Приложения могут обращаться к ядру с запросами — системными вызовами — для выполнения тех или иных действий, например для открытия и чтения файла, вывода графической информации на дисплей, получения системного времени и т. д. Функции ядра, которые могут вызываться приложениями, образуют интерфейс прикладного программирования — API.

Функции, выполняемые модулями ядра, являются наиболее часто используемыми функциями операционной системы, поэтому скорость их выполнения определяет производительность всей системы в целом. Функции, выполняемые модулями ядра, являются наиболее часто используемыми функциями операционной системы, поэтому скорость их выполнения определяет производительность всей системы в целом. Для обеспечения высокой скорости работы ОС все модули ядра или большая их часть постоянно находятся в оперативной памяти, то есть являются резидентными.

Ядро является движущей силой всех вычислительных процессов в компьютерной системе, и крах ядра равносилен краху всей системы. Ядро является движущей силой всех вычислительных процессов в компьютерной системе, и крах ядра равносилен краху всей системы. Поэтому разработчики операционной системы уделяют особое внимание надежности кодов ядра, в результате процесс их отладки может растягиваться на многие месяцы.

Обычно ядро оформляется в виде программного модуля некоторого специального формата, отличающегося от формата пользовательских приложений. Обычно ядро оформляется в виде программного модуля некоторого специального формата, отличающегося от формата пользовательских приложений. Вспомогательные модули ОС обычно подразделяются на следующие группы: утилиты — программы, решающие отдельные задачи управления и сопровождения компьютерной системы, такие, например, как программы сжатия дисков, архивирования данных на магнитную ленту; системные обрабатывающие программы — текстовые или графические редакторы, компиляторы, компоновщики, отладчики;

программы предоставления пользователю дополнительных услуг — специальный вариант пользовательского интерфейса, калькулятор и даже игры; программы предоставления пользователю дополнительных услуг — специальный вариант пользовательского интерфейса, калькулятор и даже игры; библиотеки процедур различного назначения, упрощающие разработку приложений, например библиотека математических функций, функций ввода-вывода и т. д.

Как и обычные приложения, для выполнения своих задач утилиты, обрабатывающие программы и библиотеки ОС, обращаются к функциям ядра посредством системных вызовов. Как и обычные приложения, для выполнения своих задач утилиты, обрабатывающие программы и библиотеки ОС, обращаются к функциям ядра посредством системных вызовов. Разделение операционной системы на ядро и модули-приложения обеспечивает легкую расширяемость ОС.

Чтобы добавить новую высокоуровневую функцию, достаточно разработать новое приложение, и при этом не требуется модифицировать ответственные функции, образующие ядро системы. Чтобы добавить новую высокоуровневую функцию, достаточно разработать новое приложение, и при этом не требуется модифицировать ответственные функции, образующие ядро системы. Однако внесение изменений в функции ядра может оказаться гораздо сложнее, и сложность эта зависит от структурной организации самого ядра. В некоторых случаях каждое исправление ядра может потребовать его полной перекомпиляции.

Модули ОС, оформленные в виде утилит, системных обрабатывающих программ и библиотек, обычно загружаются в оперативную память только на время выполнения своих функций, то есть являются транзитными. Модули ОС, оформленные в виде утилит, системных обрабатывающих программ и библиотек, обычно загружаются в оперативную память только на время выполнения своих функций, то есть являются транзитными. Постоянно в оперативной памяти располагаются только самые необходимые коды ОС, составляющие ее ядро.

Такая организация ОС экономит оперативную память компьютера. Такая организация ОС экономит оперативную память компьютера. Важным свойством архитектуры ОС, основанной на ядре, является возможность защиты кодов и данных операционной системы за счет выполнения функций ядра в привилегированном режиме.

Ядро в привилегированном режиме Для надежного управления ходом выполнения приложений операционная система должна иметь по отношению к приложениям определенные привилегии. Иначе некорректно работающее приложение может вмешаться в работу ОС и, например, разрушить часть ее кодов. Все усилия разработчиков операционной системы окажутся напрасными, если их решения воплощены в незащищенные от приложений модули системы, какими бы элегантными и эффективными эти решения ни были.

Операционная система должна обладать исключительными полномочиями также для того, чтобы играть роль арбитра в споре приложений за ресурсы компьютера в мультипрограммном режиме. Операционная система должна обладать исключительными полномочиями также для того, чтобы играть роль арбитра в споре приложений за ресурсы компьютера в мультипрограммном режиме. Ни одно приложение не должно иметь возможности без ведома ОС получать дополнительную область памяти, занимать процессор дольше разрешенного операционной системой периода времени, непосредственно управлять совместно используемыми внешними устройствами.

Обеспечить привилегии операционной системе невозможно без специальных средств аппаратной поддержки. Обеспечить привилегии операционной системе невозможно без специальных средств аппаратной поддержки. Аппаратура компьютера должна поддерживать как минимум два режима работы — пользовательский режим (user mode) и привилегированный режим, который также называют режимом ядра (kernel mode), или режимом супервизора (supervisor mode).

Подразумевается, что операционная система или некоторые ее части работают в привилегированном режиме, а приложения — в пользовательском режиме. Подразумевается, что операционная система или некоторые ее части работают в привилегированном режиме, а приложения — в пользовательском режиме. Так как ядро выполняет все основные функции ОС, то чаще всего именно ядро становится той частью ОС, которая работает в привилегированном режиме.

Приложения ставятся в подчиненное положение за счет запрета выполнения в пользовательском режиме некоторых критичных команд, связанных с переключением процессора с задачи на задачу, управлением устройствами ввода-вывода, доступом к механизмам распределения и защиты памяти. Приложения ставятся в подчиненное положение за счет запрета выполнения в пользовательском режиме некоторых критичных команд, связанных с переключением процессора с задачи на задачу, управлением устройствами ввода-вывода, доступом к механизмам распределения и защиты памяти. Выполнение некоторых инструкций в пользовательском режиме запрещается безусловно (очевидно, что к таким инструкциям относится инструкция перехода в привилегированный режим), тогда как другие запрещается выполнять только при определенных условиях.

Например, инструкции ввода-вывода могут быть запрещены приложениям при доступе к контроллеру жесткого диска, который хранит данные, общие для ОС и всех приложений, но разрешены при доступе к последовательному порту, который выделен в монопольное владение для определенного приложения. Важно, что условия разрешения выполнения критичных инструкций находятся под полным контролем ОС и этот контроль обеспечивается за счет набора инструкций, безусловно запрещенных для пользовательского режима. Например, инструкции ввода-вывода могут быть запрещены приложениям при доступе к контроллеру жесткого диска, который хранит данные, общие для ОС и всех приложений, но разрешены при доступе к последовательному порту, который выделен в монопольное владение для определенного приложения. Важно, что условия разрешения выполнения критичных инструкций находятся под полным контролем ОС и этот контроль обеспечивается за счет набора инструкций, безусловно запрещенных для пользовательского режима.

Аналогичным образом обеспечиваются привилегии ОС при доступе к памяти. Аналогичным образом обеспечиваются привилегии ОС при доступе к памяти. Например, выполнение инструкции доступа к памяти для приложения разрешается, если инструкция обращается к области памяти, отведенной данному приложению операционной системой, и запрещается при обращении к областям памяти, занимаемым ОС или другими приложениями. Полный контроль ОС над доступом к памяти достигается за счет того, что инструкция или инструкции конфигурирования механизмов защиты памяти (например, изменения ключей защиты памяти в мэйнфреймах IBM или указателя таблицы дескрипторов памяти в процессорах Pentium) разрешается выполнять только в привилегированном режиме.

Очень важно, что механизмы защиты памяти используются операционной системой не только для защиты своих областей памяти от приложений, но и для защиты областей памяти, выделенных ОС какому-либо приложению, от остальных приложений. Очень важно, что механизмы защиты памяти используются операционной системой не только для защиты своих областей памяти от приложений, но и для защиты областей памяти, выделенных ОС какому-либо приложению, от остальных приложений. Говорят, что каждое приложение работает в своем адресном пространстве. Это свойство позволяет локализовать некорректно работающее приложение в собственной области памяти, так что его ошибки не оказывают влияния на остальные приложения и операционную систему.

В некоторых случаях разработчики ОС отступают от этого классического варианта архитектуры, организуя работу ядра и приложений в одном и том же режиме. В некоторых случаях разработчики ОС отступают от этого классического варианта архитектуры, организуя работу ядра и приложений в одном и том же режиме. Так, известная специализированная операционная система Net Ware компании Novell использует привилегированный режим процессоров Intel x86/ Pentium для работы ядра.

При таком построении ОС обращения приложений к ядру выполняются быстрее, так как нет переключения режимов, однако при этом отсутствует надежная аппаратная защита памяти, занимаемой модулями ОС, от некорректно работающего приложения. При таком построении ОС обращения приложений к ядру выполняются быстрее, так как нет переключения режимов, однако при этом отсутствует надежная аппаратная защита памяти, занимаемой модулями ОС, от некорректно работающего приложения. Разработчики Net Ware пошли на такое потенциальное снижение надежности своей операционной системы, поскольку ограниченный набор ее специализированных приложений позволяет компенсировать этот архитектурный недостаток за счет тщательной отладки каждого приложения.

В одном режиме работают также ядро и приложения тех операционных систем, которые разработаны для процессоров, вообще не поддерживающих привилегированного режима работы. В одном режиме работают также ядро и приложения тех операционных систем, которые разработаны для процессоров, вообще не поддерживающих привилегированного режима работы. Наиболее популярным процессором такого типа был процессор Intel 8088/86, послуживший основой для персональных компьютеров компании IBM. Операционная система MS-DOS, разработанная компанией Microsoft для этих компьютеров, состояла из двух модулей msdos.sys и io.sys, составлявших ядро системы.

Некорректно написанные приложения вполне могли разрушить основные модули MS-DOS, что иногда и происходило, но область использования MS-DOS (и многих подобных ей ранних операционных систем для персональных компьютеров, таких как MSX, СР/М) и не предъявляла высоких требований к надежности ОС. Некорректно написанные приложения вполне могли разрушить основные модули MS-DOS, что иногда и происходило, но область использования MS-DOS (и многих подобных ей ранних операционных систем для персональных компьютеров, таких как MSX, СР/М) и не предъявляла высоких требований к надежности ОС.

Вы можете изучить и скачать доклад-презентацию на тему Ядро и вспомогательные модули ОС, привилегированный режим. Презентация на заданную тему содержит 30 слайдов. Для просмотра воспользуйтесь проигрывателем, если материал оказался полезным для Вас - поделитесь им с друзьями с помощью социальных кнопок и добавьте наш сайт презентаций в закладки!

500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500

Любая сложная система должна иметь понятную и рациональную структуру, то есть разделяться на части — модули, имеющие вполне законченное функциональное назначение с четко оговоренными правилами взаимодействия. Любая сложная система должна иметь понятную и рациональную структуру, то есть разделяться на части — модули, имеющие вполне законченное функциональное назначение с четко оговоренными правилами взаимодействия. Ясное понимание роли каждого отдельного модуля существенно упрощает работу по модификации и развитию системы. Напротив, сложную систему без хорошей структуры чаще проще разработать заново, чем модернизировать. Функциональная сложность операционной системы неизбежно приводит к сложности ее архитектуры, под которой понимают структурную организацию ОС на основе различных программных модулей.

Обычно в состав ОС входят исполняемые и объектные модули стандартных для данной ОС форматов, библиотеки разных типов, модули исходного текста программ, программные модули специального формата (например, загрузчик ОС, драйверы ввода-вывода), конфигурационные файлы, файлы документации, модули справочной системы и т. д. Обычно в состав ОС входят исполняемые и объектные модули стандартных для данной ОС форматов, библиотеки разных типов, модули исходного текста программ, программные модули специального формата (например, загрузчик ОС, драйверы ввода-вывода), конфигурационные файлы, файлы документации, модули справочной системы и т. д. Большинство современных операционных систем представляют собой хорошо структурированные модульные системы, способные к развитию, расширению и переносу на новые платформы. Какой-либо единой архитектуры ОС не существует, но существуют универсальные подходы к структурированию ОС.

Наиболее общим подходом к структуризации операционной системы является разделение всех ее модулей на две группы: Наиболее общим подходом к структуризации операционной системы является разделение всех ее модулей на две группы: ядро — модули, выполняющие основные функции ОС; модули, выполняющие вспомогательные функции ОС. Модули ядра выполняют такие базовые функции ОС, как управление процессами, памятью, устройствами ввода-вывода и т. п. Ядро составляет сердцевину операционной системы, без него ОС является полностью неработоспособной и не сможет выполнить ни одну из своих функций.

В состав ядра входят функции, решающие внутрисистемные задачи организации вычислительного процесса, такие как переключение контекстов, загрузка/выгрузка страниц, обработка прерываний. В состав ядра входят функции, решающие внутрисистемные задачи организации вычислительного процесса, такие как переключение контекстов, загрузка/выгрузка страниц, обработка прерываний. Эти функции недоступны для приложений. Другой класс функций ядра служит для поддержки приложений, создавая для них так называемую прикладную программную среду.

Приложения могут обращаться к ядру с запросами — системными вызовами — для выполнения тех или иных действий, например для открытия и чтения файла, вывода графической информации на дисплей, получения системного времени и т. д. Приложения могут обращаться к ядру с запросами — системными вызовами — для выполнения тех или иных действий, например для открытия и чтения файла, вывода графической информации на дисплей, получения системного времени и т. д. Функции ядра, которые могут вызываться приложениями, образуют интерфейс прикладного программирования — API.

Функции, выполняемые модулями ядра, являются наиболее часто используемыми функциями операционной системы, поэтому скорость их выполнения определяет производительность всей системы в целом. Функции, выполняемые модулями ядра, являются наиболее часто используемыми функциями операционной системы, поэтому скорость их выполнения определяет производительность всей системы в целом. Для обеспечения высокой скорости работы ОС все модули ядра или большая их часть постоянно находятся в оперативной памяти, то есть являются резидентными.

Ядро является движущей силой всех вычислительных процессов в компьютерной системе, и крах ядра равносилен краху всей системы. Ядро является движущей силой всех вычислительных процессов в компьютерной системе, и крах ядра равносилен краху всей системы. Поэтому разработчики операционной системы уделяют особое внимание надежности кодов ядра, в результате процесс их отладки может растягиваться на многие месяцы.

Обычно ядро оформляется в виде программного модуля некоторого специального формата, отличающегося от формата пользовательских приложений. Обычно ядро оформляется в виде программного модуля некоторого специального формата, отличающегося от формата пользовательских приложений. Вспомогательные модули ОС обычно подразделяются на следующие группы: утилиты — программы, решающие отдельные задачи управления и сопровождения компьютерной системы, такие, например, как программы сжатия дисков, архивирования данных на магнитную ленту; системные обрабатывающие программы — текстовые или графические редакторы, компиляторы, компоновщики, отладчики;

программы предоставления пользователю дополнительных услуг — специальный вариант пользовательского интерфейса, калькулятор и даже игры; программы предоставления пользователю дополнительных услуг — специальный вариант пользовательского интерфейса, калькулятор и даже игры; библиотеки процедур различного назначения, упрощающие разработку приложений, например библиотека математических функций, функций ввода-вывода и т. д.

Как и обычные приложения, для выполнения своих задач утилиты, обрабатывающие программы и библиотеки ОС, обращаются к функциям ядра посредством системных вызовов. Как и обычные приложения, для выполнения своих задач утилиты, обрабатывающие программы и библиотеки ОС, обращаются к функциям ядра посредством системных вызовов. Разделение операционной системы на ядро и модули-приложения обеспечивает легкую расширяемость ОС.

Чтобы добавить новую высокоуровневую функцию, достаточно разработать новое приложение, и при этом не требуется модифицировать ответственные функции, образующие ядро системы. Чтобы добавить новую высокоуровневую функцию, достаточно разработать новое приложение, и при этом не требуется модифицировать ответственные функции, образующие ядро системы. Однако внесение изменений в функции ядра может оказаться гораздо сложнее, и сложность эта зависит от структурной организации самого ядра. В некоторых случаях каждое исправление ядра может потребовать его полной перекомпиляции.

Модули ОС, оформленные в виде утилит, системных обрабатывающих программ и библиотек, обычно загружаются в оперативную память только на время выполнения своих функций, то есть являются транзитными. Модули ОС, оформленные в виде утилит, системных обрабатывающих программ и библиотек, обычно загружаются в оперативную память только на время выполнения своих функций, то есть являются транзитными. Постоянно в оперативной памяти располагаются только самые необходимые коды ОС, составляющие ее ядро.

Такая организация ОС экономит оперативную память компьютера. Такая организация ОС экономит оперативную память компьютера. Важным свойством архитектуры ОС, основанной на ядре, является возможность защиты кодов и данных операционной системы за счет выполнения функций ядра в привилегированном режиме.

Ядро в привилегированном режиме Для надежного управления ходом выполнения приложений операционная система должна иметь по отношению к приложениям определенные привилегии. Иначе некорректно работающее приложение может вмешаться в работу ОС и, например, разрушить часть ее кодов. Все усилия разработчиков операционной системы окажутся напрасными, если их решения воплощены в незащищенные от приложений модули системы, какими бы элегантными и эффективными эти решения ни были.

Операционная система должна обладать исключительными полномочиями также для того, чтобы играть роль арбитра в споре приложений за ресурсы компьютера в мультипрограммном режиме. Операционная система должна обладать исключительными полномочиями также для того, чтобы играть роль арбитра в споре приложений за ресурсы компьютера в мультипрограммном режиме. Ни одно приложение не должно иметь возможности без ведома ОС получать дополнительную область памяти, занимать процессор дольше разрешенного операционной системой периода времени, непосредственно управлять совместно используемыми внешними устройствами.

Обеспечить привилегии операционной системе невозможно без специальных средств аппаратной поддержки. Обеспечить привилегии операционной системе невозможно без специальных средств аппаратной поддержки. Аппаратура компьютера должна поддерживать как минимум два режима работы — пользовательский режим (user mode) и привилегированный режим, который также называют режимом ядра (kernel mode), или режимом супервизора (supervisor mode).

Подразумевается, что операционная система или некоторые ее части работают в привилегированном режиме, а приложения — в пользовательском режиме. Подразумевается, что операционная система или некоторые ее части работают в привилегированном режиме, а приложения — в пользовательском режиме. Так как ядро выполняет все основные функции ОС, то чаще всего именно ядро становится той частью ОС, которая работает в привилегированном режиме.

Приложения ставятся в подчиненное положение за счет запрета выполнения в пользовательском режиме некоторых критичных команд, связанных с переключением процессора с задачи на задачу, управлением устройствами ввода-вывода, доступом к механизмам распределения и защиты памяти. Приложения ставятся в подчиненное положение за счет запрета выполнения в пользовательском режиме некоторых критичных команд, связанных с переключением процессора с задачи на задачу, управлением устройствами ввода-вывода, доступом к механизмам распределения и защиты памяти. Выполнение некоторых инструкций в пользовательском режиме запрещается безусловно (очевидно, что к таким инструкциям относится инструкция перехода в привилегированный режим), тогда как другие запрещается выполнять только при определенных условиях.

Например, инструкции ввода-вывода могут быть запрещены приложениям при доступе к контроллеру жесткого диска, который хранит данные, общие для ОС и всех приложений, но разрешены при доступе к последовательному порту, который выделен в монопольное владение для определенного приложения. Важно, что условия разрешения выполнения критичных инструкций находятся под полным контролем ОС и этот контроль обеспечивается за счет набора инструкций, безусловно запрещенных для пользовательского режима. Например, инструкции ввода-вывода могут быть запрещены приложениям при доступе к контроллеру жесткого диска, который хранит данные, общие для ОС и всех приложений, но разрешены при доступе к последовательному порту, который выделен в монопольное владение для определенного приложения. Важно, что условия разрешения выполнения критичных инструкций находятся под полным контролем ОС и этот контроль обеспечивается за счет набора инструкций, безусловно запрещенных для пользовательского режима.

Аналогичным образом обеспечиваются привилегии ОС при доступе к памяти. Аналогичным образом обеспечиваются привилегии ОС при доступе к памяти. Например, выполнение инструкции доступа к памяти для приложения разрешается, если инструкция обращается к области памяти, отведенной данному приложению операционной системой, и запрещается при обращении к областям памяти, занимаемым ОС или другими приложениями. Полный контроль ОС над доступом к памяти достигается за счет того, что инструкция или инструкции конфигурирования механизмов защиты памяти (например, изменения ключей защиты памяти в мэйнфреймах IBM или указателя таблицы дескрипторов памяти в процессорах Pentium) разрешается выполнять только в привилегированном режиме.

Очень важно, что механизмы защиты памяти используются операционной системой не только для защиты своих областей памяти от приложений, но и для защиты областей памяти, выделенных ОС какому-либо приложению, от остальных приложений. Очень важно, что механизмы защиты памяти используются операционной системой не только для защиты своих областей памяти от приложений, но и для защиты областей памяти, выделенных ОС какому-либо приложению, от остальных приложений. Говорят, что каждое приложение работает в своем адресном пространстве. Это свойство позволяет локализовать некорректно работающее приложение в собственной области памяти, так что его ошибки не оказывают влияния на остальные приложения и операционную систему.

В некоторых случаях разработчики ОС отступают от этого классического варианта архитектуры, организуя работу ядра и приложений в одном и том же режиме. В некоторых случаях разработчики ОС отступают от этого классического варианта архитектуры, организуя работу ядра и приложений в одном и том же режиме. Так, известная специализированная операционная система Net Ware компании Novell использует привилегированный режим процессоров Intel x86/ Pentium для работы ядра.

При таком построении ОС обращения приложений к ядру выполняются быстрее, так как нет переключения режимов, однако при этом отсутствует надежная аппаратная защита памяти, занимаемой модулями ОС, от некорректно работающего приложения. При таком построении ОС обращения приложений к ядру выполняются быстрее, так как нет переключения режимов, однако при этом отсутствует надежная аппаратная защита памяти, занимаемой модулями ОС, от некорректно работающего приложения. Разработчики Net Ware пошли на такое потенциальное снижение надежности своей операционной системы, поскольку ограниченный набор ее специализированных приложений позволяет компенсировать этот архитектурный недостаток за счет тщательной отладки каждого приложения.

В одном режиме работают также ядро и приложения тех операционных систем, которые разработаны для процессоров, вообще не поддерживающих привилегированного режима работы. В одном режиме работают также ядро и приложения тех операционных систем, которые разработаны для процессоров, вообще не поддерживающих привилегированного режима работы. Наиболее популярным процессором такого типа был процессор Intel 8088/86, послуживший основой для персональных компьютеров компании IBM. Операционная система MS-DOS, разработанная компанией Microsoft для этих компьютеров, состояла из двух модулей msdos.sys и io.sys, составлявших ядро системы.

Некорректно написанные приложения вполне могли разрушить основные модули MS-DOS, что иногда и происходило, но область использования MS-DOS (и многих подобных ей ранних операционных систем для персональных компьютеров, таких как MSX, СР/М) и не предъявляла высоких требований к надежности ОС. Некорректно написанные приложения вполне могли разрушить основные модули MS-DOS, что иногда и происходило, но область использования MS-DOS (и многих подобных ей ранних операционных систем для персональных компьютеров, таких как MSX, СР/М) и не предъявляла высоких требований к надежности ОС.

Читайте также: