Что такое сцепленное наследование гдз

Обновлено: 04.07.2024

Явление сцепленного наследования и его цитологические основы

Закон независимого комбинирования генов основывается на тех положениях, что гены, определяющие те или иные черты и признаки, локализованы в гомологических хромосомах, а гены, кодирующие разные черты находятся в разных хромосомах. Но количество признаков намного превышает количество хромосом в живых организмах. Из этого следует логичный вывод, что каждый организм имеет число генов, которые способны независимо комбинироваться в мейозе, но ограничены числом пар хромосом. Вследствие этого на каждую хромосому приходится далеко не по одному гену.

Хромосомы наследуются как единое целое. Они сохраняют свою целостность при конъюгации и расхождении в мейозе. Поэтому гены, содержащиеся в одной хромосоме, как правило, наследуются совместно.

Гены, которые локализованы в одной хромосоме и способны наследоваться совместно, составляют группу сцепления. А совместное наследование генов соответственно называется сцеплением генов.

У организмов определенного вида количество групп сцепления равно количеству хромосом в гаплоидном наборе.

Хромосомная теория наследственности

Впервые явление сцепленного наследования признаков было описано в $1906$ году В. Бетсоном и Р. Пеннетом в опытах, проводимых с душистым горошком. Но они не смогли объяснить результаты опытов и пришли к выводу об ограниченности правила независимого комбинирования признаков, установленного Г. Менделем.

Экспериментальными исследованиями явления сцепленного наследования успешно занимался выдающийся американский естествоиспытатель и генетик Томас Хант Морган. Он со своими ассистентами и сотрудниками А. Стервантом, Г. Миллером и К. Бриджесом провел основательные исследования. Результаты этих исследований позволили предложить и аргументированно обосновать хромосомную теорию наследственности.

Готовые работы на аналогичную тему

Опыты Т. Х. Моргана

Для проведения исследований Т.Х.Морган избрал в качестве объекта муху-дрозофилу. С тех пор эта муха стала классическим объектом для различных генетических экспериментов. Их легко содержать, они быстро размножаются. А небольшое количество хромосом облегчает наблюдение.

Был проведен следующий опыт. Самцов дрозофилы, которые были гомозиготными по доминантным признакам окраски тела и формы крыльев (а именно - серое тело и нормальные крылья), ученые скрестили с самками, гомозиготными по рецессивным признакам (черное тело и недоразвитые крылья). Генотипы исследуемых особей обозначили соответственно ЕЕVV и ееvv. Всем гибридам первого поколения характерно было серое тело и нормальные крылья. Они были гетерозиготными. Их генотип можно было записать как EeVv. Затем провели анализирующее скрещивание. Для этого гибриды первого поколения скрестили с гомозиготами по рецессивным признакам. Теоретически можно было предположить, что произойдет расщепление признаков и пропорция полученных результатов будет выглядеть так: $1 : 1 : 1 : 1$. Другими словами каждого варианта будет примерно по $25$%. На самом же деле $41,5$% особей имели серое тело и нормальные крылья, $41,5$% - черное тело и недоразвитые крылья, $8,5$% - серое тело и недоразвитые крылья, $8,5$% - черное тело и нормальные крылья. Результаты опытов позволили Моргану сформулировать два важных предположения.

  1. Гены, которые определяют цвет тела и форму крыльев локализованы в одной хромосоме и в дальнейшем наследуются сцеплено.
  2. В процессе мейоза и образования гамет гомологические хромосомы некоторых особей обменялись участками и образовали новую группу сцепления.

Явление кроссинговера

Явление перекреста хромосом во время мейоза и последующий обмен участками хромосом получил название кроссинговера.

Он увеличивает комбинативную изменчивость, способствую появлению новых сочетаний аллелей. Были установлены следующие закономерности кроссинговера:

  1. Сила сцепления между двумя генами, которые расположены в одной хромосоме, обратно пропорциональна расстоянию между ними.
  2. Частота кроссинговера, который происходит между двумя сцепленными генами, это относительно постоянная величина для каждой конкретной пары генов.

Главным выводом моргановской гипотезы было то, что гены расположены в хромосоме по всей ее длине один за другим в линейном порядке.


Из данного видеоурока вы узнаете о том, что в каждой хромосоме любого вида организма содержится большое количество генов, а также о том, что гены, расположенные в одной хромосоме, образуют группу сцепления. Вы выясните, что гены, входящие в группу сцепления, не подчиняются третьему закону Менделя о независимом наследовании. Узнаете о том, что сила сцепления между генами зависит от расстояния между ними. Познакомитесь с хромосомной теорией наследственности. Основные понятия урока: сцепленные гены, гетерозиготы, кроссоверные гаметы, рекомбинантные гаметы, хромосомная карта, хромосомная теория наследственности


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Сцепленное наследование признаков. Хромосомная теория наследственности"

После того как Грегор Мендель открыл единые закономерности наследственности.

В начале 20-го века учёные генетики стали проводить множество экспериментов по скрещиванию на самых различных объектах. В итоге обнаружилось, что закономерности, установленные Менделем проявляются не всегда.

Мендель скрещивал дигетерозиготы – организмы которые отличались по двум признакам. Признаки, которые рассматривал Мендель были локализованы в разных гомологичных хромосомах.


Вспомним что третий закон Менделя формулируется так: каждая пара аллельных генов (и альтернативных признаков, контролируемых ими) наследуется независимо друг от друга.

Что значит независимо друг он друга?

При скрещивании организмов 1-го поколения при мейозе образуются 4 типа гамет.

Где гены комбинируются в различных сочетаниях. Такие сочетания получились потому что гены находились в разных хромосомах.


Но в 1906 году Уильям Бэтсон и Риджинальд Пэннет, проводя скрещивание растений душистого горошка и анализируя наследование нескольких признаков формы пыльцы и окраски цветков, обнаружили, что эти признаки не дают независимого распределения в потомстве в соотношении 3:1, гибриды всегда повторяли признаки родительских форм.


Стало ясно, что не для всех признаков характерно независимое распределение в потомстве и свободное комбинирование.

Дело в том, что ген формы пыльцы и ген окраски цветка лежат в одной хромосоме.

Признаков в организме значительно больше чем хромосом, в которых эти признаки локализованы. Следовательно, каждая хромосома несёт не один ген, а целую группу генов, отвечающих за развитие разных признаков.

Изучением наследования признаков, гены которых локализованы в одной хромосоме, занимался Томас Морган.

Он предложил закон сцепленного наследования (закон Моргана): гены, которые находиться в одной хромосоме, при мейозе попадают в одну гамету, то есть наследуются сцеплено.

Что значит сцеплено? То есть между генами, которые находиться в одной хромосоме возникают силы сцепления, то есть силы взаимодействия. И чем ближе эти гены, тем сильнее взаимодействие.


Если Мендель проводил свои опыты на горохе, то для Моргана основным объектом стала фруктовая мушка дрозофила, которая имела диплоидный набор из 8 хромосом.

Небольшие размеры, короткий жизненный цикл и простота культивирования позволяет использовать ряд видов дрозофил как образцовые объекты генетических исследований.

Самец и самка внешне хорошо различимы — у самца брюшко меньше и темнее.

Дрозофила фруктовая — наиболее важный для научных исследований вид дрозофил. Главными её характеристиками как модельного объекта является малое число хромосом. Дрозофила каждые две недели при температуре 25 °С достаточно легко размножаются в пробирках и даёт многочисленное потомство.

Рассмотрим один из первых экспериментов Томаса Моргана по изучению сцепленного наследования.

Скрещивая мушку дрозофилу с серым телом и нормальными крыльями с мушкой, имеющей темную окраску тела и зачаточные крылья, в первом поколении Морган получал гибриды, которые имели серое тело и нормальные крылья.


Ген А-большое отвечает за серое тело, рецессивный ген а-малое за чёрную окраску тела, доминантный ген В-большое за развитие длинных крыльев, а рецессивный ген бэ-малое за не развитие крыльев, то есть крылья остаются в зачаточном состоянии.

Значит ген, определяющий серую окраску брюшка, доминирует над темной окраской, а ген, обуславливающий развитие нормальных крыльев, — над геном недоразвитых.

Далее при скрещивании двух гетерозигот которые имеют серое тело и длинные крылья в первом поколении получается два фенотипических класса организмов.


Которые имеют серое тело и длинные крылья и чёрное тело с зачаточными крыльями.

То есть здесь расщепление идёт именно на 2 класса, а не на четыре как при дигибридном скрещивании Менделя.

Почему два? Дело в том, что гены окраски тела и длинны крыльев сцеплены в хромосоме.


Символы АB АB ab аb располагаются не рядом как мы записывали их ранее, а как бы друг под другом с двумя чёрточками. Чёрточками мы условно обозначаем хромосомы.

В первом поколении организм гетерозиготен по обоим генам, но при образовании гамет эта гетерозиготность не даёт всех возможных комбинаций. То есть родительские гены остаются связанные между собой и гаметы получаются 2х типов.


При комбинации такого рода гамет в потомстве возникают всего 3 генотипических класса потомков.

Морган исследуя наследование сцепленных генов обнаружил что существует нарушение этого правила по дигибридному скрещиванию Менделя.

Он провёл анализирующее скрещивание.

Взял дигетерозиготную особь, которая получилась при скрещивании в первом поколении и скрестил её с чёрной мушкой с зачаточными крыльями, то есть оба рецессивных признака. У него получился необычный результат.

Морган рассуждал. Если гены окраски тела и формы крыльев локализованы в одной хромосоме, то при данном скрещивании должны были получиться две группы особей, повторяющие признаки родительских форм, так как материнский организм должен образовывать гаметы только двух типов — АB и аb, а отцовский — один тип — аb. Следовательно, в потомстве должны образовываться две группы особей, имеющих генотип АB аb и аa BB.


Однако в потомстве появляются особи (пусть и в незначительном количестве) с перекомбинированными признаками, то есть имеющие генотип Аa bb и aa Bb.

В потомстве явно преобладали особи с признаками родительских форм (41,5% были серые длиннокрылые и 41,5% — черные с зачаточными крыльями), и лишь незначительная часть мушек имела иное, чем у родителей, сочетание признаков (8,5% были серые с зачаточными крыльями и 8,5% — черные длиннокрылые).

Такие результаты могли быть получены только в том случае, если гены, отвечающие за окраску тела и форму крыльев, находятся в одной хромосоме.

В профазе первого мейотического деления гомологичные хромосомы (то есть идентичные хромосомы одной пары) конъюгируют (сближаются), и могут разрываться в месте контакта в этот момент между ними может произойти обмен участками – кроссинговер.

Кроссинго́вер или перекрёст — это процесс обмена участками гомологичных хромосом во время конъюгации в профазе первого мейоза. В результате образуются крассоверные гаметы.

Организмы, которые возникают в результате слияния кроссоверных гамет называются рекомбинантными.

Так в результате, кроссинговера в некоторых клетках происходит обмен участками хромосом между генами А и В, появляются гаметы Аb и аB, и, как следствие, в потомстве образуются четыре группы фенотипов, как при свободном комбинировании генов.

Однако кроссинговер происходит не после каждой конъюгации (сближения хромосом). И определить в каких участках хромосом он произойдет достаточно сложно.

В ходе эксперимента Томасу Моргану удалось доказать, что частота кроссинговера между генами прямо пропорциональна расстоянию между ними в хромосоме. То есть можно сказать что, чем дальше гены находятся друг от друга в хромосоме, тем чаще между ними происходит кроссинговер.

Если рассматривать 2 гена А и В мы можем увидеть 2 случая.


В первом случае гены А и В находиться по разные стороны перекрёста. Тогда после прохождения кроссинговера мы увидим новые сочетания аллелей этих двух генов. В данном случае Аb и аB.

Во 2м случае гены А и B находиться по одну сторону от перекрёста. Тогда после прохождения кроссинговера новых сочетаний аллелей данных двух генов мы не увидим.

Таким образом существуют понятия полного и неполного сцепления.

Неполное сцепление — это разновидность сцепленного наследования, при котором гены анализируемых признаков располагаются на некотором расстоянии друг от друга, что делает возможным кроссинговер между ними.

Полное сцепление — это разновидность сцепленного наследования, при котором гены анализируемых признаков располагаются так близко друг к другу, что кроссинговер между ними становится невозможным.

Это открытие позволило лаборатории Томаса Моргана разработать метод. Который позволяет построить хромосомные карты.

Хромосомные карты — это графическое изображение хромосомы, на котором определенные локусы (гены) отмечены соответственно расстоянию между ними.

Хромосомные карты составляют при помощи генетического анализа, который позволяет точно определить местоположение в хромосоме любого гена.


Хромосомная теория наследственности

Изучение Морганом наследования родительских признаков гибридами дрозофилы показало, что число групп сцепленного наследования было равным количеству пар гомологичных хромосом.

Например, у человека 46 хромосом, следовательно, 23 группы сцепления. У дрозофилы 8 хромосом, то есть 4 группы сцепления.

На этом основании был сделан вывод о строгой локализации конкретных генов в определенных парах хромосом.

Возникновение кроссоверных (рекомбинантных) особей дрозофилы можно было объяснить только линейным расположением генов в хромосомах и их обменом при кроссинговере в профазе первого мейоза.

Томас Морган обосновал хромосомную теорию наследственности. Согласно этой теории, передача наследственной информации связана с хромосомами, в которых линейно, в определенной последовательности, локализованы гены. Таким образом, именно хромосомы представляют собой материальную основу наследственности.

Формированию хромосомной теории способствовали данные, полученные при изучении генетики пола, когда были установлены различия в наборе хромосом у организмов различных полов.

Хромосомная теория наследственности сформулирована в 1911 г. американским учёным Томасом Морганом. Её сущность заключается в следующем:

· Основным материальным носителем наследственности являются хромосомы с локализованными в них генами.

· Гены в хромосомах расположены линейно, каждый ген имеет определенное место (локус) в хромосоме;

· Гены, расположенные в одной хромосоме, образуют группу сцепления и наследуются совместно;

· Число групп сцепления равно гаплоидному набору хромосом у гомогаметных особей и n+1 у гетерогаметных особей.

· Между гомологичными хромосомами может происходить обмен участками (кроссинговер); в результате кроссинговера возникают гаметы, хромосомы которых содержат новые комбинации генов.

· Сцепление генов может нарушаться в результате кроссинговера;

· Частота кроссинговера между гомологичными хромосомами зависит от расстояния между генами, локализованными в одной хромосоме. Чем это расстояние больше, тем выше частота кроссинговера.

Значение этой теории заключается в том, что она дала объяснение законам Менделя, вскрыла цитологические основы наследования признаков и генетические основы теории естественного отбора.

Сцепление генов - это совместное наследование генов, расположен­ных в одной и той же хромосоме. Количество групп сцепления соответству­ет гаплоидному числу хромосом, то есть у дрозофилы 4; у КРС - 30. Природу сцепленного наследования объяснил в 1910 г. Морган с сотруд­никами. В качестве объекта исследования они избрали плодовую муху дрозофилу, которая оказалась очень удобной моделью для изучения данного фе­номена, так в клетках ее тела, находится только 4 пары хромосом и имеет ме­сто высокая скорость плодовитости (в течение года можно исследовать более 20-ти поколений). Итак, сцепленными признаками называются признаки, которые контролируются генами, расположенными в одной хромосоме. Естественно, что они передаются вместе в случаях полного сцепления (закон Моргана).

Полное сцепление встречается редко, обычно – неполное, из-за влияния кроссинговера (перекрещивания и обмена участками гомологичных хромосом в процессе мейоза). То есть, гены одной хромосомы переходят в другую, гомологичную ей.

Частота кроссинговера зависит от расстояния между генами. Чем ближе друг к другу расположены гены в хромосоме, тем сильнее между ними сцепление и тем реже происходит их расхождение при кроссинговере, и, наоборот, чем дальше друг от друга отстоят гены, тем слабее сце пление между ними и тем чаще возможно его нарушение.


На рисунке 1 :

Слева: расстояние между генами А и В маленькое, вероятность разрыва хроматиды именно между А и В невелика, поэтому сцепление полное, хромосомы в гаметах идентичны родительским (два типа), других вариантов не появляется. Справа: расстояние между генами А и В большое, повышается вероятность разрыва хроматиды и последующего воссоединения крест-накрест именно между А и В, поэтому сцепление не
полное, хромосомы в гаметах образуются четырех типов - 2 идентичные родительским (некроссоверные) + 2 кроссоверных варианта.


Количество разных типов гамет бу дет зависеть от частоты кроссинговера или расстояния между анализируемыми генами. Расстояние между генами исчисляется в морганидах: единице расстояния между генами, находящимися в одной хромосоме, соответствует 1% кроссинговера. Такая зависимость между расстояниями и частотой кроссинговера прослеживается только до 50 морганид. Частота кроссинговера между определенной парой генов – довольно постоянная величина (хотя радиация, химические вещества, гормоны, лекарства влияют на нее; например, высокая температура стимулирует кроссинговер).

Пример, основанный на опытах Моргана

Рисунок 2
Фенотипы
А-серое тело, нормальные крылья (повторяет материнскую форму)
Б-тёмное тело, короткие крылья (повторяет отцовскую форму)
В-серое тело, короткие крылья (отличается от родителей)
Г-тёмное тело, нормальные крылья (отличается от родителей)

В и Г получены в результате кроссинговера в мейозе.

Если скрестить мушку дрозофилу, имеющую серое тело и нормальные крылья (на рисунке самка), с мушкой, обладающей тёмной окраской и зачаточными (короткими) крыльями (на рисунке самец), то в первом поколении гибридов все мухи будут серыми с нормальными крыльями (А). Это гетерозиготы по двум парам аллельных генов, причём ген, определяющий серую окраску брюшка, доминирует над тёмной окраской, а ген, обусловливающий развитие нормальных крыльев, - доминирует над геном недоразвитых крыльев.

При анализирующем скрещивании гибрида F1 с гомозиготной рецессивной дрозофилой (Б) подавляющее большинство потомков F2 будет сходно с родительскими формами.

Это происходит потому, что гены, отвечающие за серое тело и нормальные крылья - Сцепленные гены, также как и гены, отвечающие за тёмное тело и короткие крылья, т.е. они находятся в одной хромосоме. наследование сцепленных генов называют - сцепленное наследование.

Сцепление может нарушаться. Это доказывают особи В и Г на рисунке, т. е. если бы сцепление не нарушалось, то этих особей бы не существовало, однако они есть. Это происходит в результате кроссинговера, который и нарушает сцепленность этих генов.

На рисунке 3 опыт Моргана отображен подробно.




Для решения задач важно уловить механизм, поэтому ниже на схемах
еще раз посмотрите, чем отличается независимое (несцепленное) наследование от сцепленного.

Несцепленное наследование: два гена находятся в разных хромосомах, гетерозигота с равной вероятностью дает четыре т ипа гамет:

Сайт учителей биологии МБОУ Лицей № 2 г. Воронежа, РФ

Site biology teachers lyceum № 2 Voronezh city, Russian Federation

В начале XX в., когда генетики стали проводить множество экспериментов по скрещиванию на самых различных объектах (кукуруза, томаты, мыши, мушки дрозофилы, куры и др.), обнаружилось, что не всегда проявляются закономерности, установленные Менделем. Например, не во всех парах аллелей наблюдается доминирование. Вместо него возникают промежуточные генотипы, в которых участвуют обе аллели. Обнаруживается также много пар генов, не подчиняющихся закону независимого наследования генов, особенно если пара аллельных генов находится в одной и той же хромосоме, т. е. гены как бы сцеплены друг с другом. Такие гены стали называть сцепленными.

Механизм наследования сцепленных генов, а также местоположение некоторых сцепленных генов установил американский генетик и эмбриолог Т. Морган. Он показал, что закон независимого наследования, сформулированный Менделем, действителен только в тех случаях, когда гены, несущие независимые признаки, локализованы в разных негомологичных хромосомах. Если же гены находятся в одной и той же хромосоме, то наследование признаков происходит совместно, т. е. сцепленно. Это явление стали называть сцепленным наследованием, а также законом сцепления или законом Моргана.

Закон сцепления гласит: сцепленные гены, расположеные в одной хромосоме, наследуются совместно (сцепленно) .

Примеров сцепленного наследования генов известно очень много. Например, у кукурузы окраска семян и характер их поверхности (гладкие или морщинистые), сцепленные между собой, наследуются совместно. У душистого горошка (Lathyrus odoratus) сцепленно наследуются окраска цветков и форма пыльцы.

Все гены одной хромосомы образуют единый комплекс – группу сцепления. Они обычно попадают в одну половую клетку – гамету и наследуются вместе.

Группа сцепления — все гены одной хромосомы. Число групп сцепления равно количеству хромосом в гаплоидном наборе. Например, у человека 46 хромосом — 23 группы сцепления, у гороха 14 хромосом — 7 групп сцепления, у плодовой мушки дрозофилы 8 хромосом — 4 группы сцепления.

Гены, входящие в группу сцепления, не подчиняются третьему закону Менделя о независимом наследовании. Однако полное сцепление генов встречается редко. Если гены располагаются близко друг к другу, то вероятность перекреста хромосом мала и они могут долго оставаться в одной хромосоме, а потому будут передаваться по наследству вместе. Если же расстояние между двумя генами на хромосоме велико, то существует большая доля вероятности, что они могут разойтись по разным гомологичным хромосомам. В этом случае гены подчиняются закону независимого наследования.


Неполное сцепление генов. При анализе наследования сцепленных генов было обнаружено, что иногда сцепление может нарушаться в результате кроссинговера, происходящего во время мейоза при образовании половых клеток.

Если место разрыва хромосом во время обмена участками расположено между генами А (а) и В(b), то появятся гаметы Ab и аВ , а в потомстве образуются четыре группы фенотипов, как при несцепленном наследовании генов. Отличие заключается в том, что численное соотношение фенотипов не будет соответствовать соотношению 1:1:1:1, как при дигибридном анализирующем скрещивании.

Чем дальше друг от друга находятся гены в хромосоме, тем выше вероятность перекрёста между ними, тем больше процент гамет с перекомбинированными генами, а следовательно, и больше процент особей, отличных от родителей. Такое явление называют неполным сцеплением генов .

На рисунке - Наследование при неполном сцеплении генов (на примере скрещивания двух линий дрозофил, где А – нормальные крылья, а – зачаточные крылья, В – серый цвет тела, в – черный цвет тела ).

Полное сцепление генов. Чем ближе друг к другу находятся гены в хромосоме, тем меньше вероятность перекрёста между ними. Если гены расположены очень близко друг к другу (рядом), то перекрёста между ними обычно не наблюдается. В этом случае говорят о полном сцеплении генов .


На рисунке - Наследование с полным сцеплением генов (на примере скрещивания двух линий дрозофил, где А – нормальные крылья, а – зачаточные крылья, В – серый цвет тела, в – черный цвет тела )

Таким образом, третий закон Менделя отражает частое, но не абсолютное явление в наследовании признаков.

Основные доказательства передачи наслед-ственности были получены в экспериментах Моргана и его сотрудников.

Таким образом, сцепленное наследование — явление совместного наследования генов, локализованных в одной хромосоме.

Читайте также: