Как растения компенсируют отсутствие возможности поиска более благоприятных условий обитания

Обновлено: 02.05.2024

Несмотря на большое разнообразие экологических факторов, в характере их воздействия на организмы и в ответных реакциях живых существ можно выявить ряд общих закономерностей.

1. Закон минимума Юстуса Либиха (1840)

Для жизни организмов в любой среде обитания необходимо определенное сочетание факторов. Если все условия среды обитания благоприятны, за исключением одного, то именно оно становится решающим для жизни данного организма. Это условие среды ограничивает (лимитирует) развитие организма и называется лимитирующим фактором.

В середине XIX в. немецкий химик-органик Юстус Либих первым экспериментально доказал, что рост растения зависит от того элемента питания, который присутствует в относительно минимальном количестве. Он назвал это явление законом минимума. В честь автора его еще называют законом Либиха.

При этом имелось в виду лимитирующее воздействие жизненно важных веществ, которые присутствуют в почве в небольших и неустойчивых количествах. В дальнейшем это обобщение стало использоваться значительно шире с учетом других факторов среды (температуры, света, влажности и т. д.).

По существу, закон Либиха является частным случаем принципа лимитирующих факторов Шелфорда.

2. Закон толерантности, или правило В. Э. Шелфорда (1913)

Американский зоолог В.Э. Шелфорд заметил, что лимитирующим может быть не только недостаток, но и избыток таких факторов, как свет, тепло, вода. Например, гибель урожая из-за дождей, перенасыщение почвы удобрениями и т. п.

Иначе говоря, по отношению к любому экологическому фактору организм обладает определенным диапазоном выносливости, или толерантности (от лат. tolerantia – терпение).

Данный диапазон ограничен критическими точками – это максимальное и минимальное значения фактора, за пределами которых существование организма уже невозможно, наступает его смерть.

Обычно где-то в средней части диапазона толерантности имеются условия, наиболее благоприятные для жизнедеятельности, роста и размножения. Эти условия называются зоной оптимума экологического фактора, или просто оптимумом для организмов данного вида.

Чем значительнее отклонение действия фактора от оптимума, тем больше данный фактор угнетает жизнедеятельность популяции. Этот диапазон называется зоной угнетения.

Степень благополучия популяции или вида в зависимости от интенсивности действующего на нее фактора представляют в виде так называемой кривой толерантности, имеющей форму колокола с максимумом, соответствующим оптимальному значению данного фактора (рис. 6).

Согласно закону толерантности, лимитирующим фактором процветания популяции (организма) может быть как минимум, так и максимум экологического воздействия, а диапазон между ними определяет величину выносливости (предел толерантности), или экологическую валентность организма к данному фактору.

Законы Либиха и Шелфорда объединяют в принцип лимитирующих факторов.

Принцип лимитирующих факторов справедлив для всех типов живых организмов – растений, животных, микроорганизмов и относится как к абиотическим, так и биотическим факторам. Например, лимитирующим фактором для развития организмов данного вида может стать конкуренция со стороны другого вида.

В земледелии лимитирующим фактором часто становятся вредители сельскохозяйственных культур, сорняки, а для некоторых растений лимитирующим фактором развития становится недостаток (или отсутствие) представителей другого вида. Например, в Калифорнию из Средиземноморья завезли новый вид инжира, но он не плодоносил, пока оттуда же не завезли единственный для него вид пчел-опылителей.

Рис. 6. Зависимость результата действия экологического фактора от его интенсивности

Пределы выносливости, или толерантности, между критическими точками называют экологической валентностью, или пластичностью, организма по отношению к конкретному фактору.

Эврибионтными называются организмы с широкими пределами выносливости, которые способны приспосабливаться к разной экологической обстановке (рис. 7).

Например, животные, способные выносить значительные колебания температуры, называются эвритермными.

Виды, для существования которых необходимы строго определенные экологические условия, называются стенобионтными.

Рис. 7. Экологическая пластичность (выносливость) вида (по: Одум Ю., 1975)

Например, стенотермные животные переносят небольшие изменения температуры, которые мало сказываются на эвритермных организмах.

Предел толерантности организма изменяется на разных стадиях онтогенеза. Часто молодые организмы являются более уязвимыми и требовательными к условиям среды, чем взрослые особи.

Наиболее критическим с точки зрения воздействия разных факторов является период размножения.

Например, многие морские животные могут переносить солоноватую или пресную воду с высоким содержанием хлоридов, поэтому они часто заходят в реки вверх по течению. Но их личинки не могут жить в таких водах, а вид не может размножаться в этой реке. Многие птицы летят выводить птенцов в места с более теплым климатом.

Эврибионтность обычно способствует широкому распространению видов.

3. Неоднозначность действия фактора на разные функции

Каждый фактор неодинаково влияет на разные функции организма. Значение фактора, оптимальное для одних процессов, может являться угнетающим для других. Например, прорастание и цветение у многих покрытосеменных происходит при разной температуре среды. Для многих рыб температура воды, оптимальная для созревания половых продуктов, неблагоприятна для икрометания, которое происходит в другом температурном интервале. Поэтому жизненный цикл организма всегда согласован с сезонными изменениями комплекса факторов среды. Подвижные виды могут также менять места своего обитания для успешного осуществления всех своих жизненных функций.

4. Изменчивость, вариабельность и разнообразие ответных реакций на действие факторов среды у отдельных особей вида

Степень выносливости, критические точки, зоны оптимума и угнетения отдельных особей не совпадают. Это зависит от генетических, половых, возрастных и физиологических особенностей организмов. Поэтому экологическая валентность вида всегда шире, чем у отдельно взятой особи.

5. Приспособление видов к каждому фактору среды относительно независимым путем

Степень выносливости к какому-то фактору не означает соответствующей экологической валентности вида по отношению к другим факторам. Например, виды могут переносить широкий диапазон изменения температур, но они могут быть не приспособлены к широким колебаниям влажности или солевого режима. Это создает чрезвычайное многообразие адаптаций в природе.

Набор экологических валентностей по отношению к разным факторам среды называется экологическим спектром вида.

6. Несовпадение экологических спектров отдельных видов

Каждый вид специфичен по своим экологическим возможностям. Даже у близких по способам адаптации видов существуют различия в отношении к каким-либо отдельным факторам.

7. Взаимодействие факторов

Оптимум и пределы выносливости организмов по отношению к фактору среды могут изменяться в зависимости от силы и сочетания одновременно действующих факторов. Например, жару легче переносить в сухом, а не во влажном воздухе. Иными словами, один и тот же экологический фактор в сочетании с другими оказывает неодинаковое воздействие.

И наоборот, один и тот же экологический результат может быть получен разными путями. Например, увядание растений можно приостановить увеличением влажности почвы или снижением температуры воздуха, уменьшив испарение. Однако полностью компенсировать действие одного фактора среды другим нельзя.

Полное отсутствие воды или хотя бы одного из необходимых элементов минерального питания делает жизнь растений невозможной, несмотря на самые благоприятные сочетания других условий.

Отсюда следует вывод, что все условия среды, необходимые для поддержания жизни, играют равную роль и любой фактор может ограничивать возможности существования организмов – это закон равнозначности всех условий жизни.


Из данного урока вы узнаете, что борьба за существование ― это один из движущих факторов эволюции. Она может происходить между особями одного вида, между особями разных видов, а также с неблагоприятными условиями окружающей среды. Естественный отбор — это основной эволюционный процесс, в результате действия которого в популяции увеличивается число особей с наиболее благоприятными признаками, а количество особей с неблагоприятными признаками уменьшается. В данном уроке приводятся следующие понятия: борьба за существование, способность к адаптации.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности




Конспект урока "Борьба за существование и её формы"

На особей популяции действуют не только мутации, естественный отбор, но и какие-то природные явления, а также организмы, которые обитают по соседству. Это могут быть как особи других видов и популяций, так и особи собственной популяции.

В любом случае организмы постоянно находятся в положении борьбы. Борьбы за существование.

О борьбе за существование организмов, как о механизмах и движущих силах эволюции, впервые заговорил Чарльз Дарвин.


Чарлз Роберт Дарвин

Борьба за существование — это один из движущих факторов эволюции, наряду с естественным отбором и наследственной изменчивостью, совокупность многообразных и сложных взаимоотношений, существующих между организмами и условиями среды.

С ростом численности обостряется конкуренции за ресурсы, из-за чего происходит борьба за существование.

Ч. Дарвин неоднократно подчёркивал, что борьба за существование не сводится к прямой схватке, она представляет собой сложные и многообразные отношения организмов внутри одного вида, между разными видами и с неорганической природой.

Наградой в борьбе за существование является жизнь и возможность её продолжения в череде последующих поколений.

Различают несколько форм борьбы за существование.

Дарвин выделил три основных. Внутривидовую, которая ведётся между особями одного вида, межвидовую которая ведётся между особями разных видов, и борьбу с неблагоприятными условиями окружающей среды.


Внутривидовая борьба за существование.

Она является наиболее напряжённой, так как особям одного вида нужны одни и те же ресурсы для существования.

Вы помните пример внутривидовой борьбы между детёнышами гиены. Если оба детёныша самки, то они начинают сражение за доминирование, используя зубы.

Внутривидовая борьба происходит и в растительном мире. Такую борьбу можно пронаблюдать на примере одновозрастных деревьев хвойного леса.

Самые высокие деревья своими широко раскинутыми кронами перехватывают основную массу солнечных лучей, а их мощная корневая система поглощает из почвы растворенные минеральные вещества в ущерб более слабым соседям.

Внутривидовая борьба особенно обостряется при повышении плотности популяций, например, при обилии птенцов у некоторых видов птиц (многие виды чаек, буревестники) более сильные выталкивают из гнёзд более слабых, обрекая их на гибель от хищников или голода.


Поэтому в естественных условиях виды с одинаковыми потребностями, обычно разобщены в пространстве или во времени.

Например, кузнечик- хищное насекомые, активен в вечернее время суток. А саранча в дневное. Львы охотятся на более крупных животных, а леопарды — на более мелких.

Однако видовые приспособления, приносящие пользу виду в целом, часто наносят вред отдельным особям, приводят их к гибели. Например, зайцы-русаки при недостатке корма отгоняют конкурента от хороших участков выпаса, дерутся, преследуя самку.

Внутривидовая борьба играет большую роль в эволюции, приводя к гибели менее приспособленных особей вида, она обусловливает процветание вида в целом, способствует его совершенствованию.

Межвидовая борьба.

Межвидовая борьба может проявляться в различных формах, например в форме соревнования (конкуренции) за пищу или иные ресурсы.

Наглядный пример конкуренции за пищу дают хищники африканских саванн, которые нередко отнимают друг у друга пойманную и убитую добычу.

Часто объектом соревнования являются привлекательные местообитания.

Завезённая в Европу американская норка вытесняет аборигенный европейский вид.


Европейская норка – это коренной житель восточной Европы. Размером она чуть больше своего родственника хорька, примерно с некрупную домашнюю кошку.

Тело покрыто коротким густым мехом, цвет которого бывает от светло- до темно-коричневого. Характерный признак норки - белое пятно на подбородке и губах.

Внешне американская норка похожа на европейскую, но крупнее. Отличие в её окраске ― белое пятно на морде закрывает только нижнюю губу, а верхняя губа тёмная.

Другие проявления межвидовой борьбы — сложные взаимоотношения, развивающиеся между хищниками и жертвами.

В случаях, когда хищники сражаются с жертвами или грызутся из-за добычи, борьба выражается в непосредственной схватке.

Межвидовая борьба за существование включает одностороннее использование одного вида другим, так называемые отношения типа хищник ― жертва, паразит ― хозяин, растение ― травоядное животное.


Значение межвидовой борьбы для эволюционного процесса в том, что она влияет на внутривидовую борьбу. Например, хищник лисица усиливает конкуренцию среди жертв — зайцев.

В борьбе за существование побеждают зайцы, умеющие быстро бегать и хорошо запутывать следы, а среди лисиц побеждают преуспевающие в охоте.

С точки зрения эволюции вследствие межвидовых взаимоотношений у организмов появляются какие-либо приспособления или органы, способствующие выживанию.

У хищника, например, появляются изощрённые средства нападения — клыки, когти, быстрые движения, подстерегающее поведение, у жертв — не менее изощрённые формы защиты — вещества, делающие их ядовитыми, маскировочная окраска и другие приспособления.

Советский биолог Георгий Францевич Гаузе провёл ряд экспериментов исследуя рост и конкурентные взаимоотношения двух видов инфузорий.

Он поместил в одну колбу два вида инфузорий, которые питались дрожжевыми клетками, растущими на овсяной муке. Сначала каждый вид быстро увеличивал свою численность, но со временем один вид начинал расти за счёт другого, пока второй вид полностью не исчезал из культуры.

Таким образом, Гаузе сформулировал закон, который гласит: два вида не могут существовать в одном местообитании, если их экологические потребности идентичны.


Но все же такое случается. Также межвидовая борьба может провялятся в содействии одного вида другому без ущерба для себя (птицы и млекопитающие распространяют плоды и семена).

Растения не могут существовать без сожительства с некоторыми видами грибов, бактерий и животных.

Дарвин описал зависимость урожая клевера от количества кошек на данной территории. Это связано с тем, что кошки поедают мышей, которые истребляют соты шмелей и их гнезда. Шмели же оказались единственными полноценными опылителями клевера

Также межвидовая борьба может провялятся во взаимном приспособлении видов друг к другу (цветки и их опылители).

Таким образом, межвидовая борьба приводит к эволюции обоих взаимодействующих видов, к развитию у них взаимных приспособлений.

Третья форма борьбы за существование — борьба с неблагоприятными внешними условиями.

Например, бесстебельное растение-подушка ― ярета, занимает нишу, в которой у неё очень мало конкурентов, ведь немногие растения способны выжить в условиях холодов и постоянных ветров.

Такой тип растительности возник из-за резких смен температуры и сильных ветров пустынь и полупустынь.

Ярета имеет многочисленные короткие побеги, верхушки которых образуют единую поверхность, напоминающую подушку. Листья яреты вплотную охватывают друг друга для сбережения тепла.


Африканская роющая лягушка, так же приспособилась к среде своего обитания, когда заканчивается сезон дождей, она роет нору глубиною от 15 до 20 см, а затем выделяет большое количество слизи, которая высыхая превращается в своего рода кокон и в нем лягушка впадает в спячку. В ожидании сезона дождей, она может провести до 7 лет в защитном коконе, который размягчается во время дождя, сигнализируя животному, что пришло время пробудится.

Растения сухих местообитаний для сохранения жизни способны накапливать большое количество воды в своих тканях. Например, кактус (родина — Южная Америка) имеет сочный стебель, так как в нем накапливается влага. В составе некоторых кактусов содержится до 96% воды.

Корневая система саксаула проникает очень глубоко, до грунтовой воды. При недостатке влаги саксаул сбрасывает молодые побеги, тем самым способствует уменьшению испарения.

Организмы для своего существования и размножения имеют определённый диапазон оптимума по всем абиотическим факторам среды — по освещённости, температуре, влажности, химическому составу воздушной, водной и почвенной среды. Выход экологического фактора за пределы зоны комфорта оказывает угнетающее действие.

Оптимальная температура для бабочки озимой совки 22,5° С. При температуре 30° С её плодовитость снижается на 10 %.


Гусеницы озимой совки зимуют в почве. В малоснежные зимы они гибнут даже при сравнительно невысоких температурах. Абиотические факторы действуют не только прямо, но и косвенно.

Условия неорганического мира оказывают значительное влияние на эволюцию организмов не только сами по себе, их влияние может усиливать или ослаблять внутри- и межвидовые взаимоотношения.

При недостатке территории, тепла или света внутривидовая борьба обостряется, и наоборот, при избытке необходимых для жизни ресурсов ослабевает.

Итак, мы с вами рассмотрели три формы борьбы за существования, которые приводят к естественному отбору, где побеждает сильнейший или более приспособленный.

Естественный отбор был доказан экспериментально.

На открытом пространстве леса учёные разложили некоторое количество насекомых, которые имели различные окраски. Птицы склевали тех насекомых, которые не имели защитной предостерегающей окраски.

Значит можно предположить, что в естественных условиях насекомые с защитной окраской имеют преимущество над насекомыми с однотонной окраской.

Божью коровку птицы практически никогда не склёвывают из-за выделяемой ядовитой, горькой желтоватой жидкости. А если птенцы случайно склёвывают этого жука, то в следующий раз уже не подходят к нему.

Победителями в борьбе оказываются наиболее жизнеспособные особи (у них более эффективно протекают физиологические процессы и обмен веществ).

Если биологические особенности передаются по наследству, то это в конечном счёте приведёт к совершенствованию видовых приспособлений к среде обитания.


Способность к адаптациям — это одно из основных свойств жизни на нашей планете.

Адаптации обеспечивают возможность существования, выживания и размножения организмов.

Топ-10 Поразительно приспособившихся растений и животных

10. Газель-доркас (Dorcas Gazelle)

Из-за того, что она эндемична Ближнему Востоку и Северной Африке, газели-доркас пришлось выработать в ходе эволюции ряд черт, которые позволили бы ей выжить, почти при полном отсутствии питьевой воды. Во-первых, они могут всю свою жизнь обходиться без питьевой воды, выживая только благодаря жидкости, которую они получают, употребляя в пищу растения. Помимо этого, когда жидкость практически невозможно найти газели-доркас могут экономить воду посредством концентрирования своей мочевой кислоты, выводя её из организма в виде гранул, а не жидкости. В такие периоды они также значительно снижают количество жидкости в своём помёте.

Топ-10 Поразительно приспособившихся растений и животных

9. Клесты (Crossbills)

Клесты включают в себя целый ряд видов воробьинообразных, которые приспособились к тому чтобы с большой эффективностью употреблять главный продукт в своём меню - сосновые шишки. Из-за того, что до семян внутри колючих шишек очень трудно добраться обычным клювом, клесты выработали клюв, концы которого пересекаются, что позволяет им быстро раскрывать чешуйки сосновых шишек и добираться до семян.

У них также очень сильные языки, которые могут просунуться между чешуйками сосновой шишки, раскрытыми клювом, и достать семечки. Они также питаются насекомыми и фруктами, но их клювы специфически развивались для того, чтобы они могли питаться сосновыми шишками, которые гораздо более доступны.

Топ-10 Поразительно приспособившихся растений и животных

8. Бамбук

Это особенное растение, как и небольшое количество других видов растений, выработало специфическое расписание для посева своих семян. Бамбук не цветёт и не вырабатывает семена в течение долгих лет, затем огромное количество семян разом выпускается и распространяется. На материковой части Китая считается, что бамбук цветёт лишь один раз в каждые 120 лет, покрывая землю семенами как одеялом.

Ученые выдвинули ряд теорий относительно того, почему у бамбука развилась именно эта способность, и одна из самых правдоподобных гипотез состоит в том, что растения так поступают, чтобы животные, питающиеся их семенами, не смогли съесть все семена. Единственным недостатком такой системы является то, что взрослые растения зачастую погибают, если вокруг них начинает расти огромное количество молодых побегов.

Топ-10 Поразительно приспособившихся растений и животных

7. Панамская золотая лягушка (Panamanian Golden Frog)

Доведённая почти до полного исчезновения из-за потери среды обитания панамская золотая лягушка живёт исключительно в тропических лесах Панамы, в основном рядом с быстротекущими реками и водопадами. Из-за большого шума в их естественной среде обитания они выработали способность, которая встречается очень редко в царстве животных: они используют семафор.

Топ-10 Поразительно приспособившихся растений и животных

6. Phallostethus Cuulong

Фотография: L.X. Tran
Найденный совсем недавно, в 2009 году, если быть точными, вид рыб под названием Phallostethus cuulong является одним из очень немногих видов рыб, у которых оплодотворение яиц происходит в теле самки. Для того чтобы облегчить этот процесс, самцы выработали пенис, который расположен у них на голове. На его конце находится крючок, похожий на пилу, которым самцы прикрепляются к самкам в процессе спаривания.

Чтобы не отстать от самцов, самки развили свои репродуктивные органы во рту, в задней части горла. Крючок, которым пользуются самцы, очень полезен, так как он значительно увеличивает шансы успешного оплодотворения.

Для того чтобы достать драгоценную пищу из костей трупов бородачи кидают кости с высоты приблизительно 80 метров, в надежде, что они ударятся о камни и разобьются.

Из-за редкости этого растения, а также из-за того, что отдельные растения разбросаны по большой территории, любое сокращение времени, необходимого летучим мышам на поиск растения, очень благоприятно для него. Ученые использовали листья с лозы этого растения, чтобы проверить летучих мышей и их возможности нахождения спрятанной пищи и обнаружили, что листья сокращали время поиска на 50 процентов. Для сравнения, обычный лист уменьшал это время лишь на 6 процентов.

Топ-10 Поразительно приспособившихся растений и животных

3. Саламандра пятнистая (Spotted Salamander)

Относительно широко распространённое и непритязательное животное, пятнистая саламандра обладает одной из самых уникальных характеристик в мире животных: это первое известное науке позвоночное, которое может использовать фотосинтез. На протяжении многих лет учёные полагали, что водоросли, которые состоят в симбиотических отношениях с зародышами пятнистой саламандры, были ответственными за хлорофилл, который был обнаружен в телах ящериц.

Тем не менее, канадские исследователи недавно обнаружили, что пигменты, необходимые для фотосинтеза, на самом деле были внутри клеток пятнистой саламандры. Более того, они обнаружили, что у эмбрионов, которые взаимодействовали с водорослями, было гораздо больше шансов выжить, и росли они гораздо быстрее.

Топ-10 Поразительно приспособившихся растений и животных

2. Слива Казуара (Cassowary Plum)

Эндемичная Новой Гвинее и австралийским тропикам северного Квинсленда (North Queensland) слива казуара является небольшим деревцем, на котором растёт очень токсичный фрукт, который опасен почти для всех животных, включая людей. Есть лишь одно существо, способное употреблять в пищу сливы казуара, и вы уже, наверное, догадались по названию растения, что этим существом является казуар, большая нелетающая птица. Как и в случае большинства фруктов, семена фрукта заключены в мясистую мякоть и они проходят через пищеварительную систему казуаров без проблем благодаря тому, что пищеварительная система этих птиц очень короткая и быстро переваривает пищу.

Кроме того, ферменты, содержащиеся в кишечнике этой птицы, нейтрализуют токсичность семян. Есть ещё один маленький грызун, который может употреблять фрукты сливы казуара, но он также съедает и семена, что не помогает распространению растения. К сожалению, на данный момент сам казуар и слива казуара находятся на грани исчезновения. Их может в скором времени не стать, если не будут приняты соответствующие меры по охране их среды обитания.

Во-первых, изначальная версия этого комара питалась исключительно кровью птиц, но этот новый вид кормится также не брезгует грызунами и людьми. Кроме того, они изменили свой процесс размножения, чтобы лучше приспособиться к новой среде обитания. Обычным комарам нужно сначала напиться крови, чтобы отложить яйца, а комары лондонского метрополитена сначала откладывают яйца, так как там сложно найти еду. И наконец, что хуже всего для людей, они активны круглый год, в отличие от большинства видов комаров, которые впадают в спячку в зимний период. К счастью, они не могут скрещиваться со своими предками с поверхности, поэтому они в основном остаются в системе метрополитена.

Материалы для подготовки к ЕГЭ. Онлайн-Справочник по биологии.
Раздел 8. Экология и учение о биосфере. Глава 8.1. Экология особей.

8.1. Экология особей

8.1.1. Среды обитания

Среда обитания (жизни) — это часть природы, окружающая живые организмы и оказывающая на них определённое воздействие.

На нашей планете живые организмы освоили четыре среды обитания (табл. 8.1):

  • водную;
  • наземно-воздушную;
  • почвенную;
  • организменную.

Первой была освоена водная среда. Затем появились паразиты и симбионты, использующие организменную среду обитания. В дальнейшем, после выхода жизни на сушу, живые организмы населили наземно-воздушную среду, а одновременно с этим создали и заселили почву. Под почвенной средой обитания подразумевают не только собственно почву, но и горные породы поверхностной части литосферы.

Таблица 8.1. Сравнение сред жизни

Сравнение сред жизни

Примечание: ПБП — первичная биологическая продукция; ЭМП — элементы минерального питания.

8.1.2. Экологические факторы

Каждая из сред жизни отличается особенностями воздействия экологических факторов — отдельных элементов среды, которые воздействуют на организмы. Существуют различные классификации экологических факторов (табл. 8.2).

Таблица 8.2. Классификация экологических факторов

Группа

Характеристика

Примеры

1. По природе

2. По участию человека

3. По среде возникновения (для абиотических)

4. По природе (для абиотических)

5. По виду воздействующего организма (для биотических)

6. По принадлежности к определённому царству (для биотических)

7. По типу взаимодействия (для биотических)

8. По характеру воздействия (для антропогенных)

9. По последствиям (для антропогенных)

10. По изменчивости в пространстве и во времени

11. По характеру изменения во времени

12. По характеру ответной реакции организма на воздействие

13. По расходованию

Действие экологических факторов на организм может быть прямым и косвенным. Косвенное воздействие осуществляется через другие экологические факторы. Например, высокая температура может вызвать ожог (прямое воздействие), а может привести к обезвоживанию организма (косвенное воздействие).

8.1.3. Адаптации

Адаптации — приспособления организмов к среде обитания. Они вырабатываются в процессе эволюции и индивидуального развития организмов. Адаптации развиваются под действием трёх основных факторов: наследственности, изменчивости и естественного (а также искусственного) отбора. Адаптации подразделяют на типы (табл. 8.3).

Таблица 8.3. Типы адаптаций живых организмов

Типы адаптаций живых организмов

Существуют три основных пути приспособления организмов к условиям окружающей среды (табл. 8.4). Обычно приспособление вида к среде осуществляется тем или иным сочетанием всех трёх возможных путей адаптации.

Таблица 8.4. Пути адаптаций живых организмов

Пути адаптаций живых организмов

8.1.4. Закономерности действия экологических факторов

Закон оптимума. Экологические факторы среды имеют количественное выражение. Каждый фактор имеет определённые пределы положительного влияния на организмы (рис. 8.2). Как недостаточное, так и избыточное действие фактора отрицательно сказывается на жизнедеятельности особей.

Зависимость действия экологического фактора от его количества

Рис. 8.2. Зависимость действия экологического фактора от его количества

По отношению к каждому фактору можно выделить зону оптимума (зону нормальной жизнедеятельности), зону пессимума (зону угнетения), верхний и нижний пределы выносливости организма.

Зона оптимума — такое количество экологического фактора, при котором интенсивность жизнедеятельности организмов максимальна.

Зона пессимума — такое количество экологического фактора, при котором интенсивность жизнедеятельности организмов угнетена.

Верхний предел выносливости — максимальное количество экологического фактора, при котором возможно существование организма.

Нижний предел выносливости — минимальное количество экологического фактора, при котором возможно существование организма. За пределами выносливости существование организма невозможно.

Значения экологического фактора между верхним и нижним пределами выносливости называются зоной толерантности.

Виды с широкой зоной толерантности называются эврибионтными, с узкой — стенобионтными (рис. 8.3).

Экологическая валентность (пластичность) видов: 1 — эврибионтные; 2 — стенобионтные

Рис. 8.3. Экологическая валентность (пластичность) видов: 1 — эврибионтные; 2 — стенобионтные

Организмы, переносящие значительные колебания температуры, называются эвритермными, а приспособленные к узкому интервалу температур — стенотермными. Таким же образом по отношению к давлению различают эври- и стенобатные организмы, по отношению к степени засоления среды — эври- и стеногалинные и т. д.

Явление акклиматизации. Положение оптимума и пределов выносливости может в определённых пределах сдвигаться. Например, человек легче переносит пониженную температуру окружающей среды зимой, чем летом, а повышенную — наоборот. Это явление называется акклиматизацией (или акклимацией). Акклиматизация происходит при смене сезонов года или при попадании на территорию с другим климатом.

Неоднозначность действия фактора на разные функции организма. Одно и то же количество фактора неодинаково влияет на разные функции организма. Оптимум для одних процессов может являться пессимумом для других. Например, у растений максимальная интенсивность фотосинтеза наблюдается при температуре воздуха +25… +35°С, а дыхания +55°С (рис. 8.4).

Схема зависимости фотосинтеза и дыхания растения от температуры

Рис. 8.4. Схема зависимости фотосинтеза и дыхания растения от температуры: tмин, tопт, tмакс — температурный минимум, оптимум и максимум для прироста растений (заштрихованная область)

Соответственно, при более низких температурах будет происходить прирост биомассы растений, а при более высоких — потеря биомассы. У холоднокровных животных повышение температуры до +40 °С и более сильно увеличивает скорость обменных процессов в организме, но тормозит двигательную активность, и животные впадают в тепловое оцепенение. У человека семенники вынесены за пределы таза, так как сперматогенез требует более низких температур. Для многих рыб температура воды, оптимальная для созревания гамет, неблагоприятна для икрометания, которое происходит при другой температуре.

Экологическая валентность вида. Экологические валентности отдельных особей не совпадают. Они зависят от наследственных и онтогенетических особенностей отдельных особей: половых, возрастных, морфологических, физиологических и т.д. Поэтому экологическая валентность вида шире экологической валентности каждой отдельной особи. Например, у бабочки мельничной огнёвки — одного из вредителей муки и зерновых продуктов — критическая минимальная температура для гусениц -7 °С, для взрослых форм -22 °С, а для яиц —27 °С. Мороз в —10 °С губит гусениц, но не опасен для имаго и яиц этого вредителя.

Экологический спектр вида. Набор экологических валентностей вида по отношению к разным факторам среды составляет экологический спектр вида. Экологические спектры разных видов отличаются друг от друга. Это позволяет разным видам занимать разные места обитания. Знание экологического спектра вида позволяет успешно проводить интродукцию растений и животных.

Взаимодействие факторов. В природе экологические факторы действуют совместно, то есть комплексно. Зона оптимума и пределы выносливости организмов по отношению к какому-либо фактору среды могут смещаться в зависимости от того, с какой силой и в каком сочетании действуют одновременно другие факторы. Например, высокую температуру труднее переносить при дефиците воды, сильный ветер усиливает действие холода, жару легче переносить в сухом воздухе и т. д. Таким образом, один и тот же фактор в сочетании с другими оказывает неодинаковое экологическое воздействие (рис. 8.5). Соответственно, один и тот же экологический результат может быть получен разными путями. Например, компенсация недостатка влаги может быть осуществлена поливом или снижением температуры. Создаётся эффект частичного взаимозамещения факторов. Однако взаимная компенсация действия факторов среды имеет определённые пределы, и полностью заменить один из них другим нельзя.

Смертность яиц соснового шелкопряда при разных сочетаниях температуры и влажности

Рис. 8.5. Смертность яиц соснового шелкопряда при разных сочетаниях температуры и влажности

Таким образом, абсолютное отсутствие какого-либо из обязательных условий жизни заменить другими экологическими факторами невозможно, но недостаток или избыток одних экологических факторов может быть возмещён действием других экологических факторов.

Например, полное (абсолютное) отсутствие воды нельзя компенсировать другими экологическими факторами. Однако если другие экологические факторы находятся в оптимуме, то перенести недостаток воды легче, чем когда и другие факторы находятся в недостатке или избытке.

Закон лимитирующего фактора. Возможности существования организмов в первую очередь ограничивают те факторы среды, которые наиболее удаляются от оптимума. Экологический фактор, количественное значение которого выходит за пределы выносливости вида, называется лимитирующим (ограничивающим) фактором. Такой фактор будет ограничивать существование (распространение) вида даже в том случае, если все остальные факторы будут благоприятными (рис. 8.6).

Лимитирующие факторы определяют географический ареал вида. Например, продвижение вида к полюсам может лимитироваться недостатком тепла, в аридные районы — недостатком влаги или слишком высокими температурами.

Зависимость урожая от лимитирующего фактора

Условия жизни и условия существования. Комплекс факторов, под действием которых осуществляются все основные жизненные процессы организмов, включая нормальное развитие и размножение, называется условиями жизни. Условия, в которых размножения не происходит, называются условиями существования.

8.1.5. Характеристика основных экологических факторов

Свет. В спектре солнечного света выделяют области, различные по своему биологическому действию. Ультрафиолетовые лучи в небольших дозах необходимы живым организмам (бактерицидное действие, стимуляция роста и развития клеток, синтез витамина D и т. д.), в больших дозах губительны из-за способности вызывать мутации. Значительная часть ультрафиолетовых лучей отражается озоновым слоем. Видимые лучи — основной источник жизни на Земле, дающий энергию для фотосинтеза. Инфракрасные лучи — основной источник тепловой энергии.

Для растений солнечный свет необходим прежде всего как источник энергии для фотосинтеза. По отношению к условиям освещённости растения подразделяют на экологические группы (табл. 8.5).

Таблица 8.5. Классификация растений по отношению к условиям освещённости

Классификация растений по отношению к условиям освещённости

Для животных свет — это условие ориентации. Животные могут вести дневной, ночной и сумеречный образ жизни.

По отношению к продолжительности дня организмы (в основном растения) делят на короткодневные (обитатели низких широт) и длиннодневные (обитатели умеренных и высоких широт).

Реакция организмов на продолжительность дня называется фотопериодизмом. Это очень важное приспособление, регулирующее сезонные явления у организмов. Изменение длины дня тесно связано с годовым ходом температуры, но в отличие от последней не подвержено случайным колебаниям. Фотопериодизм обусловливает такие сезонные явления, как листопад, перелёты птиц и т. п.

Температура. От температуры окружающей среды зависит температура организмов, а следовательно, скорость всех химических реакций, составляющих обмен веществ. В основном живые организмы способны жить при температуре от 0 до +50 °С, что обусловлено свойствами цитоплазмы клеток. Верхним температурным пределом жизни является + 120…+140°С (близкие к нему значения температуры выдерживают споры, бактерии), нижним —190…273 °С (переносят споры, семена, сперматозоиды).

По отношению к температуре организмы делят на криофилов (обитающих в условиях низких температур) и термофилов (обитающих в условиях высоких температур).

Организмы могут использовать два источника тепловой энергии: внешний (тепловая энергия Солнца или внутреннее тепло Земли) и внутренний (тепло, выделяемое при обмене веществ). В зависимости от того, какой источник преобладает в тепловом балансе, живые организмы делят на пойкилотермных и гомойотермных (табл. 8.6). Если речь идёт только о животных, то их ещё называют холоднокровными и теплокровными соответственно.

Таблица 8.6. Классификация организмов по преобладанию
источника тепла в их тепловом балансе

Классификация организмов по преобладанию источника тепла в их тепловом балансе

У живых организмов различают три механизма терморегуляции (табл. 8.7).

Таблица 8.7. Механизмы терморегуляции

Механизмы терморегуляции

Вода. Вода обеспечивает протекание в организме обмена веществ и нормальное функционирование организма в целом. Одни организмы живут в воде, другие приспособились к постоянному недостатку влаги. Среднее содержание воды в клетках большинства живых организмов составляет около 70 %.

По отношению к воде среди живых организмов выделяют следующие экологические группы: гигрофилы (влаголюбивые), ксерофилы (сухолюбивые) и мезофилы (промежуточная группа).

Из наземных животных к гигрофилам относятся ондатра и бобр, к ксерофилам — суслик и варан, к мезофилам — волк и косуля. Среди растений различают гигрофитов, мезофитов и ксерофитов (табл. 8.8).

Таблица 8.8. Классификация растений по отношению к воде

Классификация растений по отношению к воде

Водные организмы по типу местообитания и образу жизни объединяются в следующие экологические группы (табл. 8.9).

Таблица 8.9. Классификация водных организмов
по типу местообитания и образу жизни

Классификация водных организмов по типу местообитания и образу жизни

8.1.6. Биологические ритмы

Биологические ритмы представляют собой периодически повторяющиеся изменения интенсивности и характера биологических процессов и явлений. Они в той или иной форме присущи всем живым организмам и отмечаются на всех уровнях организации: от внутриклеточных процессов до биосферных. Биологические ритмы наследственно закреплены и являются следствием естественного отбора и адаптации организмов. Ритмы бывают внутрисуточные, суточные, сезонные, годичные, многолетние и многовековые. Биологические ритмы делят на эндогенные и экзогенные (табл. 8.10).

Таблица 8.10. Биологические ритмы

Биологические ритмы

Материалы для подготовки к ЕГЭ. Онлайн-Справочник по биологии.
8.1. Экология особей

Читайте также: