Что такое компьютерная сеть какие возможности она предоставляет

Обновлено: 19.05.2024

Пояснение причин и обсуждение — на странице Википедия:К переименованию/3 декабря 2012.
Возможно, её текущее название не соответствует нормам современного русского языка и/или правилам именования статей Википедии.

Не снимайте пометку о выставлении на переименование до окончания обсуждения.
Дата постановки — 3 декабря 2012.

Компьютерная сеть (вычислительная сеть, сеть передачи данных) — система связи компьютеров или компьютерного оборудования (серверы, маршрутизаторы и другое оборудование). Для передачи информации могут быть использованы различные физические явления, как правило — различные виды электрических сигналов, световых сигналов или электромагнитного излучения.

Содержание

Классификация

По территориальной распространенности

По типу функционального взаимодействия

По типу сетевой топологии

По типу среды передачи

  • Проводные (телефонный провод, коаксиальный кабель, витая пара, волоконно-оптический кабель) (передачей информации по радиоволнам в определенном частотном диапазоне)

По функциональному назначению

По скорости передач

  • низкоскоростные (до 10 Мбит/с),
  • среднескоростные (до 100 Мбит/с),
  • высокоскоростные (свыше 100 Мбит/с);

По сетевым операционным системам

  • На основе Windows
  • На основе UNIX
  • На основе NetWare
  • На основе Cisco

По необходимости поддержания постоянного соединения

  • Пакетная сеть, например Фидонет и UUCP
  • Онлайновая сеть, например Интернет и GSM

Стеки протоколов

При реализации компьютерной сети могут использоваться различные наборы протоколов, некоторые из них:

Уровни

Передача данных

    связь
    • Телефонная сеть PSTN
        и коммутируемый доступ
      • Synchronous optical networking
      • Ближнего радиуса действия
      • Human Area Network
      • DataTAC
      • Mobitex
      • Motient

      История

      См. также

      Литература

      • Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное.
      • Проставив сноски, внести более точные указания на источники.

      Wikimedia Foundation . 2010 .

      Полезное

      Смотреть что такое "Компьютерная сеть" в других словарях:

      КОМПЬЮТЕРНАЯ СЕТЬ — (network) Несколько соединенных между собой компьютеров. Обычно компьютеры, объединенные в сеть и называема узлами сетей (nodes), находятся в разных местах одной организации, региона или даже континента. Связь между ними обеспечивают специальные… … Словарь бизнес-терминов

      КОМПЬЮТЕРНАЯ СЕТЬ — КОМПЬЮТЕРНАЯ СЕТЬ, ряд компьютеров, соединенных в единую систему так, что они могут сообщаться друг с другом. Типичным примером является локальная сеть, объединяющая все компьютеры, находящиеся в одном здании. Такая сеть позволяет сотрудникам… … Научно-технический энциклопедический словарь

      КОМПЬЮТЕРНАЯ СЕТЬ — сеть ЭВМ, совокупность удалённых друг от друга ЭВМ, соединённых линиями передачи данных и способных к взаимному согласованному обмену информацией в процессе своей работы. К. с. обеспечивает каждому пользователю доступ к информации любой ЭВМ,… … Естествознание. Энциклопедический словарь

      компьютерная сеть — Совокупность рабочих станций, соединенных между собой с помошью сетевого оборудования и среды передачи данных. Примеры сочетаний: network access доступ к компьютерной сети network backbone сетевая магистраль network database сетевая СУБД СУБД,… … Справочник технического переводчика

      компьютерная сеть — сеть ЭВМ, совокупность удалённых друг от друга ЭВМ, соединённых линиями передачи данных и способных к взаимному согласованному обмену информацией в процессе своей работы. Компьютерная сеть обеспечивает каждому пользователю доступ к информации… … Энциклопедический словарь

      компьютерная сеть — совокупность компьютеров, связанных каналами передачи информации, необходимого программного обеспечения и технических средств, предназначенных для организации распределённой обработки информации. В такой системе любое из подключённых устройств… … Энциклопедия техники

      Глобальная компьютерная сеть — У этого термина существуют и другие значения, см. WAN (значения). У этого термина существуют и другие значения, см. ГВС. Глобальная компьютерная сеть, ГКС (англ. Wide Area Network, WAN) компьютерная сеть, охватывающая большие… … Википедия

      Абилин (компьютерная сеть) — У этого термина существуют и другие значения, см. Абилин. Абилин (англ. Abilene Network) экспериментальная высокоскоростная компьютерная сеть в США, созданная некоммерческим консорциумом Интернет2. Сеть объединяет более 230… … Википедия

      локальная компьютерная сеть — (локальная вычислительная сеть), компьютерная сеть, поддерживающая в пределах ограниченной территории один или несколько высокоскоростных каналов передачи информации, предоставляемых подключаемым устройствам для кратковременного монопольного… … Энциклопедический словарь

      Вычислительные или компьютерные сети стали логичным этапом развития информационных технологий. Но с тем, как они устроены, всё ещё знакомы далеко не все пользователи. Когда-то на информатике вы, возможно, изучали теоретическую часть о локальных компьютерных сетях — давайте расширим имеющиеся знания и научимся применять их на практике.

      Кратко о компьютерных сетях

      Компьютерная (или же вычислительная) сеть позволяет соединить несколько различных устройств в одну систему, внутри которой может происходить обмен данными. Главными элементами таких сетей являются компьютеры, но в них также могут участвовать и принтеры, сетевое оборудование, серверы, хранилища, телевизоры, телефоны и другие устройства. Все эти устройства называются оконечными узлами. Но в сети также присутствуют и промежуточные элементы — это различные маршрутизаторы, роутеры, модемы, точки беспроводного доступа, коммутаторы. Всё это соединяется между собой с помощью так называемой сетевой среды. Сетевая среда — это оптоволоконные кабели, радиоволны Wi-Fi, витые пары, с помощью которых все устройства подключаются к сети и взаимодействуют между собой.

      Элементы компьютерной сети

      Из этих трёх типов элементов состоит любая компьютерная сеть

      Компьютерные сети бывают локальными (LAN) и глобальными (WAN). В чём между ними ключевая разница? Первые располагаются на ограниченной территории (обычно не выходя за пределы одного здания), а вторые могут распространяться на куда большую площадь — расстояние между узлами может составлять сотни и тысячи километров. Нас как пользователей сейчас больше интересуют локальные компьютерные сети — именно их мы разворачиваем дома, ими пользуемся на работе или на учёбе.

      Стоит отметить, что различия между локальными и глобальными компьютерными сетями потихоньку стираются. Это связано с улучшением и тех, и других. Возможно, в ближайшем будущем между ними уже не будет значительной разницы.

      Дополнительно можно выделить городские компьютерные сети — MAN (Metropolitan Area Network). Они отличаются от WAN, прежде всего, площадью покрытия и занимают, как нетрудно догадаться, один город. MAN предоставляет услуги кабельного телевещания, телефонии, а также является точкой опоры для провайдеров.

      Локальные компьютерные сети

      Локальные компьютерные сети (LAN — Local Area Network) сейчас распространены повсеместно. Ими пользуются дома, на работе, в магазинах, в офисных и торговых центрах. Даже если вы далеки от IT, вам стоит иметь представление о том, что это такое и как это можно настроить.

      Основные характеристики локальных сетей

      Локальная сеть подходит для использования на ограниченной территории — например, в квартире, офисе или целом здании, но не более. Она обеспечивает быструю (до 100 Мбит/с) передачу данных между узлами сети. Это позволяет пользователю локалки, например, использовать удалённый диск со скоростью, сравнимой с использованием HDD на своём компьютере.

      В локальных сетях используются высококачественные линии связи. Наиболее распространены сейчас медные витые пары и оптоволоконные кабели. Это даёт возможность отказаться от подтверждения получения пакета, модуляции и некоторых других методов, которые снижают скорость передачи и усложняют использование сети.

      Локальная сеть предполагает совместное использование каналов. Это означает, что одним и тем же каналом связи могут пользоваться разные узлы сети. Более подробно на последовательности передачи данных мы остановимся в разделе, посвящённом топологии сети.

      Вообще каналы передачи данных предполагают наличие как минимум двух каналов связи — один работает на приём, другой — на отправку. Раньше это осуществлялось подключением двух физических проводов. Но с приходом витых медных пар и оптоволокна, которые способны как отдавать, так и принимать сигнал, такой подход стал менее популярен.

      Всё вышеперечисленное даёт локальной сети ряд преимуществ:

      • быструю передачу данных;
      • относительную простоту настройки;
      • низкая сложность методов передачи;
      • возможность использования дорогой сетевой среды.

      Но у локальной сети есть и минус — слабая масштабируемость. Вместе с увеличением количества узлов и протяжённости линий резко снижается скорость передачи данных.

      Таблица: отличия локальных сетей от глобальных

      • модуляция,
      • асинхронные методы,
      • сложные методы контрольного суммирования,
      • квитирование,
      • повторные передачи искажённых кадров.

      Виды локальных сетей

      Локальные сети обычно делят на две большие категории — одноранговые и иерархические (то есть созданные на базе серверов).

      Иерархическая локальная сеть обязательно имеет в своей структуре сервер, который занимается:

      • администрированием сети;
      • подключением периферийных устройств (например, сетевых принтеров);
      • хранением основной информации сети;
      • разработкой маршрутов передачи данных внутри сети.

      Топология локальных сетей

      Топология — это то, как и в каком порядке устройства сети связываются между собой и передают данные. Рассмотрим возможные виды физической топологии, указав плюсы и минусы каждого:

      Шинная топология

      До сих пор широко известна шутка про уборщицу, которая одной шваброй может положить всю сеть — это именно про шинную локалку

      Кольцевая топология

      Обычно компьютеры в кольцевой сети соединяли сразу двумя кабелями — один был основным, а другой — резервным

      Звёздная топология

      Такой тип сети настраивается проще всего, а потому часто используется в качестве домашней локалки

      Полносвязная топология

      Полносвязная сеть — самая надёжная, но и самая дорогая

      Смешанная топология

      Смешанная топология использует уже рассмотренные методы соединения

      Элементы локальной сети

      Теперь рассмотрим наиболее распространённые элементы, которые можно подключить к локальной сети:

      Все рассмотренные выше элементы — оконечные. Не будем забывать и о промежуточных узлах. Ими могут быть:

      Сетевую среду же образуют кабели и беспроводное соединение (радиоволны). Первые обычно представлены медными витыми парами. Они позволяют добиться неплохой скорости, и к тому же недороги. Нередко можно встретить и оптоволокно — оно позволяет добиться максимальной скорости соединения благодаря световым импульсам.

      Медная витая пара Ethernet

      Медная витая пара — самый популярный способ проводного соединения

      Создаём локальную сеть

      Для создания небольшой локальной сети вам потребуются:

      • два и более устройств, которые вы хотите соединить между собой;
      • кабель (витая пара);
      • роутер (если вы хотите соединить более двух устройств).

      Рабочая группа Windows

      Если у вас более двух устройств, то подключать лучше через роутер (то есть по звёздной топологии). Соедините каждый компьютер с маршрутизатором любым удобным способом — можно с помощью кабеля, а можно через Wi-Fi. Теперь любой компьютер сети будет видеть остальные подключённые элементы.

      Видео: как сделать небольшую локальную сеть

      С помощью локальной сети можно настроить удобное использование устройств в доме или офисе. Ознакомившись с базовыми понятиями, терминами и принципом работы, вы сможете настроить собственную небольшую локалку под свои нужды.

      Информация в чистом виде ‒ это не знание. Настоящий источник знания ‒ это опыт.

      Альберт Эйнштейн

      Вопросы к экзамену

      Для всех групп технического профиля

      Я учу детей тому, как надо учиться

      Часто сталкиваюсь с тем, что дети не верят в то, что могут учиться и научиться, считают, что учиться очень трудно.

      Лекция 01. Функции компьютерных сетей, масштаб, перспективы, использование, основные понятия и термины

      Основные причины стремительного развития компьютерных сетей:

      1. Огромные возможности ЭВМ в обмене информацией (причем информацией любого типа - от простейших посланий в виде текстовых файлов до сложных форматов медиаинформации); в большинстве случаев сетевой обмен существенно дешевле традиционных почтовых посланий и телефонных разговоров.
      2. Возможность распределенных вычислений (например, использование значительных вычислительных ресурсов мощных удаленных компьютеров - к примеру, снабженных ориентированными на векторные операции процессорами).

      История развития компьютерных сетей

      В истории развития компьютерных сетей можно выделить пять основных этапов:

      1. Начало 1960-х годов. Внедрение многотерминальных систем разделения времени. Многотерминальные системы считаются прообразом локальных сетей.

      2. Конец 1960-х годов. Соединение суперкомпьютеров через телефонные линии с помощью модемов - зарождение глобальных сетей.

      3. Начало 1970-х годов. Появление локальных сетей связывающих миникомпьютеры.

      4. 1980-е годы. Широкое распространение локальных сетей персональных компьютеров . Разработка стандартов локальных сетей (Ethernet, Token Ring, Arcnet). Зарождение сети Интернет.

      5. 1990-годы – настоящее время. Повсеместное внедрение сети Интернет. Значительное повышение скоростей передачи данных. Сближение различных типов сетей (локальных и глобальных компьютерных сетей, телефонных и теле-радио сетей). Широкое распространение беспроводных технологий передачи данных

      История компьютерных сетей указывает нам, что компьютерные сети – это результат эволюции двух технологий – компьютерной и телекоммуникационной.

      Если посмотреть с точки зрения компьютерных технологий – то компьютерная сеть это система взаимосвязанных компьютеров, между которыми распределены задачи, которые необходимо решить, и данные.

      А если посмотреть на компьютерные сети глазами телекоммуникационных технологий – то компьютерная сеть это средство передачи информации на различные расстояния (поэтому необходимо использовать методы кодирования и мультиплексирования).

      Компьютерная сеть – это совокупность компьютеров и различных устройств, обеспечивающих информационный обмен между компьютерами в сети без использования каких-либо промежуточных носителей информации.

      Сети предоставляют пользователям возможность не только быстрого обмена информацией, но и совместной работы на принтерах и других периферийных устройствах, и даже одновременной обработки документов.

      Основная цель объединения компьютеров в сеть: обеспечение пользователям потенциальной возможности доступа к локальным ресурсам всех компьютеров сети.

      Основные функции, реализуемые компьютерными сетями:

      1. Создание единого информационного пространства которое способно охватить и применять для всех пользователей информацию созданную в разное время и под разными типами хранения и обработки данных, распараллеливание и контроль выполнения работ и обработки данных по ним.

      2. Повышение достоверности информации и надежности ее хранения путем создания устойчивой к сбоям и потери информации вычислительной системы, а так же создание архивов данных которые можно использовать, но на текущий момент необходимости в них нет.

      3. Обеспечения эффективной системы накопления, хранения и поиска технологической, технико-экономической и финансово-экономической информации по текущей работе и проделанной некоторое время назад (информация архива) с помощью создания глобальной базы данных.

      4. Обработка документов и построения на базе этого действующей системы анализа, прогнозирования и оценки обстановки с целью принятия оп­тимального решения и выработки глобальных отчетов.

      5. Обеспечивать прозрачный доступ к информации авторизованному пользователю в соответствии с его правами и привилегиями.

      Характеристики сети

      Скорость - показывает как быстро данные передаются по сети. Более точной характеристикой могла бы быть пропускная способность.

      Стоимость - показывает полную стоимость компонентов, установки и поддержки сети.

      Защищённость - показывает насколько защищена сама сеть и данные, передаваемые в ней. Понятие защиты очень важно в компьютерной сети. Защита должна быть продумана перед любым внесением изменений, влияющих на сеть.

      Доступность - показывает насколько сеть будет доступна для использования при необходимости. Для сети, которая должна работать 24 часа сутки, 7 дней в неделю, 365 дней в году доступность рассчитывается делением времени, которое она действительно была доступна для работы на полное количество времени и умножением на 100 для получения процентного показателя.

      Например, если сеть недоступна 15 минут за год из-за неисправностей, процент доступности сети может быть вычислен следующим образом:

      ([Количество минут в году – не недоступности]/[Количество минут в году]*100) = =[525600 - 15] / [5256000]) * 100 = 99.9971

      Масштабируемость (расширяемость) - показывает насколько легко сеть может быть расширена, т.е. сможет обслуживать большее количество пользователей или передавать большее количество данных. Если сеть была спроектирована и оптимизирована только для текущих требований, когда в сети потребуются изменения или расширение, можно прийти к мнению, что это будет слишком сложно и дорого для сети встретить новые требования.

      Надёжность - показывает надёжность компонентов (маршрутизаторов, коммутаторов, персональных компьютеров и т.д.), комплектующих сеть и измеряет возможность аварий, называемую среднее время между авариями (MTBF - mean time between failure)

      Топология. В описании сетей используются 2 типа топологий: физическая топология - расположение кабелей, сетевых устройств и оконечных систем, и логическая топология – пути, по которым сигналы передаются по сети.

      ИНФОРМАТИКА- НАУКА, ИЗУЧАЮЩАЯ СПОСОБЫ АВТОМАТИЗИРОВАННОГО СОЗДАНИЯ, ХРАНЕНИЯ, ОБРАБОТКИ, ИСПОЛЬЗОВАНИЯ, ПЕРЕДАЧИ И ЗАЩИТЫ ИНФОРМАЦИИ.

      ИНФОРМАЦИЯ – ЭТО НАБОР СИМВОЛОВ, ГРАФИЧЕСКИХ ОБРАЗОВ ИЛИ ЗВУКОВЫХ СИГНАЛОВ, НЕСУЩИХ ОПРЕДЕЛЕННУЮ СМЫСЛОВУЮ НАГРУЗКУ.

      ЭЛЕКТРОННО-ВЫЧИСЛИТЕЛЬНАЯ МАШИНА (ЭВМ) ИЛИ КОМПЬЮТЕР (англ. computer- -вычислитель)-УСТРОЙСТВО ДЛЯ АВТОМАТИЗИРОВАННОЙ ОБРАБОТКИ ИНФОРМАЦИИ. Принципиальное отличие использования ЭВМ от всех других способов обработки информации заключается в способности выполнения определенных операций без непосредственного участия человека, но по заранее составленной им программе. Информация в современном мире приравнивается по своему значению для развития общества или страны к важнейшим ресурсам наряду с сырьем и энергией. Еще в 1971 году президент Академии наук США Ф.Хандлер говорил: "Наша экономика основана не на естественных ресурсах, а на умах и применении научного знания".

      В развитых странах большинство работающих заняты не в сфере производства, а в той или иной степени занимаются обработкой информации. Поэтому философы называют нашу эпоху постиндустриальной. В 1983 году американский сенатор Г.Харт охарактеризовал этот процесс так: "Мы переходим от экономики, основанной на тяжелой промышленности, к экономике, которая все больше ориентируется на информацию, новейшую технику и технологию, средства связи и услуги.."

      2. КРАТКАЯ ИСТОРИЯ РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ.

      Вся история развития человеческого общества связана с накоплением и обменом информацией (наскальная живопись, письменность, библиотеки, почта, телефон, радио, счеты и механические арифмометры и др.). Коренной перелом в области технологии обработки информации начался после второй мировой войны.

      В вычислительных машинах первого поколения основными элементами были электронные лампы. Эти машины занимали громадные залы, весили сотни тонн и расходовали сотни киловатт электроэнергии. Их быстродействие и надежность были низкими, а стоимость достигала 500-700 тысяч долларов.

      Появление более мощных и дешевых ЭВМ второго поколения стало возможным благодаря изобретению в 1948 году полупроводниковых устройств- транзисторов. Главный недостаток машин первого и второго поколений заключался в том, что они собирались из большого числа компонент, соединяемых между собой. Точки соединения (пайки) являются самыми ненадежными местами в электронной технике, поэтому эти ЭВМ часто выходили из строя.

      В ЭВМ третьего поколения (с середины 60-х годов ХХ века) стали использоваться интегральные микросхемы (чипы)- устройства, содержащие в себе тысячи транзисторов и других элементов, но изготовляемые как единое целое, без сварных или паяных соединений этих элементов между собой. Это привело не только к резкому увеличению надежности ЭВМ, но и к снижению размеров, энергопотребления и стоимости (до 50 тысяч долларов).

      История ЭВМ четвертого поколения началась в 1970 году, когда ранее никому не известная американская фирма INTEL создала большую интегральную схему (БИС), содержащую в себе практически всю основную электронику компьютера. Цена одной такой схемы (микропроцессора) составляла всего несколько десятков долларов, что в итоге и привело к снижению цен на ЭВМ до уровня доступных широкому кругу пользователей.

      СОВРЕМЕННЫЕ КОМПЬТЕРЫ- ЭТО ЭВМ ЧЕТВЕРТОГО ПОКОЛЕНИЯ, В КОТОРЫХ ИСПОЛЬЗУЮТСЯ БОЛЬШИЕ ИНТЕГРАЛЬНЫЕ СХЕМЫ.

      90-ые годы ХХ-го века ознаменовались бурным развитием компьютерных сетей, охватывающих весь мир. Именно к началу 90-ых количество подключенных к ним компьютеров достигло такого большого значения, что объем ресурсов доступных пользователям сетей привел к переходу ЭВМ в новое качество. Компьютеры стали инструментом для принципиально нового способа общения людей через сети, обеспечивающего практически неограниченный доступ к информации, находящейся на огромном множестве компьюторов во всем мире - "глобальной информационной среде обитания".

      6.ПРЕДСТАВЛЕНИЕ ИНФОРМАЦИИ В КОМПЬЮТЕРЕ И ЕЕ ОБЪЕМ.

      ЭТО СВЯЗАНО С ТЕМ, ЧТО ИНФОРМАЦИЮ, ПРЕДСТАВЛЕННУЮ В ТАКОМ ВИДЕ, ЛЕГКО ТЕХНИЧЕСКИ СМОДЕЛИРОВАТЬ, НАПРИМЕР, В ВИДЕ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ. Если в какой-то момент времени по проводнику идет ток, то по нему передается единица, если тока нет- ноль. Аналогично, если направление магнитного поля на каком-то участке поверхности магнитного диска одно- на этом участке записан ноль, другое- единица. Если определенный участок поверхности оптического диска отражает лазерный луч- на нем записан ноль, не отражает- единица.

      ОБЪЕМ ИНФОРМАЦИИ, НЕОБХОДИМЫЙ ДЛЯ ЗАПОМИНАНИЯ ОДНОГО ИЗ ДВУХ СИМВОЛОВ-0 ИЛИ 1, НАЗЫВАЕТСЯ 1 БИТ (англ. binary digit- двоичная единица). 1 бит- минимально возможный объем информации. Он соответствует промежутку времени, в течение которого по проводнику передается или не передается электрический сигнал, участку поверхности магнитного диска, частицы которого намагничены в том или другом направлении, участку поверхности оптического диска, который отражает или не отражает лазерный луч, одному триггеру, находящемуся в одном из двух возможных состояний.

      Итак, если у нас есть один бит, то с его помощью мы можем закодировать один из двух символов- либо 0, либо 1.

      Если же есть 2 бита, то из них можно составить один из четырех вариантов кодов: 00 , 01 , 10 , 11 .

      Если есть 3 бита- один из восьми: 000 , 001 , 010 , 100 , 110 , 101 , 011 , 111 .

      1 бит- 2 варианта,

      2 бита- 4 варианта,

      3 бита- 8 вариантов;

      Продолжая дальше, получим:

      4 бита- 16 вариантов,

      5 бит- 32 варианта,

      6 бит- 64 варианта,

      7 бит- 128 вариантов,

      8 бит- 256 вариантов,

      9 бит- 512 вариантов,

      10 бит- 1024 варианта,

      N бит - 2 в степени N вариантов.

      В обычной жизни нам достаточно 150-160 стандартных символов (больших и маленьких русских и латинских букв, цифр, знаков препинания, арифметических действий и т.п.). Если каждому из них будет соответствовать свой код из нулей и единиц, то 7 бит для этого будет недостаточно (7 бит позволят закодировать только 128 различных символов), поэтому используют 8 бит.

      ДЛЯ КОДИРОВАНИЯ ОДНОГО ПРИВЫЧНОГО ЧЕЛОВЕКУ СИМВОЛА В КОМПЬЮТЕРЕ ИСПОЛЬЗУЕТСЯ 8 БИТ, ЧТО ПОЗВОЛЯЕТ ЗАКОДИРОВАТЬ 256 РАЗЛИЧНЫХ СИМВОЛОВ.

      СТАНДАРТНЫЙ НАБОР ИЗ 256 СИМВОЛОВ НАЗЫВАЕТСЯ ASCII ( произносится "аски", означает "Американский Стандартный Код для Обмена Информацией"- англ. American Standart Code for Information Interchange).

      ОН ВКЛЮЧАЕТ В СЕБЯ БОЛЬШИЕ И МАЛЕНЬКИЕ РУССКИЕ И ЛАТИНСКИЕ БУКВЫ, ЦИФРЫ, ЗНАКИ ПРЕПИНАНИЯ И АРИФМЕТИЧЕСКИХ ДЕЙСТВИЙ И Т.П.

      A - 01000001, B - 01000010, C - 01000011, D - 01000100, и т.д.

      Таким образом, если человек создает текстовый файл и записывает его на диск, то на самом деле каждый введенный человеком символ хранится в памяти компьютера в виде набора из восьми нулей и единиц. При выводе этого текста на экран или на бумагу специальные схемы - знакогенераторы видеоадаптера (устройства, управляющего работой дисплея) или принтера образуют в соответствии с этими кодами изображения соответствующих символов.

      Набор ASCII был разработан в США Американским Национальным Институтом Стандартов (ANSI), но может быть использован и в других странах, поскольку вторая половина из 256 стандартных символов, т.е. 128 символов, могут быть с помощью специальных программ заменены на другие, в частности на символы национального алфавита, в нашем случае - буквы кириллицы. Поэтому, например, передавать по электронной почте за границу тексты, содержащие русские буквы, бессмысленно. В англоязычных странах на экране дисплея вместо русской буквы Ь будет высвечиваться символ английского фунта стерлинга, вместо буквы р - греческая буква альфа, вместо буквы л - одна вторая и т.д.

      ОБЪЕМ ИНФОРМАЦИИ, НЕОБХОДИМЫЙ ДЛЯ ЗАПОМИНАНИЯ ОДНОГО СИМВОЛА ASCII НАЗЫВАЕТСЯ 1 БАЙТ.

      Очевидно что, поскольку под один стандартный ASCII-символ отводится 8 бит,

      Остальные единицы объема информации являются производными от байта:

      1 КИЛОБАЙТ = 1024 БАЙТА И СООТВЕТСТВУЕТ ПРИМЕРНО ПОЛОВИНЕ СТРАНИЦЫ ТЕКСТА,

      1 МЕГАБАЙТ = 1024 КИЛОБАЙТАМ И СООТВЕТСТВУЕТ ПРИМЕРНО 500 СТРАНИЦАМ ТЕКСТА,

      1 ГИГАБАЙТ = 1024 МЕГАБАЙТАМ И СООТВЕТСТВУЕТ ПРИМЕРНО 2 КОМПЛЕКТАМ ЭНЦИКЛОПЕДИИ,

      1 ТЕРАБАЙТ = 1024 ГИГАБАЙТАМ И СООТВЕТСТВУЕТ ПРИМЕРНО 2000 КОМПЛЕКТАМ ЭНЦИКЛОПЕДИИ.

      Обратите внимание, что в информатике смысл приставок кило- , мега- и других в общепринятом смысле выполняется не точно, а приближенно, поскольку соответствует увеличению не в 1000, а в 1024 раза.

      СКОРОСТЬ ПЕРЕДАЧИ ИНФОРМАЦИИ ПО ЛИНИЯМ СВЯЗИ ИЗМЕРЯЕТСЯ В БОДАХ.

      1 БОД = 1 БИТ/СЕК.

      В частности, если говорят, что пропускная способность какого-то устройства составляет 28 Килобод, то это значит, что с его помощью можно передать по линии связи около 28 тысяч нулей и единиц за одну секунду.

      7. СЖАТИЕ ИНФОРМАЦИИ НА ДИСКЕ

      ИНФОРМАЦИЮ НА ДИСКЕ МОЖНО ОБРАБОТАТЬ С ПОМОЩЬЮ СПЕЦИАЛЬНЫХ ПРОГРАММ ТАКИМ ОБРАЗОМ, ЧТОБЫ ОНА ЗАНИМАЛА МЕНЬШИЙ ОБЪЕМ.

      Существуют различные методы сжатия информации. Некоторые из них ориентированы на сжатие текстовых файлов, другие - графических, и т.д. Однако во всех них используется общая идея, заключающаяся в замене повторяющихся последовательностей бит более короткими кодами. Например, в романе Л.Н.Толстого "Война и мир" несколько миллионов слов, но большинство из них повторяется не один раз, а некоторые- до нескольких тысяч раз. Если все слова пронумеровать, текст можно хранить в виде последовательности чисел - по одному на слово, причем если повторяются слова, то повторяются и числа. Поэтому, такой текст (особенно очень большой, поскольку в нем чаще будут повторяться одни и те же слова) будет занимать меньше места.

      Сжатие информации используют, если объем носителя информации недостаточен для хранения требуемого объема информации или информацию надо послать по электронной почте

      Программы, используемые при сжатии отдельных файлов называются архиваторами. Эти программы часто позволяют достичь степени сжатия информации в несколько раз.

      Читайте также: