Какая структура листа осуществляет регуляцию транспирации и газообмена

Обновлено: 06.05.2024

Транспира́ция (от лат. trans и лат. spiro — дышу, выдыхаю) — это испарение воды растением. Основным органом транспирации является лист. Вода испаряется с поверхности листьев через клеточные стенки эпидермальных клеток и покровные слои (кутикулярная транспирация) и через устьица (устьичная транспирация).

В результате потери воды в ходе транспирации в клетках листьев возрастает сосущая сила. Это приводит к усилению поглощения клетками листа воды из сосудов ксилемы и передвижению воды по ксилеме из корней в листья. Таким образом, верхний концевой двигатель, участвующий в транспорте воды вверх по растению, обусловлен транспирацией листьев.

Содержание

Верхний концевой двигатель может работать при полном отключении нижнего концевого двигателя, причем для его работы используется не только метаболическая энергия как в корне, но и энергия внешней среды — температура и движение воздуха.

Транспирация спасает растение от перегрева. Температура сильно транспирирующего листа может примерно на 7 С° быть ниже температуры нетранспирирующего завядшего листа. Кроме того, транспирация участвует в создании непрерывного тока воды с растворенными минеральными и органическими соединениями из корневой системы к надземным органам растения.

Количественные характеристики транспирации

Интенсивность транспирации — это количество воды, испаряемой растением в граммах за единицу времени в часах единицей поверхности в дм². Эта величина колеблется от 0,15 до 1,5.

Транспирационный коэффициент — это количество воды в граммах, испаряемой растением при накоплении им 1 грамма сухого вещества.

Продуктивность транспирации — это величина, обратная транспирационному коэффициенту и равна количеству сухого вещества в граммах, накопленного растением за период, когда оно испаряет 1 кг воды.

Относительная транспирация — это отношение количества воды, испаряемой листом, к количеству воды, испаряемой со свободной водной поверхности той же площади за один и тот же период времени.

Экономность транспирации — это количество испаряемой воды в мг на 1 кг воды, содержащейся в растении.

Подсчитано, что с 1 га посева пшеницы выделяется около 2 тыс. т воды, кукурузы — 3,2 тыс. т, капусты — 8 тыс. т.

Кутикулярная транспирация

Снаружи листья имеют однослойный эпидермис, внешние стенки клеток которого покрыты кутикулой и воском, образующие эффективный барьер на пути движения воды. На поверхности листьев часто развиты волоски, которые также влияют на водный режим листа, так как снижают скорость движения воздуха над его поверхностью и рассеивают свет и тем самым уменьшают потери воды за счет транспирации.

Интенсивность кутикулярной транспирации варьирует у разных видов растений. У молодых листьев с тонкой кутикулой она может составлять около половины всей транспирации. У зрелых листьев с более мощной кутикулой кутикулярная транспирация равна 1 /10 общей транспирации. В стареющих листьях из-за повреждения кутикулы она может возрастать. Таким образом, кутикулярная транспирация регулируется главным образом толщиной и целостностью кутикулы и других защитных покровных слоев на поверхности листьев.

Устьичная транспирация

Устьица представляют собой щель в подъустьичную полость, окаймленную двумя замыкающими клетками серповидной формы. Устьица играют важную роль в газообмене между листом и атмосферой, так как являются основным путем для водяного пара, углекислого газа и кислорода. Устьица находятся на обеих сторонах листа. Есть виды растений, у которых устьица располагаются только на нижней стороне листа. В среднем число устьиц колеблется от 50 до 500 на 1 мм². Транспирация через устьица идет почти с такой же скоростью, как и с поверхности чистой воды. Это объясняется законом И. Стефана: через малые отверстия скорость диффузии газов пропорциональна не площади отверстия, а диаметру или длине окружности. Поэтому, хотя площадь устьичных отверстий мала по отношению к площади всего листа (0,5-2 %), испарение воды через устьица идет очень интенсивно.

Транспирация слагается из двух процессов:

  1. передвижения воды в листе из сосудов ксилемы по симпласту и, преимущественно, по клеточным стенкам, так как в стенках транспорт воды встречает меньшее сопротивление
  2. испарения воды из клеточных стенок в межклетники и подъустьичные полости с последующей диффузией в окружающую атмосферу через устьичные щели.

Чем меньше относительная влажность атмосферного воздуха, тем ниже его водный потенциал. Если водный потенциал воздуха меньше водного потенциала подъустьичных полостей, то молекулы воды испаряются наружу.

Основным фактором, влияющим на открывание и закрывание устьиц, является содержание воды в листе, в том числе и в замыкающих клетках устьиц. Клеточные стенки замыкающих клеток имеют неодинаковую толщину. Внутренняя часть стенки, примыкающая к устьичной щели, более толстая, а внешняя — более тонкая. По мере того как замыкающая клетка осмотически поглощает воду, более тонкая и эластичная часть ее клеточной стенки растягивается и оттягивает внутреннюю часть стенки. Замыкающие клетки принимают полукруглую форму и устьица раскрываются. При недостатке воды замыкающие клетки выпрямляются и устьичная щель закрывается. Кроме того, по мере увеличения водного дефицита в тканях растения повышается концентрация ингибитора роста абсцизовой кислоты. Она подавляет деятельность Н + -насосов в плазмалемме замыкающих клеток, вследствие чего снижается их тургор и устьица закрываются. Абсцизовая кислота также ингибирует синтез фермента α-амилазы, что приводит к снижению гидролиза крахмала. По сравнению с низкомолекулярными углеводами крахмал не является осмотически активным веществом, поэтому сосущая сила замыкающих клеток уменьшается и устьица закрываются.

В отличие от других клеток эпидермиса замыкающие клетки устьиц содержат хлоропласты. Синтез углеводов в процессе фотосинтеза в замыкающих клетках увеличивает их сосущую силу и вызывает поглощение воды, способствуя этим открыванию устьиц.

Состояние устьиц зависит от углекислого газа. Если концентрация СО2 в подустьичной полости падает ниже 0,03 %, тургор замыкающих клеток увеличивается и устьица открываются. Повышение концентрации СО2 в воздухе вызывает закрытие устьиц. Это происходит в межклетниках листа ночью, когда в результате отсутствия фотосинтеза и продолжающегося дыхания уровень углекислого газа в тканях повышается. Такое влияние углекислого газа объясняет, почему ночью устьица закрыты и открываются с восходом солнца. Сдвиг рН в щелочную сторону вследствие уменьшения концентрации СО2 увеличивает активность ферментов, участвующих в распаде крахмала, тогда как при кислом рН при повышении содержания СО2 в межклетниках повышается активность ферментов, катализирующих синтез крахмала.

На свету замыкающие клетки устьиц содержат значительно больше калия, чем в темноте. При открывании устьиц содержание калия в замыкающих клетках увеличивается в 4 раза при одновременном снижении его содержания в сопутствующих клетках. Установлено повышение содержания АТФ в замыкающих клетках устьиц в процессе их открывания. АТФ, образованная в процессе фотосинтетического фосфорилирования в замыкающих клетках, используется для усиления поступления калия. Усиленное поступление ионов калия повышает сосущую силу замыкающих клеток. В темноте ионы калия выделяются из замыкающих клеток и устьица закрываются.

Периодичность суточного хода транспирации наблюдается у многих растений, но у разных видов растений устьица функционируют неодинаково. У деревьев, теневыносливых растений, многих злаков и других гидростабильных видов с совершенной регуляцией устьичной транспирации испарение воды начинается на рассвете, достигает максимума в утренние часы. В полдень транспирация снижается и вновь увеличивается в предвечерние часы при снижении температуры воздуха. Такой ход транспирации приводит к незначительным суточным изменениям осмотического давления и содержания воды в листьях. У видов растений, способных переносить резкие изменения содержания воды в клетках в течение дня, то есть у гидролабильных видов, наблюдается одновершинный суточный ход транспирации с максимумом в полуденные часы. В обоих случаях ночью транспирация минимальна или полностью прекращается.

Транспирация у растений

Всем известно, что вода играет определяющую роль в жизни растений. Нормальное развитие любого растительного организма возможно только в том случае, когда всё|все его органы|органы и ткани хорошо насыщены влагой. Однако система водообмена между растением и окружающей средой в действительности сложна и многокомпонентна.

  • Что такое транспирация
  • Какую роль выполняет транспирация в физиологии растений
  • Виды транспирации
  • Устьичная
  • Кутикулярная
  • Описание процесса транспирации
  • Факторы влияющие на процесс транспирации
  • Как происходит регулировка водного баланса

Что такое транспирация

Транспирация – это регулируемый физиологический процесс движения воды|воды по органам|органам растительного организма, завершающийся её потерей через испарение.

. Чтобы понять, что такое транспирация на примитивном уровне, достаточно осознать, что жизненно необходимая для растения вода, извлечённая из земли|земли корневой системой, должна каким-то образом попасть к листьям, стеблям|стеблям и цветам.

В процессе этого движения большая|большая часть влаги теряется (испаряется), особенно при ярком свете, сухом воздухе, сильном ветре и высокой температуре.

Какую роль выполняет транспирация в физиологии растений

Процесс транспирации играет огромную роль в жизни растений.

Прежде всего, следует понимать, что именно транспирация обеспечивает растениям защиту от перегрева. Если в яркий солнечный день мы измерим|измерим у одного и того же растения температуру здорового и увядшего листа, разница может составлять до семи градусов, причём если увядший лист на солнце может оказаться горячее|горячее, чем окружающий воздух, то температура транспирирующего листа обычно бывает на несколько градусов ниже! Это говорит о том, что проходящие в здоровом листе процессы транспирации позволяют ему самостоятельно охлаждать себя, в противном случае лист перегревается и погибает.

Важно! Транспирация является гарантом важнейшего процесса в жизнедеятельности растения – фотосинтеза, который лучше всего происходит при температуре от 20 до 25 градусов тепла. При сильном повышении температуры, в связи с разрушением хлоропластов в клетках растения, фотосинтез сильно затрудняется, поэтому не допускать подобного перегрева для растения жизненно важно.

Кроме того, движение воды|воды от корней к листьям растения, непрерывность которого обеспечивает транспирация, как бы соединяет всё|все органы|органы в единый организм, и чем сильнее транспирация, тем активнее развивается растение.

Значение транспирации состоит и в том, что у растений основные питательные вещества могут проникнуть в ткани именно с водой, поэтому чем выше продуктивность транспирации, тем быстрее надземные части растений получают растворенные|растворённые в воде минеральные и органические соединения.

Наконец, транспирация является той удивительной силой, которая может заставить воду подняться внутри растения по всей его высоте, что имеет огромное значение, например, для высокорослых деревьев, верхние листочки которых благодаря рассматриваемому процессу могут получать необходимое количество влаги и питательных веществ.

Транспирация у растений

Виды транспирации

Существует два вида транспирации – устьичная и кутикулярная. Для того чтобы разобраться в том, что представляет собой тот и другой виды, вспомним из уроков ботаники строение листа, так как именно этот орган|орган растения является основным в процессе транспирации.

Итак, лист состоит из следующих тканей:

Устьичная

Сначала вода начинает испаряться с поверхности основной ткани клеток. В результате эти клетки теряют влагу, водные мениски в капиллярах вгибаются вовнутрь, поверхностное натяжение увеличивается, и дальнейший процесс испарения воды|воды затрудняется, что позволяет растению значительно экономить воду. Затем испарившаяся вода через устьичные щели выходит наружу. Пока устьица открыты, вода испаряется с листа с такой же скоростью, что и с водной поверхности, то есть диффузия через устьица очень высокая.

Дело в том, что при одной и той же площади вода быстрее испаряется через несколько небольших отверстий, расположенных на некотором расстоянии, чем через одно крупное. Даже после того как устьица закрываются наполовину, интенсивность транспирации остаётся почти такой же высокой. Но когда устьица закрываются, транспирация уменьшается в несколько раз.

Количество устьиц и их расположение у различных растений неодинаково, у одних видов они находятся только на внутренней стороне листа, у других – и сверху и снизу, однако, как видно из вышесказанного, не столько количество устьиц влияет на интенсивность испарения, сколько степень их открытости: если воды|воды в клетке много, устьице открывается, когда возникает дефицит – происходит выпрямление замыкающих клеток, ширина устьичной щели уменьшается – и устьице закрывается.

Кутикулярная

Кутикула, так же как и устьица, обладает способностью реагировать на степень насыщенности листа водой. Находящиеся на поверхности листа волоски защищают лист от движений воздуха и солнечных лучей, что позволяет сократить потери воды|воды. Когда устьица закрыты, кутикулярная транспирация особенно важна. Интенсивность этого вида транспирации зависит от толщины|толщины кутикулы (чем толще слой, тем меньше испарение). Большое значение имеет и возраст растения – на зрелых листьях водопотери составляют всего 10 % от всего процесса транспирации, в то время как на молодых могут доходить до половины. Впрочем, увеличение кутикулярной транспирации наблюдается и на слишком старых листьях, если их защитный слой повреждается от возраста, рассыхается или растрескивается.

Описание процесса транспирации

На процесс транспирации существенное влияние оказывают несколько значимых факторов.

Факторы влияющие на процесс транспирации

Как было указано выше, интенсивность транспирации определяется в первую очередь степенью насыщенности водой клеток листа растения. В свою очередь, на это состояние главное воздействие оказывают внешние условия – влажность воздуха, температура, а также количество света.

Понятно, что при сухом воздухе процессы испарения происходят более интенсивно. А вот влажность почвы действует на транспирацию обратным образом: чем суше земля, тем меньше воды|воды попадает|попадает в растение, тем больше её дефицит и, соответственно, меньше транспирация.

При повышении температуры также увеличивается транспирация. Однако, пожалуй, основной фактор, влияющий на транспирацию, – это всё|все же свет. При поглощении листовой пластиной солнечного света увеличивается температура листа и, соответственно, раскрываются устьица и повышается интенсивность транспирации.

Знаете ли вы? Чем больше хлорофилла в растении, тем сильнее свет влияет на процессы транспирации. Зелёные растения начинают испарять влагу почти в два раза больше даже при рассеянном свете.

Исходя из влияния света на движения устьиц даже выделяют три основные группы растений по суточному ходу транспирации. У первой группы ночью устьица закрыты, утром они открываются и в течение светового дня двигаются, в зависимости от наличия или отсутствия дефицита воды|воды.

Видео по теме : Транспирация у растений

Значения: Транспирация спасает растение от перегрева, который ему грозит на прямом солнечном свете; Транспирация создает непрерывный ток воды из корневой системы к листьям, который связывает все органы растения в единое целое; С транспирационным током передвигаются растворимые минеральные и частично органические питательные вещества, при этом чем интенсивнее транспирация, тем быстрее идет этот процесс.Основным транспирирующим органом является лист. Средняя толщина листа составляет 100—200 мкм. Паренхимные клетки листа расположены рыхло, между ними имеется система межклетников. Эпидермис — покровная ткань листа, состоит из компактно расположенных клеток, наружные стенки которых утолщены. Кроме того, листья большинства растений покрыты кутикулой. Удаление кутикулы во много раз повышает интенсивность испарения. Для соприкосновения листа с атмосферой имеются поры — устьица. Устьице — это отверстие (щель), ограниченная двумя замыкающими клетками. Каждая замыкающая клетка устьица в отличие от клеток эпидермиса имеет хлоропласта. В них происходит фотосинтез, хотя с меньшей интенсивностью, чем в клетках мезофилла. Устьица — одно из оригинальных приспособлений, обладающих способностью открываться и закрываться в зависимости от насыщенности замыкающих клеток водой. Обычно устьичные отверстия ограничены двумя замыкающими клетками, стенки которых неравномерно утолщены. У двудольных растений замыкающие клетки бобовидной, или полулунной, формы, при этом их внутренние прилегающие друг к другу клеточные стенки более толстые, а внешние — более тонкие.


Кутикулярная транспирация Снаружи листья имеют однослойный эпидермис, внешние стенки клеток которого покрыты кутикулой и воском, образующие эффективный барьер на пути движения воды. На поверхности листьев часто развиты волоски, которые также влияют на водный режим листа, так как снижают скорость движения воздуха над его поверхностью и рассеивают свет и тем самым уменьшают потери воды за счет транспирации.Интенсивность кутикулярной транспирации варьирует у разных видов растений. У молодых листьев с тонкой кутикулой она может составлять около половины всей транспирации. У зрелых листьев с более мощной кутикулой кутикулярная транспирация равна 1/10 общей транспирации. В стареющих листьях из-за повреждения кутикулы она может возрастать. Таким образом, кутикулярная транспирация регулируется главным образом толщиной и целостностью кутикулы и других защитных покровных слоев на поверхности листьев. Кутикулярная транспирация обычно составляет около 10% от общей потери воды листом.

Устьичная транспирация Основная часть воды испаряется через устьица. Устьица играют важную роль в газообмене между листом и атмосферой, так как являются основным путем для водяного пара, углекислого газа и кислорода. Устьица находятся на обеих сторонах листа. Есть виды растений, у которых устьица располагаются только на нижней стороне листа. В среднем число устьиц колеблется от 50 до 500 на 1 мм². Транспирация через устьица идет почти с такой же скоростью, как и с поверхности чистой воды. Это объясняется законом И. Стефана: через малые отверстия скорость диффузии газов пропорциональна не площади отверстия, а диаметру или длине окружности. Поэтому, хотя площадь устьичных отверстий мала по отношению к площади всего листа (0,5-2 %), испарение воды через устьица идет очень интенсивно

Количественные показатели транспирации: Интенсивность транспирации – это количество, г, воды, испаряемой растением в единицу времени (ч) с единицы поверхности (дм 2 ). При определении продукционных характеристик рассчитывают ко- личество воды, израсходованной растением за весь вегетационный период, и относят его к сухой массе всего растения. Транспирационный коэффициент – это количество воды (г), расходуе- мой растением на образование 1 г сухого вещества.

Сутчный ход транспирации. У всех растений наблюдается периодичность суточного хода транспирации. У деревьев, теневых растений злаков (гидростабильные виды) испарение воды достигает максимума до наступления максимума дневной температуры. В полуденные часы транспирация падает. Вечером, при снижении дневных температур транспирация снова увеличивается. Такой ход транспирации приводит к незначительным изменениям осмотического давления и содержания воды в клетках в течение дня.




У видов, способных переносить резкие изменения содержания воды в клетках в течение дня, транспирация повышается в полдень и падает ночью (гидролабильные виды) Закрывание устьиц в полдень может быть вызвано увеличением уровня углекислого газа в листьях при повышении температуры воздуха (усиление дыхания и фотодыхания), а также возможным водным дефицитом, возникающим в тканях при высоких температурах и низкой влажности воздуха. Это приводит к повышению концентрации АБК и закрыванию устьиц.

На поступление воды в растение оказывают влияние внешние условия.

1. Температура. Поступление воды в растение зависит от температуры. С понижением температуры скорость поступления воды сокращается. Это может происходить в результате следующих причин:

а) повышается вязкость воды и снижается ее подвижность;

б) Тормозится рост корней;

в) Уменьшается скорость метаболических процессов;

2. Снижение аэрации почвы (повышение углекислого газа) Повышение концентрации углекислого газа приводит к повышению вязкости воды и снижает проницаемость цитоплазмы.

3. Содержание воды в почве, концентрация почвенного раствора. Вода поступает в корень, если водный потенциал корня ниже, чем водный потенциал почвы. На засоленных почвах или на почвах, где концентрация почвенного раствора очень высокая, водный потенциал почвы ниже. Поэтому вода начнет выделяться из корня. У растений, произрастающих на этих почвах - галофитах, в процессе эволюции выработался такой приспособительный признак как высокая

концентрация клеточного сока. Это обуславливает более низкий водный потенциал клеточного сока, вследствие чего вода из почвенного раствора поступает в корни.

Транспира́ция (от лат. trans и лат. spiro — дышу, выдыхаю) — это испарение воды растением. Основным органом транспирации является лист. Вода испаряется с поверхности листьев через клеточные стенки эпидермальных клеток и покровные слои (кутикулярная транспирация) и через устьица (устьичная транспирация).

В результате потери воды в ходе транспирации в клетках листьев возрастает сосущая сила. Это приводит к усилению поглощения клетками листа воды из сосудов ксилемы и передвижению воды по ксилеме из корней в листья. Таким образом, верхний концевой двигатель, участвующий в транспорте воды вверх по растению, обусловлен транспирацией листьев.

Содержание

Верхний концевой двигатель может работать при полном отключении нижнего концевого двигателя, причем для его работы используется не только метаболическая энергия как в корне, но и энергия внешней среды — температура и движение воздуха.

Транспирация спасает растение от перегрева. Температура сильно транспирирующего листа может примерно на 7 С° быть ниже температуры нетранспирирующего завядшего листа. Кроме того, транспирация участвует в создании непрерывного тока воды с растворенными минеральными и органическими соединениями из корневой системы к надземным органам растения.

Количественные характеристики транспирации

Интенсивность транспирации — это количество воды, испаряемой растением в граммах за единицу времени в часах единицей поверхности в дм². Эта величина колеблется от 0,15 до 1,5.

Транспирационный коэффициент — это количество воды в граммах, испаряемой растением при накоплении им 1 грамма сухого вещества.

Продуктивность транспирации — это величина, обратная транспирационному коэффициенту и равна количеству сухого вещества в граммах, накопленного растением за период, когда оно испаряет 1 кг воды.

Относительная транспирация — это отношение количества воды, испаряемой листом, к количеству воды, испаряемой со свободной водной поверхности той же площади за один и тот же период времени.

Экономность транспирации — это количество испаряемой воды в мг на 1 кг воды, содержащейся в растении.

Подсчитано, что с 1 га посева пшеницы выделяется около 2 тыс. т воды, кукурузы — 3,2 тыс. т, капусты — 8 тыс. т.

Кутикулярная транспирация

Снаружи листья имеют однослойный эпидермис, внешние стенки клеток которого покрыты кутикулой и воском, образующие эффективный барьер на пути движения воды. На поверхности листьев часто развиты волоски, которые также влияют на водный режим листа, так как снижают скорость движения воздуха над его поверхностью и рассеивают свет и тем самым уменьшают потери воды за счет транспирации.

Интенсивность кутикулярной транспирации варьирует у разных видов растений. У молодых листьев с тонкой кутикулой она может составлять около половины всей транспирации. У зрелых листьев с более мощной кутикулой кутикулярная транспирация равна 1 /10 общей транспирации. В стареющих листьях из-за повреждения кутикулы она может возрастать. Таким образом, кутикулярная транспирация регулируется главным образом толщиной и целостностью кутикулы и других защитных покровных слоев на поверхности листьев.

Устьичная транспирация

Устьица представляют собой щель в подъустьичную полость, окаймленную двумя замыкающими клетками серповидной формы. Устьица играют важную роль в газообмене между листом и атмосферой, так как являются основным путем для водяного пара, углекислого газа и кислорода. Устьица находятся на обеих сторонах листа. Есть виды растений, у которых устьица располагаются только на нижней стороне листа. В среднем число устьиц колеблется от 50 до 500 на 1 мм². Транспирация через устьица идет почти с такой же скоростью, как и с поверхности чистой воды. Это объясняется законом И. Стефана: через малые отверстия скорость диффузии газов пропорциональна не площади отверстия, а диаметру или длине окружности. Поэтому, хотя площадь устьичных отверстий мала по отношению к площади всего листа (0,5-2 %), испарение воды через устьица идет очень интенсивно.

Транспирация слагается из двух процессов:

  1. передвижения воды в листе из сосудов ксилемы по симпласту и, преимущественно, по клеточным стенкам, так как в стенках транспорт воды встречает меньшее сопротивление
  2. испарения воды из клеточных стенок в межклетники и подъустьичные полости с последующей диффузией в окружающую атмосферу через устьичные щели.

Чем меньше относительная влажность атмосферного воздуха, тем ниже его водный потенциал. Если водный потенциал воздуха меньше водного потенциала подъустьичных полостей, то молекулы воды испаряются наружу.

Основным фактором, влияющим на открывание и закрывание устьиц, является содержание воды в листе, в том числе и в замыкающих клетках устьиц. Клеточные стенки замыкающих клеток имеют неодинаковую толщину. Внутренняя часть стенки, примыкающая к устьичной щели, более толстая, а внешняя — более тонкая. По мере того как замыкающая клетка осмотически поглощает воду, более тонкая и эластичная часть ее клеточной стенки растягивается и оттягивает внутреннюю часть стенки. Замыкающие клетки принимают полукруглую форму и устьица раскрываются. При недостатке воды замыкающие клетки выпрямляются и устьичная щель закрывается. Кроме того, по мере увеличения водного дефицита в тканях растения повышается концентрация ингибитора роста абсцизовой кислоты. Она подавляет деятельность Н + -насосов в плазмалемме замыкающих клеток, вследствие чего снижается их тургор и устьица закрываются. Абсцизовая кислота также ингибирует синтез фермента α-амилазы, что приводит к снижению гидролиза крахмала. По сравнению с низкомолекулярными углеводами крахмал не является осмотически активным веществом, поэтому сосущая сила замыкающих клеток уменьшается и устьица закрываются.

В отличие от других клеток эпидермиса замыкающие клетки устьиц содержат хлоропласты. Синтез углеводов в процессе фотосинтеза в замыкающих клетках увеличивает их сосущую силу и вызывает поглощение воды, способствуя этим открыванию устьиц.

Состояние устьиц зависит от углекислого газа. Если концентрация СО2 в подустьичной полости падает ниже 0,03 %, тургор замыкающих клеток увеличивается и устьица открываются. Повышение концентрации СО2 в воздухе вызывает закрытие устьиц. Это происходит в межклетниках листа ночью, когда в результате отсутствия фотосинтеза и продолжающегося дыхания уровень углекислого газа в тканях повышается. Такое влияние углекислого газа объясняет, почему ночью устьица закрыты и открываются с восходом солнца. Сдвиг рН в щелочную сторону вследствие уменьшения концентрации СО2 увеличивает активность ферментов, участвующих в распаде крахмала, тогда как при кислом рН при повышении содержания СО2 в межклетниках повышается активность ферментов, катализирующих синтез крахмала.

На свету замыкающие клетки устьиц содержат значительно больше калия, чем в темноте. При открывании устьиц содержание калия в замыкающих клетках увеличивается в 4 раза при одновременном снижении его содержания в сопутствующих клетках. Установлено повышение содержания АТФ в замыкающих клетках устьиц в процессе их открывания. АТФ, образованная в процессе фотосинтетического фосфорилирования в замыкающих клетках, используется для усиления поступления калия. Усиленное поступление ионов калия повышает сосущую силу замыкающих клеток. В темноте ионы калия выделяются из замыкающих клеток и устьица закрываются.

Периодичность суточного хода транспирации наблюдается у многих растений, но у разных видов растений устьица функционируют неодинаково. У деревьев, теневыносливых растений, многих злаков и других гидростабильных видов с совершенной регуляцией устьичной транспирации испарение воды начинается на рассвете, достигает максимума в утренние часы. В полдень транспирация снижается и вновь увеличивается в предвечерние часы при снижении температуры воздуха. Такой ход транспирации приводит к незначительным суточным изменениям осмотического давления и содержания воды в листьях. У видов растений, способных переносить резкие изменения содержания воды в клетках в течение дня, то есть у гидролабильных видов, наблюдается одновершинный суточный ход транспирации с максимумом в полуденные часы. В обоих случаях ночью транспирация минимальна или полностью прекращается.

Транспирация у растений

Всем известно, что вода играет определяющую роль в жизни растений. Нормальное развитие любого растительного организма возможно только в том случае, когда всё|все его органы|органы и ткани хорошо насыщены влагой. Однако система водообмена между растением и окружающей средой в действительности сложна и многокомпонентна.

  • Что такое транспирация
  • Какую роль выполняет транспирация в физиологии растений
  • Виды транспирации
  • Устьичная
  • Кутикулярная
  • Описание процесса транспирации
  • Факторы влияющие на процесс транспирации
  • Как происходит регулировка водного баланса

Что такое транспирация

Транспирация – это регулируемый физиологический процесс движения воды|воды по органам|органам растительного организма, завершающийся её потерей через испарение.

. Чтобы понять, что такое транспирация на примитивном уровне, достаточно осознать, что жизненно необходимая для растения вода, извлечённая из земли|земли корневой системой, должна каким-то образом попасть к листьям, стеблям|стеблям и цветам.

В процессе этого движения большая|большая часть влаги теряется (испаряется), особенно при ярком свете, сухом воздухе, сильном ветре и высокой температуре.

Какую роль выполняет транспирация в физиологии растений

Процесс транспирации играет огромную роль в жизни растений.

Прежде всего, следует понимать, что именно транспирация обеспечивает растениям защиту от перегрева. Если в яркий солнечный день мы измерим|измерим у одного и того же растения температуру здорового и увядшего листа, разница может составлять до семи градусов, причём если увядший лист на солнце может оказаться горячее|горячее, чем окружающий воздух, то температура транспирирующего листа обычно бывает на несколько градусов ниже! Это говорит о том, что проходящие в здоровом листе процессы транспирации позволяют ему самостоятельно охлаждать себя, в противном случае лист перегревается и погибает.

Важно! Транспирация является гарантом важнейшего процесса в жизнедеятельности растения – фотосинтеза, который лучше всего происходит при температуре от 20 до 25 градусов тепла. При сильном повышении температуры, в связи с разрушением хлоропластов в клетках растения, фотосинтез сильно затрудняется, поэтому не допускать подобного перегрева для растения жизненно важно.

Кроме того, движение воды|воды от корней к листьям растения, непрерывность которого обеспечивает транспирация, как бы соединяет всё|все органы|органы в единый организм, и чем сильнее транспирация, тем активнее развивается растение.

Значение транспирации состоит и в том, что у растений основные питательные вещества могут проникнуть в ткани именно с водой, поэтому чем выше продуктивность транспирации, тем быстрее надземные части растений получают растворенные|растворённые в воде минеральные и органические соединения.

Наконец, транспирация является той удивительной силой, которая может заставить воду подняться внутри растения по всей его высоте, что имеет огромное значение, например, для высокорослых деревьев, верхние листочки которых благодаря рассматриваемому процессу могут получать необходимое количество влаги и питательных веществ.

Транспирация у растений

Виды транспирации

Существует два вида транспирации – устьичная и кутикулярная. Для того чтобы разобраться в том, что представляет собой тот и другой виды, вспомним из уроков ботаники строение листа, так как именно этот орган|орган растения является основным в процессе транспирации.

Итак, лист состоит из следующих тканей:

Устьичная

Сначала вода начинает испаряться с поверхности основной ткани клеток. В результате эти клетки теряют влагу, водные мениски в капиллярах вгибаются вовнутрь, поверхностное натяжение увеличивается, и дальнейший процесс испарения воды|воды затрудняется, что позволяет растению значительно экономить воду. Затем испарившаяся вода через устьичные щели выходит наружу. Пока устьица открыты, вода испаряется с листа с такой же скоростью, что и с водной поверхности, то есть диффузия через устьица очень высокая.

Дело в том, что при одной и той же площади вода быстрее испаряется через несколько небольших отверстий, расположенных на некотором расстоянии, чем через одно крупное. Даже после того как устьица закрываются наполовину, интенсивность транспирации остаётся почти такой же высокой. Но когда устьица закрываются, транспирация уменьшается в несколько раз.

Количество устьиц и их расположение у различных растений неодинаково, у одних видов они находятся только на внутренней стороне листа, у других – и сверху и снизу, однако, как видно из вышесказанного, не столько количество устьиц влияет на интенсивность испарения, сколько степень их открытости: если воды|воды в клетке много, устьице открывается, когда возникает дефицит – происходит выпрямление замыкающих клеток, ширина устьичной щели уменьшается – и устьице закрывается.

Кутикулярная

Кутикула, так же как и устьица, обладает способностью реагировать на степень насыщенности листа водой. Находящиеся на поверхности листа волоски защищают лист от движений воздуха и солнечных лучей, что позволяет сократить потери воды|воды. Когда устьица закрыты, кутикулярная транспирация особенно важна. Интенсивность этого вида транспирации зависит от толщины|толщины кутикулы (чем толще слой, тем меньше испарение). Большое значение имеет и возраст растения – на зрелых листьях водопотери составляют всего 10 % от всего процесса транспирации, в то время как на молодых могут доходить до половины. Впрочем, увеличение кутикулярной транспирации наблюдается и на слишком старых листьях, если их защитный слой повреждается от возраста, рассыхается или растрескивается.

Описание процесса транспирации

На процесс транспирации существенное влияние оказывают несколько значимых факторов.

Факторы влияющие на процесс транспирации

Как было указано выше, интенсивность транспирации определяется в первую очередь степенью насыщенности водой клеток листа растения. В свою очередь, на это состояние главное воздействие оказывают внешние условия – влажность воздуха, температура, а также количество света.

Понятно, что при сухом воздухе процессы испарения происходят более интенсивно. А вот влажность почвы действует на транспирацию обратным образом: чем суше земля, тем меньше воды|воды попадает|попадает в растение, тем больше её дефицит и, соответственно, меньше транспирация.

При повышении температуры также увеличивается транспирация. Однако, пожалуй, основной фактор, влияющий на транспирацию, – это всё|все же свет. При поглощении листовой пластиной солнечного света увеличивается температура листа и, соответственно, раскрываются устьица и повышается интенсивность транспирации.

Знаете ли вы? Чем больше хлорофилла в растении, тем сильнее свет влияет на процессы транспирации. Зелёные растения начинают испарять влагу почти в два раза больше даже при рассеянном свете.

Исходя из влияния света на движения устьиц даже выделяют три основные группы растений по суточному ходу транспирации. У первой группы ночью устьица закрыты, утром они открываются и в течение светового дня двигаются, в зависимости от наличия или отсутствия дефицита воды|воды.

Видео по теме : Транспирация у растений

Читайте также: