Что такое биологические макромолекулы и какова их роль в обеспечении процессов метаболизма в живых

Обновлено: 02.07.2024

Биосфера – самый высокий уровень организации жизни на нашей планете. Она представляет собой, по определению В. И. Вернадского, оболочку планеты, заселённую живыми организмами. В биосфере выделяют живое вещество – совокупность всех живых организмов, неживое, или косное, вещество, биокосное и биогенное вещество. По ориентировочным оценкам, биомасса живого вещества составляет около 2,5?10


т. Причём биомасса организмов, обитающих на суше, на 99,2 % представлена зелёными растениями. На биосферном уровне происходят круговорот веществ и превращение энергии, связанные с жизнедеятельностью всех живых организмов, обитающих на Земле.

• Органические молекулы составляют основную массу сухого вещества клетки.

• Клетка является наименьшей структурно-функциональной единицей организации, а также единицей размножения и развития всех живых организмов.

• Возникновение тканей и органов у многоклеточных животных и растений ознаменовало специализацию частей организма на выполнение различных функций.

• Интеграция органов в системы привела к ещё большему усилению их функций и к ещё большим возможностям организма по использованию среды обитания.

Рис. 1.1. Уровни организации живого

Вопросы и задания для повторения

1. Что такое биологические макромолекулы и какова их роль в обеспечении процессов метаболизма в живых организмах?

2. В чём заключаются принципиальные различия клеток живых организмов, относящихся к различным царствам природы?

3. В чём сущность цитологических, гистологических и анатомических методов исследования живой материи?

4. Что называют биогеоценозом?

5. Как можно охарактеризовать биосферу Земли?


Вопросы и задания для обсуждения

1. Как вы считаете, в чём заключается необходимость выделения различных уровней организации живой материи?

2. Укажите критерии выделения различных уровней организации живой материи.

3. Каковы сущность и проявления основных свойств живого на разных уровнях организации?

4. Чем биологические системы отличаются от объектов неживой природы?

1.2. Критерии живых систем


Рассмотрим подробнее признаки и свойства, отличающие живые системы от объектов неживой природы, и основные характеристики процессов жизнедеятельности, выделяющие живое вещество в особую форму существования материи.

Особенности химического состава. В состав живых организмов входят те же химические элементы, что и в объекты неживой природы. Однако соотношение различных элементов в живом и неживом неодинаково. Элементный состав неживой природы наряду с кислородом представлен в основном кремнием, железом, магнием, алюминием и т. д. В живых организмах 98 % химического состава приходится на четыре элемента – углерод, кислород, азот и водород. В живых телах эти элементы участвуют в образовании сложных органических молекул, распространение которых в неживой природе принципиально иное как по количеству, так и по существу. Подавляющее большинство органических молекул окружающей среды представляют собой продукты жизнедеятельности организмов.

Метаболизм. Все живые организмы способны к обмену веществами с окружающей средой, поглощая из неё органические и неорганические молекулы, необходимые для питания, и выделяя продукты жизнедеятельности.

В неживой (минеральной, или неорганической) природе присутствует обмен веществами, однако эти процессы имеют физическую подоплёку – перенос вещества или изменение его агрегатного состояния.

В то же время для живых организмов обмен выходит на качественно иной уровень – это химические превращения. В круговороте органических веществ самыми существенными стали реакции синтеза и распада.

Живые организмы поглощают из окружающей среды различные вещества (рис. 1.2). Вследствие целого ряда сложных химических преобразований молекулы из окружающей среды уподобляются веществам живого организма, и из них строится его тело. Эти процессы называют ассимиляцией или пластическим обменом.

Другая сторона обмена веществ – процессы диссимиляции, в результате которых сложные органические соединения распадаются на простые, при этом утрачивается их сходство с характерными для организма молекулами и выделяется энергия, необходимая для реакций биосинтеза. Поэтому диссимиляцию называют энергетическим обменом (см. рис. 1.2).

Обмен веществ, наряду с процессами саморегуляции, обеспечивает гомеостаз организма (от греч. homoios – подобный, одинаковый и stasis – неподвижность, состояние), т. е. неизменность химического состава и строения всех частей организма и, как следствие, постоянство их функционирования в непрерывно меняющихся условиях окружающей среды.


Рис. 1.2. Обмен веществ и превращение энергии на уровне организма

Единый принцип структурной организации. Все живые организмы, к какой бы систематической группе они ни относились, имеют клеточное строение. Клетка, как уже указывалось выше, является единой структурно-функциональной единицей, а также единицей развития всех обитателей Земли. Различают не имеющие ядра прокариотические (от лат. pro – перед и греч. canon – орех, ядро ореха) и имеющие ядро эукариотические (от греч. au – хорошо и карион) клетки.

Репродукция. Репродукция, или самовоспроизведение, реализуется на всех уровнях организации живой материи. Благодаря репродукции не только целые организмы, но и клетки, органеллы клеток (митохондрии, пластиды и др.) после деления сходны со своими предшественниками. Из одной молекулы ДНК при её удвоении образуются две дочерние молекулы, полностью повторяющие исходную.

На организменном уровне самовоспроизведение, или репродукция, проявляется в виде бесполого или полового размножения особей. При размножении живых организмов потомство обычно похоже на родителей: кошки рожают котят, собаки – щенят, из семян тополя опять вырастает тополь. Деление одноклеточного организма – амёбы – приводит к образованию двух амёб, полностью схожих с материнской клеткой.

Таким образом, размножение – это свойство организмов воспроизводить себе подобных существ.

В основе самовоспроизведения на всех уровнях организации лежат реакции матричного синтеза, т. е. образование новых молекул и структур на основе информации, заложенной в последовательности нуклеотидов ДНК. Следовательно, самовоспроизведение – одно из основных свойств живого, тесно связанное с явлением наследственности.

Наследственность.Наследственность заключается в способности организмов передавать свои признаки, свойства и особенности развития из поколения в поколение. Признаком называют любую особенность строения на самых различных уровнях организации живой материи, а под свойствами понимают функциональные особенности, в основе которых лежат конкретные структуры. Наследственность обусловлена специфической организацией генетического вещества (наследственного аппарата) – генетическим кодом. Под генетическим кодом понимают такую организацию молекул ДНК и иРНК, при которой последовательность нуклеотидов в них определяет порядок аминокислот в белковой молекуле. Явление наследственности обеспечивается стабильностью молекул ДНК и воспроизведением её химического строения (редупликацией) с высочайшей точностью. Наследственность реализует материальную преемственность (поток информации) между организмами в ряду поколений любого вида.

Изменчивость. Под изменчивостью понимают способность живых организмов приобретать новые признаки и свойства в результате изменений структуры наследственного материала, возникновения новых комбинаций генов или влияния на их развитие факторов окружающей среды.

Изменчивость выглядит как противоположность наследственности, но вместе с тем оба эти свойства тесно связаны, так как изменяются наследственные задатки – гены, определяющие развитие тех или иных признаков. Если бы репродукция молекул ДНК всегда происходила с абсолютной точностью, то при размножении организмов осуществлялась бы преемственность только существовавших прежде признаков. В этом случае приспособление видов к меняющимся условиям среды оказалось бы невозможным.

Изменчивость создаёт разнообразный материал для естественного отбора, т. е. отбора наиболее приспособленных особей к конкретным условиям существования в природных условиях. А это, в свою очередь, приводит к появлению новых форм жизни, новых видов организмов.

Рост и развитие. Способность к развитию – всеобщее свойство материи. Под развитием понимают необратимое направленное закономерное изменение объектов живой и неживой природы. В результате развития возникает новое качественное состояние объекта, вследствие которого изменяется его состав или структура. Развитие особи представлено индивидуальным развитием, или онтогенезом (от греч. ontos – сущее и genesis – происхождение, возникновение), а развитие живой природы – историческим развитием, или эволюцией.

На протяжении онтогенеза постепенно и последовательно проявляются индивидуальные признаки и свойства организмов. В основе этого лежит поэтапная реализация наследственной программы.

Независимо от способа размножения все дочерние особи, образующиеся из одной зиготы или споры, почки или клетки, получают по наследству только генетическую информацию, т. е. возможность проявить те или иные признаки. Развитие сопровождается ростом. В процессе развития возникает специфическая структурно-функциональная организация индивида, а увеличение его массы (размеров тела) обусловлено репродукцией макромолекул, элементарных структур клеток и самих клеток.

Историческое развитие, или эволюция, – это необратимое и направленное развитие живой природы, сопровождающееся приобретением приспособлений, образованием новых видов и прогрессивным усложнением жизни, а также вымиранием прежде существовавших форм. Результатом эволюции является всё многообразие живых организмов на Земле.

Возникновение отдельной группы организмов принято называть филогенезом (от греч. phylon – род, племя и генез). Под этим понимают происхождение и развитие крупной систематической группы животных или растений. Например, филогенез хордовых животных – происхождение, развитие и систематика типа хордовых; антропогенез – возникновение и становление человека и т. д.

Раздражимость. Любой организм неразрывно связан с окружающей средой: он извлекает из неё питательные вещества, подвергается воздействию благоприятных и неблагоприятных факторов среды, вступает во взаимодействие с другими организмами и т. д. В процессе эволюции у живых организмов выработалось и закрепилось свойство избирательно реагировать на самые разнообразные внешние воздействия. Это свойство носит название раздражимости. Всякое изменение окружающих организм условий среды представляет собой по отношению к нему раздражение, а его реакция на внешние раздражители служит показателем его чувствительности и проявлением раздражимости.

Реакция многоклеточных животных на раздражение осуществляется с участием нервной системы и называется рефлексом.

Организмы, не имеющие нервной системы, например простейшие или растения, лишены и рефлексов. Их реакции, выражающиеся в изменении характера движения или роста, принято называть таксисами (от греч. taxis – расположение) или тропизмами (от греч. tropos – поворот, направление), прибавляя при их обозначении название раздражителя. Например, фототаксис – движение одноклеточных к свету, хемотаксис – перемещение организма по отношению к концентрации химических веществ. Каждый вид таксиса может быть положительным или отрицательным, однако всегда организм перемещается в зону оптимальной концентрации того или иного вещества или интенсивности действия физического фактора среды. Например, фототаксис у эвглены зелёной объясняется тем, что способное к фотосинтезу одноклеточное животное при нормальных условиях стремится к более освещённому участку среды обитания (положительный фототаксис). При этом, если на клетку воздействует свет слишком сильной интенсивности, это вызовет перемещение организма в зону меньшей освещённости (отрицательный фототаксис) или даже его гибель.

Под тропизмами понимают определённый характер роста, который свойствен растениям. Так, гелиотропизм (от греч. helios – Солнце) означает рост побеговой системы растений (стебля, листьев) по направлению к Солнцу, а геотропизм (от греч. geo – Земля) – рост подземных частей (корней) в направлении к центру Земли.

Также для растений характерны настии (от греч. nastos – уплотнённый) – движения отдельных частей растительного организма, например движение листьев в течение светового дня, зависящее от положения солнца на небосводе, раскрытие и закрытие венчика цветка и т. д.

Жизнь на Земле также проявляется в виде дискретных форм. Это означает, что отдельный организм или иная биологическая система (вид, биоценоз и др.) состоит из отдельных изолированных, т. е. обособленных или ограниченных в пространстве, но тем не менее тесно связанных и взаимодействующих между собой частей, образующих структурно-функциональное единство. Например, любой вид организмов включает отдельные особи. Тело высокоорганизованной особи построено из пространственно отграниченных органов, которые, в свою очередь, состоят из отдельных клеток. Энергетический аппарат клетки представлен отдельными митохондриями, аппарат синтеза белка – рибосомами и т. д. вплоть до макромолекул, каждая из которых может выполнять свою функцию, лишь будучи пространственно изолированной от других.

Авторегуляция. Это способность живых организмов, обитающих в непрерывно меняющихся условиях окружающей среды, поддерживать постоянство своей структурной организации, свойств, химического состава и интенсивность течения физиологических процессов – гомеостаз. При этом недостаток поступления каких-либо питательных веществ из окружающей среды мобилизует внутренние ресурсы организма, а избыток вызывает запасание этих веществ. Подобные реакции осуществляются разными путями благодаря деятельности регуляторных систем – нервной, эндокринной, иммунной и некоторых других. Сигналом для включения/выключения той или иной регулирующей системы может быть изменение концентрации какого-либо вещества или состояния какой-либо системы. Неспособность биологической системы поддерживать гомеостаз заканчивается её разрушением, а в случае организма – его гибелью.

Ритмичность. Периодические изменения в окружающей среде оказывают глубокое влияние на природу и на собственные ритмы организмов. В биологии под ритмичностью понимают периодические изменения интенсивности физиологических функций и формообразовательных процессов с различными периодами колебаний (от нескольких секунд до года и столетия).

Вопрос 1. Что та кое органические молекулы и какова их роль в обеспечении процессов метаболизма в живых организмах?

Органические молекулы - молекулы, основой строения которых служат атомы углерода. Органические молекулы входят в состав биологических макромолекул. Так, аминокислоты являются мономерами белков; моносахариды - строительным материалом для образования полисахаридов; нуклеотиды служат мономерами нуклеиновых кислот; жирные кислоты и глицерин - основные составляющие жиров. В свою очередь, белки, полисахариды, нуклеиновые кислоты, жиры - основные вещества, составляющие структуры живых организмах как в клетках так и в межклеточном веществе.

Таким образом, основной функцией органических соединений в клетке является пластическая, т.е. строительная, функция.

Помимо этого некоторые органические вещества выполняют также энергетическую функцию. Например, при окислении 1 г моносахарида глюкозы или 1 г белка образуется 17,6 кДж (4,2 ккал) энергии, а при окислении 1 г жира - 38,9 кДж (9,3 ккал). Многие белки осуществляют ферментативную функцию. Нуклеиновые кислоты хранят и передают наследственную информацию.

Вопрос 2. В чем заключаются принципиальные различия клеток живых организмов, относящихся к различным царствам природы?

Клетка представляет собой структурную единицу всех живых организмов вне зависимости от уровня их организации. Это элементарная единица живой системы. В природе нет более мелких систем, которым были 6ы присущи все свойства живого. По особенностям клеточной организации живые организмы делятся на прокариот - безъядерных и эукариот - ядерных. К прокариотам относят царство Дробянки, а к эукариотам - царства Животные, Растения и Грибы.

Эукариотические клетки представителей различных царств живой природы имеют определенные отличия друг от друга.

1. У клеток представителей царства животных клеточной стенки нет, растительные клетки имеют клеточную стенку из целлюлозы, клеточная стенка клеток грибов состоит из хитина.

2. Клетки растений содержат пластиды, в клетках грибов и животных их нет. Пластиды - двумембранные органеллы, присущие только растительным клеткам. В них происходят процессы фотосинтеза и депонируются питательные вещества.

З. Для растительных клеток характерно наличие крупных вакуолей, тогда как в клетках животных они встречаются редко.

4. В клеточных стенках растений и грибов имеются плазмодесмы - поры, выстланные плазматической мембраной и содержащие цитоплазму. Посредством плазмодесм клетки сообщаются между собой.

Вопрос 3. В чем сущность цитологических, гистологических и анатомических методов исследования живой материи?

Цитологический, гистологический и анатомический методы изучают живую материю на различных уровнях организации.

Цитологический метод применяется для изучения клетки. При этом используются световая и электронная мик роскопия, биохимические методы.

Гистологический ме тод применяется при изучении тканей. Ткань – это совокупность клеток различных клеточных типов и межклеточного вещества, специализированная для выполнения определенных функций. Применяются методы световой и электронной микроскопии, гистохимии, техники изготовления гистологических препаратов, биохимические методы.

Используя анатомический метод, изучают органный уровень организации. Орган - это совокупность тканей, объединенная для выполнения определенных функций и занимающая конкретное место в организме. При этом исследуется строение и взаиморасположение органов макроорганизма макроскопическими методами, используются также и данные цитологических и гистологических исследований.

Вопрос 4. Что называют биогеоценозом?

Биогеоценоз - совокупность живых организмов разного уровня организации, проживающих на одной территории, и факторов окружающей среды, влияющих на них. В биогеоценозе выделяют два компоне нта: биоценоз и экотоп. Под биоценозом понимают совокупность живых организмов различных систематических групп, обитающих на одной территории. Экотоп представляет собой совокупность факторов среды, воздействующих на биоценоз.

Вопрос 5. Как можно охарактеризовать биосферу Земли?

Биосфера - оболочка Земли, заселенная и преобразуемая живыми организмами. Это совокупность всех живых организмов и продуктов их жизнедеятельности. Границы биосферы простираются в атмосфере до озонового экрана (около 20 км), в литосфере Земли - до 5-7 км в глубину и в толщу всей гидросферы, т. е. во все области, где есть живые организмы. В биосфере выделяют живое вещество - биомас су; неживое (инертное) - косное вещество - компоненты атмосферы, гидросферы и литосферы; биокосное веще ство - продукт взаимодействия живых организмов с косным ;веществом, например почвы, и биогенное вещество все, что произведено живыми организмами - каменный уголь, нефть, газ, руды, мел, мрамор, известняк.

Биосферный уровень - высший уровень организации жизни.

Вопрос 6. Какие метаболические процессы протекают на уровне биосферы? В чем их принципиальное значение для живых организмов, обитающих на нашей планете?

Основными метаболическими процессами па уровне биосферы являются биогеохимические циклы основных биогенных веществ – углерода (С), кислорода (О2), воды (Н20), серы (S), азота (N2), других элементов и веществ.

Круговорот воды

Вода - основа жизни на Земле, универсальный растворитель, среды, в которой

протекают биохимические реакции.

Вода испаряется с поверхности Мирового океана и органов растений и образует облака. В атмосфере вода конденсируется под действием более низких температур и

выпадает на Землю в виде осадков - дождя, росы, снега. С током рек и ручьев выпавшие осадки возвращаются в Мировой океан, часть их поглощается растениями и животными. Этот цикл повторяется в природе вновь и. вновь.

Круговорот углерода и кислорода

Все организмы по принципу их питания можно разделить на автотрофные (в частности, фотосинтетики), синтезирующие органические вещества из углекислого газа и воды за счет энергии солнечного света, и гетеротрофные, использующие для питания готовые органические ве щества. В результате процессов жизнедеятельности, смерти и разложения живых организмов на Земле совершается биогеохимический цикл углерода и кислорода - их круговорот.

Так под действием солнечной энергии фотосинтезирующие организмы преобразуют углекислый газ и воду в органическое вещество - глюкозу - и выделяют в качестве побочного продукта реакций фотосинтеза кислород. В процессе дыхания живые организмы поглощают кислород и выделяют углекислый газ.

При гибели и разложении в присутствии кислорода органические составляющие организмов окисляются до углекислого газа и воды. Таким образом, при дыхании и расщеплении органических молекул в процессе метаболизма живые организмы выделяют углекислый газ и волу, которые впоследствии, н результате фотосинтеза, вновь преобразуются в органическое вещество и кислород.

Круговорот азота

В природе азот в основ ном существует в свободной молекулярной форме в виде химически малоактивного газа азота N 2. Живые организмы способны усваивать только связанный азот в форме нитрат-иона NO 3 или иона аммония N Н4. Поэтому азот является основным лимитирующим фактором среди элементов, необходимых для живых систем. Способностью связывать свободный азот обладают некоторые виды бактерий. Этот процесс называется азотфиксацией. Азотфиксирующие бактерии обитают в клубеньках бобовых растений

(горох, фасоль и др.) и преобразуют свободный азот N2 в ион аммония ЫН, который

используется для построения молекул аминокислот, белков и нуклеотидов.

Большинство же растений, не способных к фиксации азота, получают его из почвы в виде нитрат иона NO3 и асс имилируют его, превращая в ион аммония.

Гетеротрофные организмы поглощают азот в виде иона аммония NН4 при поедании биомассы других организмов. После смерти тела живых организмов разлагаются бактериями и грибами в присутствии кислорода, а соединения азота, окисляются по схеме: N Н. + O 2 >NO3 + Н20. Таким же образом может происходить окисление аммиака нитрифицирующими бактериями (нитрификация), получающими энергию за счет окисления неорганических веществ, т. е. использующими хемотрофный путь питания.

Обратный процесс - превращение связанного азота в инертный - называется денитрификацией. Он происходит в бескислородных условиях под действием денитрифицирующих бактерий, вместо кислорода в качестве окислителя использующих нитрат-ион (NО3 ): С + N О 3 -+ `СО2 = N3. Таким образом, замыкается круговорот азота. В результате запасы этого важнейшего биогенного элемента в живых системах не истощаются.

Круговорот серы

Необходимым компонентом большинства белков является сера. В природе сера чаще всего встречается в виде соединений сульфат - иона ( SO 4) – больше всего в виде гипса ( CaSO 4), пирита ( FeS 2) и самородной среды. Растения способны усваивать серу в виде с ульфатов, животные могут удовлетворить свои потребности в сере за счет других организмов.

В целом цикл с еры можно представить следующим образом. Растения поглощают из почвы сульфат-ион SO 4, используют его в построении собственных аминокислот и белков. Животные, поедая растения и других животных, также получают серу и используют ее в процессах пластического обмена. Умирая, животные и растения разлагаются в присутствии кислорода, и вновь образуется сульфат-ион SO 4.

Таким образом, метаболические процессы в биосфере связаны со сложными пищевыми взаимоотно шениями между организмами. Основным биологическим смыслом кру говорота веществ в природе является поддержание их необходимого количества в живых системах.

(Теги : живых, организмов, организмы, кислорода, азота, совокупность, организации, Круговорот, вещество, растений, Растения, клетки, живые, вновь, веществ, различных, методы, других, животных, Вопрос, белков, аммония, результате, метод, уровень, организмами, живой, можно, биосферы, также, почвы, питания, действием, присутствии, Земли, углекислый, фотосинтеза, кислород, клеточной, нуклеиновые, некоторые, Цитологический, Земле, усваивать, жизнедеятельности, окислении, смерти, тканей, форме, территории, живыми, метаболизма, изучают, основным, получают, называется, бактериями, имеют, углекислого, сульфат-ион, образуется, окисляются, являются, обитающих, бактерий, основные, органов, царства, протекают, белки, используются, биосфере, функций, факторов, качестве, преобразуют, гидросферы, мономерами, представляет, способны, уровня, функцию, процесс, анатомический, элементов, служат, молекул, выполнения, свободный, соединений, процессе, аминокислот, систем, биоценоз, гетеротрофные, разлагаются, системах, метаболические, используют, глицерин)


Макроэлементы, микроэлементы, нутриенты – очень похожие слова, и мы часто видим, что их путают. В этом нет ничего стыдного, но разбираться и называть все правильно – гораздо круче.

Нутриенты разделяются на группы:

  • Базовые элементы – то же самое, что макронутриенты – самые значимые элементы, которые выступают ядром и каркасом организма.
  • Макроэлементы – содержание каждого из них больше 0,1 % массы тела. Они участвуют в ключевых функциях организма.
  • Жизненно важные микроэлементы – содержание каждого меньше 0,1 % массы тела, но при этом без них организм также не сможет существовать.
  • Прочие микроэлементы – условно жизненно необходимые, токсичные и малоизученные – ученые еще не знают, насколько они важны для организма.

Базовые элементы

Базовые элементы играют ключевую роль в организме, так как из них построены аминокислоты, жиры и азотистые основания (из них состоят молекулы ДНК и РНК).

К базовым элементам относятся кислород (65 % массы тела), углерод (18,5 %), водород (9,5 %) и азот (3,2 %). Таким образом, наш организм на 96,2 % состоит только из этих 4 элементов.

Углерод создает скелет для связывания других атомов и элементов. Фактически углерод – это строительные блоки нашего тела. Азот, водород и кислород связываются с углеродом, образуя органические вещества.

Макроэлементы

К макроэлементам относятся элементы, содержание которых превышает 0,1 % от массы тела:

  • кальций – 1,5 %;
  • фосфор – 1 %;
  • калий – 0,4 %;
  • сера – 0,3 %;
  • натрий – 0,2 %;
  • хлор – 0,2 %;
  • магний – 0,1 %.

Кальций

Основная роль кальция в организме человека – формирование костей и зубов. Также элемент участвует в сокращении и расширении сосудов, работе мышечной ткани и гормональной системы, передаче нервных импульсов.

Суточная потребность в кальции (согласно рекомендациям ВОЗ):

  • дети до 1 года – 300-400 мг;
  • 1-3 года – 500 мг;
  • 4-6 лет – 600 мг;
  • 7-10 лет – 1300 мг;
  • юноши и девушки 11-18 лет – 1300 мг;
  • взрослые старше 19 лет – 1000 мг;
  • беременные – 1200 мг.

Лучшие источники кальция:

  • молочная продукция – молоко, сыры, йогурты;
  • зеленые овощи – брокколи, салат кейл, шпинат;
  • злаки, орехи, семена – миндаль, чиа, кунжут;
  • рыба и морепродукты – моллюски, форель, сардины.

Избыток кальция в организме называется гиперкальциемией и может проявляться в чрезмерной жажде, расстройстве желудка, боли в костях, мышечной слабости, усталости, депрессии и нарушениях работы сердца.

Дефицит кальция – гипокальциемия – выражается в виде судорог и спазмов; неврологических и психических изменениях; ухудшении состояния волос, ногтей, зубов и кожи.

Фосфор

Фосфор – структурный компонент костей и зубов, а также молекул ДНК и РНК. Элемент участвует в выработке и хранении энергии АТФ, работе кровеносной и иммунной систем. 40-70 % фосфора организм усваивает из пищи.

Суточная потребность в фосфоре:

  • дети 6-11 лет – 500-1250 мг;
  • юноши и девушки 12-19 лет – 1250 мг;
  • взрослые старше 19 лет – 700 мг.

Лучшие источники фосфора:

  • красное мясо – говядина, курица;
  • молочная продукция – сыры;
  • рыба – карп;
  • злаки, орехи, семена – кунжут, тыква, конопля, подсолнечник, мак.

Гиперфосфатемия – избыток фосфора в организме – часто приводит к падению уровня кальция в крови (что вызывает судороги и спазмы) или появлению отложении кальция в мягких тканях. Дефицит фосфора (гипофосфатемия) проявляется в виде общей слабости, потери аппетита, а также приводит к различным заболеваниям костей.

Калий

Ионы калия жизненно необходимы для функционирования живых клеток: элемент участвует в передаче нервных импульсов, сокращении мышц, поддержании кислотно-щелочного и водного баланса организма.

Суточная потребность в калии составляет 3,5 г для взрослых и детей всех возрастов (согласно рекомендациям ВОЗ).

Лучшие источники калия:

  • овощи и бобовые – помидоры, картофель, морковь, фасоль, чечевица;
  • молочная продукция;
  • морепродукты;
  • фрукты – банан, чернослив, апельсин.

Повышенная концентрация калия в крови (гиперкалиемия) проявляется в виде судорог, общей слабости, боли в желудке, брадикардии. При дефиците калия (гипокалиемии) отмечается быстрая утомляемость, боль в мышцах, слабость в ногах.

Сера участвует в производстве инсулина (гормона, регулирующего уровень сахара в крови), кератина (белка, из которого состоят волосы и ногти) и коллагена (белка, из которого состоят соединительные ткани – кости, сухожилия, кожа).

Для серы отсутствуют какие-либо рекомендации по суточному потреблению. Она поступает в организм в небольших объемах вместе с пищей, которая содержит незаменимую аминокислоту метионин. Суточная потребность в метионине в свою очередь составляет около 1 г.

Главный источник метионина – мясо (свинина, курица) и рыба (лосось), а также яйца, орехи и бобовые культуры.

Избыток серы в организме проявляется в виде зуда, расстройства пищеварения, красноты глаз и ослаблении слуха. Дефицит в свою очередь приводит к ломкости волос и ногтей, высыпаниям на коже.

Натрий

Натрий в организме отвечает за кровяное давление, регулирует кислотно-щелочной и водный баланс.

Суточная потребность в натрии составляет около 1,5 г, при этом настоятельно рекомендуется не превышать максимальную дозу в 2,3 г (1 чайная ложка поваренной соли). Диета с высоким содержанием натрия повышает риск развития высокого кровяного давления, которое выступает основной причиной инсульта и сердечных заболеваний.

Повышенное содержание натрия в крови – гипернатриемия – проявляется главным образом в виде жажды. Также выделяют такие признаки, как мышечные спазмы и судороги, спутанность сознания. Недостаток натрия (гипонатриемия) может вызывать головокружение и головные боли, рвоту, а также общую слабость организма.

Хлор участвует в регуляции водно-солевого обмена, помогает в работе желудочно-кишечного тракта, поддерживает кислотно-щелочной баланс в клетках.

Для хлора нет рекомендаций по суточному потреблению – большую часть элемента организм получает вместе с натрием в составе поваренной соли.

Тем не менее недостаток или избыток хлора в организме приводит к дисбалансу электролитов крови (веществ, отвечающих за проводимость электрических импульсов).

Избыток хлора в организме называется гиперхлоремией и проявляется в высоком артериальном давлении, мышечной слабости и спазмах, нарушениях сердечного ритма. Дефицит (гипохлоремия) редко возникает самостоятельно и обычно связан с гипонатриемией и гипокалиемией с соответствующими симптомами.

Магний

Магний необходим для синтеза белка и образования энергии АТФ, а также нормальной работы нервной системы, мышц и сердца.

Суточная потребность в магнии составляет:

  • для младенцев – 30-75 мг;
  • для детей от 1 до 3 лет – 80 мг;
  • от 4 до 8 лет – 130 мг;
  • от 9 до 13 лет – 240 мг;
  • для юношей 14-18 лет – 410 мг;
  • для девушек 14-18 лет – 360 мг;
  • для мужчин – 400-420 мг;
  • для женщин – 310-320 мг;
  • для беременных– 350-360 мг.

Лучшие источники магния:

  • бобовые;
  • темно-зеленые листовые овощи;
  • орехи, семена, цельнозерновые и обогащенные злаки;
  • рыба, птица и говядина.

Насколько магний важен для спортсменов? Разбираем симптомы его дефицита

При употреблении магния в форме пищевых добавок учитывайте, что в высоких дозах он может вызывать слабительный эффект.

Гипермагниемия (избыток магния в организме) проявляется в виде слабости и дезориентации, нарушении дыхания. К симптомам дефицита магния относятся судороги, головокружение и головные боли, нарушения сердечного ритма, проблемы с пищеварением.

Жизненно важные микроэлементы

К жизненно важным элементам также относятся и те, содержание которых в организме составляет менее 0,1 % от массы тела. Такие вещества называются микроэлементами, они поступают в организм с пищей и водой и участвуют в функционировании органов и систем.

Это ванадий, железо, йод, кобальт, кремний, литий, никель, марганец, медь, молибден, мышьяк, селен, фтор, хром, цинк.

Суточные нормы микроэлементов незначительны, поэтому правильное сбалансированное питание должно полностью покрывать потребности организма. Тем не менее дефицит некоторых элементов может приводить к серьезным проблемам и нарушениям функционирования организма.

  • Дефицит железа приводит к быстрой утомляемости и мышечной слабости.
  • Дефицит цинка сказывается на работе желудочно-кишечного тракта, центральной нервной, иммунной и репродуктивной систем.
  • Дефицит марганца нарушает структуру костной ткани и подавляет выработку коллагена при заживлении ран.
  • Дефицит меди проявляется в виде анемии (уменьшении содержания гемоглобина и эритроцитов в крови) и часто наблюдаетсяпараллельно с дефицитом витамина B12.
  • Дефицит йода приводит к нарушениям в работе щитовидной железы, а также умственным расстройствам.

Прочие микроэлементы

Остальные элементы – это условно жизненно необходимые, а также токсичные и малоизученные микроэлементы.

К первым относятся бор, бром, кадмий, свинец, стронций и титан. По ним еще накапливаются данные и доказана лишь частичная значимость для некоторых процессов организма.

К токсичным и малоизученным микроэлементам относятся 15 элементов: барий, бериллий, висмут, галлий, германий, лантан, олово, радий, рубидий, серебро, скандий, торий, уран, цезий и цирконий.

Они присутствуют в организме в очень малых количествах, и их биологическая роль не до конца ясна. Избыток некоторых элементов может оказывать вредное воздействие на организм, поэтому внимание сконцентрировано на изучении их токсичных свойств.

В этой главе мы проанализируем структуру макромолекул, главным образом белков и нуклеиновых кислот, и попытаемся объяснить, как они в процессе эволюции приспособились к выполнению своих функций. Мы рассмотрим принципы, по которым эти молекулы катализируют химические превращения, строят сложные макромолекулярные структуры, осуществляют движение и (самое важное) хранят и передают наследственную информацию.

Макромолекулы обычно имеют молекулярные массы от 10000 до 1 млн., т. е. по размеру такие молекулы занимают промежуточное положение между описанными в гл. 2 органическими молекулами и надмолекулярными структурами и органеллами, которые будут обсуждаться в последующих главах (рис. 3-1). Одна малая молекула, вода, составляет 75% общей массы клетки; почти всю остальную массу клетки составляют макромолекулы (табл. 3-1).

Как описано в гл. 2, макромолекулы собираются из низкомолекулярных субъединиц, которые, присоединяясь одна за другой, образуют длинную полимерную цепь (см. рис. 2-33). Обычно в построении каждой цепи участвуют лишь субъединицы одного семейства. Так, аминокислоты, связываясь с другими аминокислотами, образуют белки; нуклеотиды, связываясь с другими нуклеотидами, образуют нуклеиновые кислоты, а сахара, соединяясь с другими сахарами, формируют полисахариды. Поскольку для нормального функционирования макромолекулы решающее значение имеет точная последовательность субъединиц (мономеров), при биосинтезе макромолекул должны действовать механизмы, точно определяющие положение каждого мономера в цепи полимера.


Рис. 3-1. Сопоставление размеров белков с размерами других компонентов клетки. Рибосома представляет собой макромолекулярный комплекс, состоящий из примерно 60 белков и молекул РНК.

Таблица 3-1. Примерный химический состав типичной бактерии и типичной клетки млекопитающего

Доля от общей массы клетки, %

бактерия Е. coli

Неорганические ионы (Na + , K + , Mg 2+ , Са 2+ , Cl - и т. п.)

Разнообразные низкомолекулярные метаболиты

Общий объем клетки

Относительный объем клетки

1) Белки, полисахариды, ДНК и РНК - это макромолекулы. Липиды обычно не считают макромолекулами, хотя они и обладают некоторыми свойствами последних; например, большинство липидов синтезируется в виде линейных полимеров из молекул меньшего размера (ацетильной группы ацетилкофермента А) и путем самосборки образует более крупные структуры (мембраны).

3.1.1. Специфические взаимодействия макромолекулы зависят от слабых нековалентных связей [2]

Макромолекулярные цепи образуются с помощью ковалентных связей, которые достаточно прочны, чтобы поддерживать последовательность субъединиц макромолекулы в течение длительного времени. Но заключенная в этой последовательности информация выражается с помощью значительно более слабых нековалентных связей. Такие слабые связи возникают между разными частями одной и той же макромолекулы и между разными макромолекулами. В совокупности эти связи определяют и пространственную структуру макромолекулярных цепей, и то, как эти структуры взаимодействуют друг с другом.

Нековалентные связи в биологических молекулах обычно подразделяют на три типа: ионные взаимодействия, водородные связи и вандерваальсовы взаимодействия. Еще одно важное слабое взаимодействие создается пространственной структурой воды, которая стремится свести вместе гидрофобные группы и тем самым ослабить их разрушительное действие на сеть водородных связей молекул воды (схема 2-1). Такое выталкивание из водного раствора иногда считают четвертым типом слабой нековалентной связи. Все эти четыре типа слабых связей представлены на схеме 3-1.

В водном растворе каждая нековалентная связь в 30-300 раз слабее, чем типичные ковалентные связи, удерживающие вместе биологические молекулы (табл. 3-2) и лишь ненамного превышает среднюю энергию столкновения молекул, обусловленную тепловым движением при 37 °С. Одна нековалентная связь в отличие от одной ковалентной слишком слаба, чтобы противостоять тепловому движению, стремящемуся раздвинуть молекулы в разные стороны, поэтому, чтобы скрепить поверхности двух молекул требуется большое количество нековалентных связей. Большое число нековалентных связей может образоваться между двумя поверхностями только тогда, когда большое число атомов поверхностей точно соответствуют друг другу (рис. 3-2). Именно этим объясняется специфичность биологического узнавания, которое происходит, например, между ферментом и его субстратами.

3.1.2. Спираль является общим структурным элементом биологических молекул, построенных из повторяющихся субъединиц [3]

Биологические структуры часто образованы путем соединения похожих друг на друга субъединиц, таких как аминокислоты или нуклеотиды, в длинную повторяющуюся цепь (разд. 2.4.5). Если все субъединицы одинаковы, то соседние субъединицы в цепи будут соединены друг с другом только одним способом: их взаимное расположение будет таково, что энергия контакта между ними окажется минимальной. Каждая субъединица при этом расположена точно так же, как соседние, так что субъединица 3 будет входить в субъединицу 2, а субъединица 2 - в субъединицу 1 и т. д. Поскольку сборка субъединиц в виде прямой линии явление очень редкое, то обычно образуется спираль - регулярная структура, напоминающая винтовую лестницу, как показано на рис. 3-3. В зависимости от направления закручивания различают спирали правые и левые (рис. 3-4). Направление спирали не изменится, если спираль перевернуть, но изменится при зеркальном отражении.

Спирали весьма распространены среди биологических структур. Спирализации подвержены и молекулы, состоящие из субъединиц, соединенных ковалентными связями (ДНК), и большие белковые молекулы с нековалентными связями (актиновые нити). Это неудивительно: спираль возникает при простом накладывании друг на друга многих субъединиц, каждая из которых строго повторяет положение предыдущей.

3.1.3. Диффузия - первая стадия молекулярного узнавания [4]


Схема 3-1. Основные типы слабых нековалентных связей, участвующих во взаимодействии макромолекул.

Читайте также: