Что если у человека больше хромосом чем положено

Обновлено: 02.07.2024

Первичные половые клетки, оказавшиеся в мужской половой железе, до поры до времени не делятся. Их деление начинается только в период полового созревания и приводит к образованию когорты так называемых стволовых диплоидных клеток, из которых и формируются сперматозоиды. Запас стволовых клеток в яичках постоянно пополняется. Здесь уместно напомнить описанную выше особенность сперматогенеза — из одной клетки образуется 4 зрелых сперматозоида. Таким образом, после полового созревания у мужчины в течение всей жизни формируются сотни миллиардов новых сперматозоидов.

Формирование яйцеклеток протекает иначе. Едва заселив половую железу, первичные половые клетки начинают интенсивно делиться. К 5 месяцу внутриутробного развития их количество достигает 6-7 миллионов, но затем происходит массовая гибель этих клеток. В яичниках новорожденной девочки их остается не более 1-2 миллионов, к 7-летнему возрасту — всего лишь около 300 тысяч, а в период полового созревания 30 —50 тысяч. Общее же число яйцеклеток, которые достигнут зрелого состояния за период половой зрелости, будет еще меньше. Хорошо известно, что в течение одного менструального цикла в яичнике обычно созревает лишь один фолликул. Нетрудно подсчитать, что в течение репродуктивного периода, продолжающегося у женщин 30 — 35 лет, образуется около 400 зрелых яйцеклеток.

Если мейоз в сперматогенезе начинается в период полового созревания и повторяется миллиарды раз в течение жизни мужчины, в оогенезе формирующиеся женские гаметы вступают в мейоз еще в периоде внутриутробного развития. Причем начинается этот процесс почти одновременно у всех будущих яйцеклеток. Начинается, но не заканчивается! Будущие яйцеклетки доходят только до середины первой фазы мейоза, а дальше процесс деления блокируется на 12 — 50 лет! Лишь с приходом половой зрелости мейоз в оогенезе продолжится, причем не всех клеток сразу, а лишь для 1- 2 яйцеклеток ежемесячно. Полностью же процесс мейотического деления яйцеклетки завершится, как уже было сказано выше, только после ее оплодотворения! Таким образом, сперматозоид проникает в яйцеклетку, еще не завершившую деление, имеющую диплоидный набор хромосом!

Сперматогенез и оогенез — очень сложные и во многом загадочные процессы. Вместе с тем очевидна подчиненность их законам взаимосвязи и обусловленности природных явлений. Для оплодотворения одной яйцеклетки in vivo (лат. в живом организме) необходимы десятки миллионов сперматозоидов. Мужской организм вырабатывает их в гигантских количествах практически всю жизнь.

По каким законам происходит деление хромосом? Как передается наследственная информация? Для того чтобы разобраться с этим вопросом, можно привести простую аналогию с картами. Представим себе молодую супружескую пару. Назовем их условно — Он и Она. В каждой его соматической клетке находятся хромосомы черной масти — трефы и пики. Набор треф от шестерки до туза он получил от своей мамы. Набор пик — от своего папы. В каждой ее соматической клетке хромосомы красной масти — бубны и червы. Набор бубен от шестерки до туза она получила от своей мамы. Набор червей — от своего папы.

Для того чтобы получить из диплоидной соматической клетки половую клетку, число хромосом должно быть уменьшено вдвое. При этом половая клетка обязательно должна содержать полный одинарный (гаплоидный) набор хромосом. Ни одна не должна потеряться! В случае карт такой набор можно получить следующим образом. Взять наугад из каждой пары карт черной масти по одной и таким образом сформировать два одиночных набора. Каждый набор будет включать все карты черной масти от шестерки до туза, однако, какие именно это будут карты (трефы или пики) определил случай. Например, в одном таком наборе шестерка может быть пиковой, а в другом — трефовой. Нетрудно прикинуть, что в примере с картами при таком выборе одиночного набора из двойного мы можем получить 2 в девятой степени комбинаций — более 500 вариантов!

Примерно также, по закону случайной выборки, поступает и природа с хромосомами в процессе мейоза. В результате из клеток с двойным, диплоидным набором хромосом получаются клетки, каждая из которых содержит одиночный, гаплоидный полный набор хромосом. Предположим, в результате мейоза в вашем теле образовалась половая клетка. Сперматозоид или яйцеклетка — в данном случае не важно. Она обязательно будет содержать гаплоидный набор хромосом — ровно 23 штуки. Что именно это за хромосомы? Рассмотрим для примера хромосому № 7. Это может быть хромосома, которую вы получили от отца. С равной вероятностью она может быть хромосомой, которую вы получили от матери. То же самое справедливо для хромосомы № 8, и для любой другой.

Поскольку у человека число хромосом гаплоидного набора равно 23, то число возможных вариантов половых гаплоидных клеток, образующихся из диплоидных соматических, равно 2 в степени 23. Получается более 8 миллионов вариантов! В процессе оплодотворения две половые клетки соединяются между собой. Следовательно, общее число таких комбинаций будет равно 8 млн. х 8 млн. = 64000 млрд. вариантов! На уровне пары гомологичных хромосом основа этого разнообразия выглядит так. Возьмем любую пару гомологичных хромосом вашего диплоидного набора. Одну из таких хромосом вы получили от матери, но это может быть хромосома либо вашей бабушки, либо вашего дедушки по материнской линии. Вторую гомологичную хромосому вы получили от отца. Однако она опять-таки может быть независимо от первой либо хромосомой вашей бабушки, либо вашего дедушки уже по отцовской линии. А таких гомологических хромосом у вас 23 пары! Получается невероятное число возможных комбинаций. Неудивительно, что при этом у одной пары родителей, рождаются дети, которые отличаются друг от друга и внешностью, и характером.

Кстати, из приведенных выше расчетов следует простой, но важный вывод. Каждый человек, ныне здравствующий, или когда-либо живший в прошлом на Земле, абсолютно уникален. Шансы появления второго такого же практически равны нулю. Поэтому не надо себя ни с кем сравнивать. Каждый из вас неповторим, и тем уже интересен!

Однако вернемся к нашим половым клеткам. Каждая диплоидная клетка человека содержит 23 пары хромосом. Хромосомы с 1 по 22 пару называются соматическим и по форме они одинаковы. Хромосомы же 23-й пары (половые хромосомы) одинаковы только у женщин. Они и обозначаются латинскими буквами ХХ. У мужчин хромосомы этой пары различны и обозначаются ХY. В гаплоидном наборе яйцеклетки половая хромосома всегда только Х, сперматозоид же может нести или Х или Y хромосому. Если яйцеклетку оплодотворит Х сперматозоид, родится девочка, если Y сперматозоид — мальчик. Все просто!

Перемещение сперматозоида осуществляется за счет движения его хвостика. Скорость движения сперматозоида не превышает 2-3 мм в минуту. Казалось бы, немного, однако, за 2-3 часа в женском половом тракте сперматозоиды проходят путь, в 80000 раз превышающий их собственные размеры! Будь на месте сперматозоида в этой ситуации человек, ему пришлось бы двигаться вперед со скоростью 60-70 км/час — то есть со скоростью автомобиля!

Сперматозоиды, находящиеся в яичке, неподвижны. Способность к движению они приобретают лишь, проходя по семявыводящим путям под воздействием жидкостей семявыводящих протоков и семенных пузырьков, секрета предстательной железы. В половых путях женщины сперматозоиды сохраняют подвижность в течение 3 — 4 суток, но оплодотворить яйцеклетку они должны в течение 24 часов. Весь процесс развития от стволовой клетки до зрелого сперматозоида длится примерно 72 дня. Однако, поскольку сперматогенез происходит непрерывно и в него одномоментно вступает громадное число клеток, то в яичках всегда есть большое количество спермиев, находящихся на разных этапах сперматогенеза, а запас зрелых сперматозоидов постоянно пополняется. Активность сперматогенеза индивидуальна, но с возрастом снижается.

Представьте, что подавляющее большинство людей на планете имеют одно и тоже количество хромосом - 46, т.е. 23 пары хромосом. 22 пары из них называются аутосомные хромосомы и плюс одна пара половых хромосом. Да, бывают люди с нестандартным набором хромосом, но как правило это индивиды с генетическим отклонением.

Например, синдром дауна характеризуется тройной 21 хромосомой, соответственно у них 47 хромосом вместо 46.

Вернемся к стандартному хромосомному набору и разберемся с понятиями:

  • Аутосомные хромосомы - это 22 пары хромосом, которые одинаковы как у мужчин, так и у женщин.
  • Половые хромосомы - это те самые Х и Y, которые как раз и различают мужчину и женщину. У женщин пара половых хромосом выглядит как ХХ, а у мужчины ХY. При зачатии мальчик получает Х хромосому от матери, а Y хромосому от отца, в свою очередь девочка получает Х хромосому от матери и от отца. Отсюда вытекают еще два понятия:

Гомогаметный пол - образует гаметы (репродуктивные клетки) одинаковые по половой хромосоме. Гетерогаметный пол - формирует гаметы разные по половой хромосоме.

Хромосомные аномалии у плода

У мужчины вместо ХY хромосомный набор ХХ (Инверсия пола)

Частота рождения мальчиков с такой патологией один на 20 000 детей. Происходит это из-за мутации гена SRY, который находится в Y хромосоме, а также из-за транслокации или делеции участка хромосомы. Именно этот ген, по-сути, несет информацию о том, что человек мужского пола. Внешне такие мужчины отличаются низким ростом, половым инфантилизмом и часто они бесплодны. Гермафродитизм (наличие и мужских и женских половых органов одновременно) встречается довольно редко.

Хромосомные аномалии плода анализ

Узнать свой кариотип, тот самый набор хромосом, можно при сдаче анализа крови. При кариотипирование хромосомный набор данной патологии у мужчин будет описан как 46,ХХ

Встречаются и женщины с кариотипом ХY вместо ХХ (синдром Морриса и Свайера).

Данная инверсия пола связана также с “неисправностью” Y хромосомы. В определенный момент созревания плода тестостерон и другие мужские гормоны (андрогены) не начали свою работу, как следствие плод сформируется по женскому пути развития.

Если сломался ген, который перераспределяет тестостерон и направляет их в клетку, то в результате у такой женщины будут женские половые органы, однако вместо репродуктивной системы (матки и яичников) - недоразвитые яички. Такие женщины, к сожалению, бесплодны.

Если поломка в SRY гене, то из-за этой мутации не формируются мужские половые органы, а полностью формируются женские, однако не формируются яичники. Т.к. половые гормоны не вырабатываются, то такая женщина возможно имеет повышенный рост волос, неразвитую грудь и тд Иметь детей женщина также не может.

Конечно, это не все хромосомные аномалии, которые бывают.

Существуют такие аномалии половых хромосом, как:

  • синдром тройной Х хромосомы (кариотип 47, ХХХ)
  • синдром Клайнфельтера (кариотип 47, ХХY)
  • синдром Джейкобса (кариотип 47, XYY)
  • моносомия половых хромосом (кариотип 45, Х)

К сожалению хромосомные патологии неизлечимы, но выживаемость детей с данными аномалиями высокая, учитывая, что данные патологии не кардинально влияют на качество жизни.

Анализ на хромосомные аномалии (НИПТ) в Краснодаре

Можно ли определить возможные хромосомные аномалии плода во время беременности? На сегодняшний день вы можете уже с 10 недели беременности пройти генетический анализ — неинвазивный пренатальный тест.

НЕИНВАЗИВНЫЙ ПРЕНАТАЛЬНЫЙ ТЕСТ VERACITY на определение наличия у плода Трисомии по 21, 13 и 18 хромосоме (синдромы Дауна, Патау, Эдвардса) + определение пола

НЕИНВАЗИВНЫЙ ПРЕНАТАЛЬНЫЙ ТЕСТ VERACITY на определение наличия у плода Трисомии по 21, 13 и 18 хромосоме (синдромы Дауна, Патау, Эдвардса) + анеуплоидии половых хромосом Х, У + определение пола

ООО "Медикал Геномикс" Лицензия № ЛО-69-01-002086 от 06.10.2017

Юр. адрес: г. Тверь, ул. Желябова, 48

ООО "Лаб-Трейдинг", ИНН: 6950225035, ОГРН: 1186952017053, КПП:695001001

Юр. адрес: г. Тверь, ул. 1-Я За Линией Октябрьской Ж/Д, 2, оф. 22


1_1.tif
1_2.tif

Рис. 1. Мужской кариотип: I – метафазная пластинка; II – классификация по группам и нумерация хромосом

Как указано выше, кариотип человека состоит из 46 хромосом, которые нумеруются от 1 до 22 (аутосомы) и делятся на 7 групп, – A, B, C, D, E, F, G и половые хромосомы (гоносомы) X и Y (рис. 1 и 2).

К первой группе А относятся хромосомы 1, 2 и 3, которые хорошо отличаются друг от друга. Хромосома 1 (размер – 11 мкм) – метацентрическая, содержит вторичную перетяжку в околоцентромерном участке длинного плеча. Хромосома 2 (10,8 мкм) по размерам почти равна хромосоме 1 и является субметацентрической. Хромосома 3 (размер – 8,3 мкм) – практически метацентрическая.

2_1.tif
2_2.tif

Рис. 2. Женский кариотип: I – метафазная пластинка; II – классификация по группам и нумерация хромосом

К группе В относятся хромосомы 4 и 5 (размер – 7,7 мкм каждая) – это крупные субметацентрические хромосомы, которые не отличаются друг от друга при рутинном окрашивании ни размером, ни положением центромер.

К группе С относятся хромосомы с 6 по 12 и Х. В основном, это субметацентрические хромосомы крупных и средних размеров. Наиболее крупные хромосомы из группы С – 6, 7 и Х (6,8–7,2 мкм). Хромосома Х является половой хромосомой (гоносомой). Хромосома 7 более метацентрична, чем хромосома 6. Хромосомы 8 и 9 – практически одинаковы по размеру (5,8 мкм). Хромосома 8 метацентричнее хромосомы 9, которая характеризуется регулярной вторичной перетяжкой в прицентромерном районе длинного плеча.

К группе D относятся хромосомы 13, 14 и 15 (4,2 мкм) – средних размеров акроцентрические хромосомы с почти терминальным расположением центромеры. Эти хромосомы между собой не различаются ни по размерам, ни морфологически после рутинного окрашивания. Короткое плечо всех трёх пар хромосом может формировать спутники (рис. 1, 2 и 5).

К группе Е относятся хромосомы 16, 17 и 18. Хромосома 16 (размер – 3,6 мкм) – сравнительно небольшая метацентрическая хромосома, содержащая вторичную перетяжку в длинном плече. Хромосома 17 (размер – 3,5 мкм) – сравнительно короткая субметацентрическая хромосома. Хромосома 18 (размер – 3,2 мкм) – самая короткая субметацентрическая хромосома.

Группа F представлена хромосомами 19 и 20 (размеры – 2,9 мкм). Это короткие метацентрические хромосомы, которые не отличаются между собой без дифференциального окрашивания по длине.

Хромосомы 21 и 22 (2,8 мкм) относятся к группе G. Это наиболее короткие акроцентрические хромосомы в кариотипе, которые обладают способностью формировать спутники на коротком плече (рис. 1, 2 и 5).

Хромосома Y (2,3 мкм) является маленькой акроцентрической хромосомой, сравнимой по размерам с хромосомами 21 и 22, но не имеющая спутников.

Следует отметить, что хромосомные синдромы и аномалии связаны с хромосомными (геномными) мутациями (аномалиями) в виде различных структурных перестроек хромосом или с изменением их числа (n). Численные изменения хромосом могут быть двух типов: полиплоидии – умножение хромосомного набора (3n, 4n и т. д.) или генома, кратное гаплоидному числу хромосом; анеуплоидии – увеличение или уменьшение числа хромосом, некратное гаплоидному. Структурные хромосомные (геномные) перестройки классифицируют по принципу линейной последовательности расположения генов: делеции (потеря хромосомных участков), дупликации (удвоение хромосомных участков), инверсии (перевертывание на 180° относительно нормальной последовательности хромосомных участков), инсерции (вставки хромосомных участков) и транслокации (изменение расположения хромосомных участков). Подробная информация по возможным аномалиям хромосом человека представлена в главе 3.5.

Большая часть сведений о хромосомных перестройках, вызывающих фенотипические или телесные изменения и аномалии, была получена в результате исследований генотипа (расположения генов в хромосомах слюнных желез) обыкновенной плодовой мушки. Несмотря на то, что многие болезни человека имеют наследственную природу, лишь в отношении их небольшой части достоверно известно, что они вызваны хромосомными аномалиями. Только из наблюдений за фенотипическими проявлениями мы можем заключить, что произошли те или иные изменения генов и хромосом.

Первичная генетическая субстанция, ДНК, действует через посредство цитоплазмы, выполняющей функцию катализатора в изменении свойств клеток, формируя кожу и мышцы, нервы и кровеносные сосуды, кости и соединительную ткань, а также другие специализированные клетки, но не допуская изменений самих генов в ходе этого процесса. Почти на всех этапах строительства организма занято множество генов, и потому совсем не обязательно, чтобы каждый физический признак являлся результатом действия одного гена.

Хромосомное нарушение

Разнообразные хромосомные нарушения могут быть результатом следующих структурных и количественных нарушений:

Разрыв хромосом. Хромосомные перестройки могут вызываться под воздействием рентгеновских лучей, ионизирующей радиации, возможно, космических лучей, а также многих других, пока неизвестных нам, биохимических или средовых факторов.

Рентгеновские лучи. Могут вызвать разрыв хромосомы; в процессе перестройки сегмент или сегменты, оторвавшиеся от одной хромосомы, могут быть утеряны, в результате чего возникает мутация или фенотипическое изменение. Становится возможной экспрессия рецессивного гена, обусловливающего определенный дефект или аномалию, поскольку нормальный аллель (парный ген в гомологичной хромосоме) утерян и вследствие этого не может нейтрализовать воздействие дефектного гена.

Кроссовер. Пары гомологичных хромосом закручены в спираль подобно дождевым червям во время спаривания и могут разрываться в любых гомологичных точках (т. е. на одном уровне образующих пару хромосом). В процессе мейоза происходит разделение каждой пары хромосом таким образом, что только одна хромосома из каждой пары входит в образовавшуюся яйцеклетку или спермий. Когда происходит разрыв, конец одной хромосомы может соединяется с оторвавшимся концом другой хромосомы, а два оставшихся куска хромосом связываются вместе. В результате образуются две совершенно новые и разные хромосомы. Этот процесс называют кроссинговером.

Дупликация/нехватка генов. При дупликации участок одной хромосомы отрывается и прикрепляется к гомологичной хромосоме, удваивая уже существующую в ней группу генов. Приобретение хромосомой дополнительной группы генов обычно наносит меньший вред, чем утрата генов др. хромосомой. К тому же при благоприятном исходе дупликации ведут к образованию новой наследственной комбинации. Хромосомы с потерянным терминальным участком (и нехваткой локализованных в нем генов) могут приводить к мутациям или фенотипическим изменениям.

Транслокация. Сегменты одной хромосомы переносятся на другую, негомологичную ей хромосому, вызывая стерильность особи. В этом случае любое негативное фенотипическое проявление не может быть передано последующим поколениям.

Инверсия. Хромосома разрывается в двух и более местах, и ее сегменты инвертируются (поворачиваются на 180°) перед тем, как соединиться в том же порядке в целую реконструированную хромосому. Это самый распространенный и самый важный способ перегруппировки генов в эволюции видов. Однако новый гибрид может стать изолянтом, поскольку обнаруживает стерильность при скрещивании с первоначальной формой.

Эффект положения. В случаях изменения положения гена в той же хромосоме у организмов могут обнаруживаться фенотипические изменения.

Полиплоидия. Сбои в процессе мейоза (хромосомного редукционного деления в ходе подготовки к репродукции), которые затем обнаружатся в зародышевой клетке, могут удваивать нормальное число хромосом в гаметах (сперматозоидах или яйцеклетках).

Среди больных с сахарным диабетом встречается незначительный процент рождений с осложнениями, при которых эта дополнительная аутосома (неполовая хромосома) становится причиной недостаточного веса и роста новорожденного и задержки последующего физического и умственного развития. Люди страдающие синдромом Дауна имеют 47 хромосом. Причем дополнительная 47-я хромосома обусловливает у них избыточный синтез фермента, разрушающего незаменимую аминокислоту триптофан, которая встречается в молоке и необходима для нормального функционирования клеток мозга и регуляции сна. Лишь у незначительного процента родившихся с синдромом эта болезнь определенно носит наследственный характер.

Диагностика хромосомных нарушений

Врожденные пороки развития представляют стойкие структурные или морфологические дефекты органа или его части, возникающие внутриутробно и нарушающие функции пораженного органа. Могут возникнуть крупные пороки, которые приводят к значительным медицинским, социальным или косметическим проблемам (спинно-мозговые грыжи, расщелины губы и нёба) и малые, которые представляют собой небольшие отклонения в строении органа, не сопровождающиеся нарушением его функции (эпикант, короткая уздечка языка, деформация ушной раковины, добавочная доля непарной вены).

Хромосомные нарушения имеют деление на:

тяжелые (требуют срочного медицинского вмешательства);

умеренно тяжелые (требуют лечения, но не угрожают жизни пациента).

Врожденные пороки развития представляют собой многочисленную и очень разнообразную группу состояний, наиболее распространенные и представляющие большее значение из них, это:

анэнцефалия (отсутствие большого мозга, частичное или полное отсутствие костей свода черепа);

черепно-мозговая грыжа (выпячивание головного мозга через дефект костей черепа);

спинно-мозговая грыжа (выпячивание спинного мозга через дефект позвоночника);

врожденная гидроцефалия (избыточное накопление жидкости внутри желудочковой системы мозга);

расщелины губы с расщелиной (или без неё) нёба;

анофтальмия/микрофтальмия (отсутствие или недоразвитие глаза);

транспозиция магистральных сосудов;

пороки развития сердца;

атрезия/стеноз пищевода (отсутствие непрерывности или сужение пищевода);

атрезия ануса (отсутствие непрерывности аноректального канала);

экстрофия мочевого пузыря;

диафрагмальные грыжи (выпячивание органов брюшной полости в грудную через дефект в диафрагме);

редукционные пороки конечностей (тотальное или частичное конечностей).

Характерными признаками врожденных аномалий являются:

Врожденный характер (симптомы и признаки, которые были с рождения);

однотипность клинических проявлений у нескольких членов семьи;
длительное сохранение симптомов;

наличие необычных симптомов (множественные переломы, подвывих хрусталика и другие);

множественность поражений органов и систем организма;

невосприимчивость к лечению.

Для диагностики врожденных пороков развития используются различные методы. Распознавание внешних пороков развития (расщелины губы, нёба) основывается на клиническом осмотре больного, который здесь является основным, и, обычно, не вызывает затруднения.

Пороки развития внутренних органов (сердца, легких, почек и других) требуют дополнительные методы исследования, так как специфических симптомов для них нет, жалобы могут быть точно такими же, как и при обычных заболеваниях этих систем и органов.

К этим методам относятся все обычные методы, которые используются и для диагностики неврожденной патологии:

лучевые методы (рентгенография, компьютерная томография, магнитно-резонансная томография, магнитно-резонансная томография, ультразвуковая диагностика);

эндоскопические (бронхоскопия, фиброгастродуоденоскопия, колоноскопия).

Для диагностики пороков используют генетические методы исследования: цитогенетические, молекулярно-генетические, биохимические.

В настоящее время врожденные пороки можно выявлять не только после рождения, но и во время беременности. Главным является ультразвуковое исследование плода, с помощью которого диагностируются как внешние пороки, так и пороки внутренних органов. Из других методов диагностики пороков во время беременности применяют биопсию ворсин хориона, амниоцентез, кордоцентез, полученный материал подвергают цитогенетическому и биохимическому исследованию.

Хромосомные нарушения классифицируются по принципы линейной последовательности расположения генов и бывают в виде делеции (нехватка), дупликации (удвоение), инверсии (перевертывание), инсерции (вставка) и транслокации (перемещение) хромосом. В настоящее время известно, что практически все хромосомные нарушения сопровождаются задержкой развития (психомоторного, умственного, физического), кроме того они могут сопровождаться наличием врожденных пороков развития.

Эти изменения характерны для аномалий аутосом (1 – 22 пары хромосом), реже для гоносом (половых хромосом, 23 пара). На первом году жизни ребенка можно диагностировать многие из них. Основные их них это, синдром кошачьего крика, синдром Вольфа-Хиршхорна, синдром Патау, синдром Эдвардса, синдром Дауна, синдром кошачьего глаза, синдром Шерешевского-Тернера, синдром Клайнфелтера.

Раньше диагностика хромосомных болезней основывалась на использовании традиционных методов цитогенетического анализа, этот тип диагностики позволял судить о кариотипе – числе и структуре хромосом человека. При этом исследовании оставались нераспознанными некоторые хромосомные нарушения. В настоящее время разработаны принципиально новые методы диагностики хромосомных нарушений. К ним относятся: хромосомоспецифичные пробы ДНК, модифицированный метод гибридизации.

Профилактика хромосомных нарушений

В настоящее время профилактика этих заболеваний представляет собой систему мероприятий разного уровня, которые направлены на снижение частоты рождения детей с данной патологией.

Имеется три профилактических уровня, а именно:

Первичный уровень: проводятся до зачатия ребенка и направлены на устранение причин, которые могут вызвать врожденные пороки или хромосомные нарушения, или факторов риска. К мероприятиям этого уровня относится комплекс мер, направленных на защиту человека от действия вредных факторов, улучшение состояния окружающей среды, проверка на мутагенность и тератогенность продуктов питания, пищевых добавок, лекарственных препаратов, охрана труда женщин на вредных производствах и тому подобное. После того, как была выявлена связь развития некоторых пороков с дефицитом фолиевой кислоты в организме женщины, было предложено употреблять её в качестве профилактического средства всеми женщинами репродуктивного возраста за 2 месяца до зачатия и в течение 2 – 3 месяцев после зачатия. Также к профилактическим мероприятиям относится вакцинация женщин против краснухи.

Вторичная профилактика: направлена на выявление пораженного плода с последующим прерыванием беременности или при возможности проведением лечения плода. Вторичная профилактика может носить массовый характер (ультразвуковое обследование беременных) и индивидуальный (медико-генетическое консультирование семей с риском рождения больного ребенка, на котором устанавливают точный диагноз наследственного заболевания, определяют тип наследования заболевания в семье, расчет риска повторения болезни в семье, определение наиболее эффективного способа семейной профилактики).

Третичный уровень профилактики: подразумевает проведение лечебных мероприятий, направленных на устранение последствий порока развития и его осложнений. Пациенты с серьезными врожденными аномалиями вынуждены наблюдаться у врача всю жизнь.

Генетический анализ и диагностика

Каждая из 100 триллионов клеток в организме человека (за исключением красных кровяных клеток) содержит весь человеческий геном. Хромосомы – это струноподобные элементы внутри ядра (в центре) каждой клетки вашего тела. Они содержат генетическую информацию, ДНК. Ген занимает определенное место на хромосоме. В норме, есть 23 идентичных пары хромосом (2 метра ДНК) в каждой клетке, в общей сложности 46 хромосом. Каждый партнер во время оплодотворения обычно предоставляет 23 хромосомы. Если яйцеклетка или сперматозоид имеют аномальную упаковку хромосом, эмбрион, который они создают, также будет иметь хромосомные аномалии. Иногда это связано с перестройкой хромосом, или недостатком части хромосомы. В некоторых случаях есть отсутствующие хромосомы, или дополнительная хромосома (анеуплоидии), ведущие к наследственным заболеваниям. Любой эмбрион, в котором отсутствует хромосома (моносомия) перестанет расти до имплантации (фатальная аномалия). Если анеуплоидии включают хромосомы 13, 18, 21, Х или Y, беременность может дойти до родов. Наиболее распространенной из этих несмертельных аномалий является трисомия 21, или синдром Дауна, при которой присутствует дополнительная 21-я хромосома. Другие включают синдром Тернера у женщин и синдром Клайнфельтера у мужчин.

История преимплантационной генетической диагностики (ПГД)

Как передаются по наследству генетические заболевания

В диаграммах ниже, D или d представляет дефектный ген, а N или n представляет нормальный ген. Мутации не всегда приводят к болезни.

Доминантные заболевания:

Один из родителей имеет один дефектный ген, который доминирует над своей нормальной парой. Так как потомки наследуют половину своего генетического материала от каждого из родителей, есть 50% риск наследования дефектного гена, и, следовательно, заболевания.

Доминантнные генетические заболевания

Рецессивные заболевания:

Оба родителя являются носителями одного дефектного гена, но при этом имеют нормальную пару гена. Для наследования заболевания необходимы две дефектных копии гена. Каждый потомок имеет 50% шанс быть носителем, и 25% шанс унаследовать заболевание.

Рецессивные заболевания

X-сцепленные заболевания:

Нормальные женщины имеют XX хромосомы, а нормальные мужчины XY. Женщины, которые имеют нормальный ген на одной из Х-хромосом, защищены от дефектного гена на их другой Х-хромосоме. Однако, у мужчины отсутствует такая защита в связи с наличием только одной Х-хромосомы. Каждый мужской потомок от матери, которая несет в себе дефект, имеет 50% шанс унаследовать дефектный ген и заболевание. Каждый женский потомок имеет 50% шанс быть носителем, как и ее мать. (на рисунке ниже X представляет нормальный ген а X представляет дефектный ген)

X-сцепленные заболевания

Возможные преимущества генетического анализа

Преимплантационная генетическая диагностика позволяет отобрать и перенести не измененные (хромосомно нормальные) эмбрионы, которые могут привести к большей частоте имплантации на эмбрион, сокращению потерь беременности и рождению большего числа здоровых детей. Генетическая диагностика предлагает парам альтернативу мучительному выбору по поводу того, чтобы прервать пострадавшую беременность после пренатальной диагностики, производимой путем амниоцентеза или биопсии ворсин хориона (CVS) на более поздних стадиях беременности. Почти все генетически связанные заболевания, которые могут быть диагностированы в перинатальном периоде либо амниоцентезом или CVS, могут быть обнаружены и ПГД. Процедура должна уменьшить психологическую травму для пар, которые несут повышенный риск генетических заболеваний для потомства.

Преимущества преимплантационной генетической диагностики (ПГД) могут включать в себя:

  • Была выдвинута гипотеза, что негативный отбор анеуплоидных эмбрионов позволит улучшить частоту имплантации, из-за корреляции между старшим возрастом матери и хромосомно аномальными эмбрионами. Хромосомно нормальные эмбрионы имеют в перспективе более высокие шансы на развитие. При переносе только хромосомно нормальных эмбрионов в матку, ваши шансы на невынашивание могут уменьшиться, а ваши шансы забеременеть могут увеличиться. Двадцать один процент спонтанных абортов обусловлены численными хромосомными нарушениями, и основным фактором риска является возраст матери. Трисомии увеличиваются с 2% у женщин 25 лет до 19% у женщин старше 40 лет. По данным ASRM-SART, 52% циклов ЭКО в США осуществляется для женщин 35 лет и старше, что показывает, что популяция ЭКО может получить большую пользу от скрининга хромосомных анеуплоидий. Важно отметить, что вероятность наступления беременности и родов здоровым ребенком, однако, снижается у пациентов старше 34 лет (как правило, менее 50%) из-за проблем, связанных с процедурой ЭКО.
  • ПГД в состоянии идентифицировать большинство хромосомных аномалий с риском развития до родов. В настоящее время применяется ПГД хромосомных аномалии для X, Y, 13, 14, 15, 16, 18, 21 и 22 хромосом. Это составляет 70% анеуплоидий, обнаруживаемых при спонтанных абортах.
  • Вполне возможно, что некоторая информация о ваших собственных яйцеклетках и эмбрионах может быть полезной для вас в случае дальнейших попыток ЭКО, или поможет объяснить прошлые неудачи при естественном зачатии или ЭКО.
  • Будущие пациенты могут извлечь выгоду из информации, полученной от ПГД о связи между хромосомами, неразвивающимися или неимплантирующимися эмбрионами.

Возможные риски генетического анализа

  • В лучшем случае, с помощью методов ПГД могут быть обнаружены около 90% от аномальных эмбрионов.
  • Относительно большое число яйцеклеток или эмбрионов могут быть признаны ненормальными и поэтому для переноса останется только несколько эмбрионов. В некоторых случаях (11%), может не быть нормальных яйцеклеток или эмбрионов. В этих случаях перенос эмбриона не рекомендуется. Хотя это и разочаровывающий результат, вполне вероятно, что цикл ЭКО без ПГД не привел бы к беременности или привел бы к аномалиям у плода.
  • Клетки, которые будут удалены, изучаются с помощью специализированных новых методов. Такие процедуры иногда не могут быть проведены из-за технических сложностей.
  • Не все хромосомные или генетические отклонения могут быть определены пир помощи данных методов, так как в ходе одной процедуры может быть диагностировано только ограниченное число хромосом.
  • Вполне возможно, что нормальный эмбрион может быть неправильно определен как ненормальный, и не перенесен, или что аномальный эмбрион неправильно определен как нормальный и будет перенесен в матку. (ПГД в настоящее время не является заменой для пренатальной диагностики. Рекомендуется проведение пренатальной диагностики для подтвердения диагноза).
  • При удалении клеток может случайно произойти повреждение эмбриона (0,1%).
  • Неявные технические обстоятельства в лаборатории могут привести к неудаче процесса тестирования, что приводит к отсутствию результатов. Неудача процесса тестирования не оказывает никакого влияния на ваш эмбрион. В этом случае, эмбрионы для переноса будут отобраны на основе существующих критериев.
  • Анализ одной клетки имеет свои ограничения. Иногда, хромосомные аномалии находятся в одной клетке, но не в других клетках того же эмбриона, или наоборот, что выражается мозаицизмом. Это может привести к переносу аномального эмбриона, или к отказу от нормального эмбриона.
  • ПГД для определения транслокаций может определить наличие или отсутствие определенных хромосомных нарушений, но не может ни определить генетическое заболевание, ни предсказать генетические уродства.
  • Даже после успешной процедуры ПГД беременность может не наступить.

Кандидаты для биопсии эмбриона и ПГД

Кандидаты для биопсии эмбриона и ПГД включают в себя:

  • Женщины старше 34 лет: женщины рождаются со всеми яйцеклетками, которые они будут когда-нибудь иметь, и по мере старения женщины ее яйцеклетки подвергаются также воздействию этого процесса старения. Таким образом, вероятность зачатия хромосомно аномального потомство с возрастом увеличивается. В целом риск анеуплоидии увеличивается с 1 на 385 в возрасте 30 лет, до 1 на 179 в возрасте 35 лет, до 1 на 63 в возрасте 40 лет, и в возрасте до 45 лет возможность рождения больного ребенка составляет 1 к 19. В результате использования ПГД при ЭКО стало известно, что в действительности больее чем 20% эмбрионов у женщин в возрасте от 35 до 39 анеуплоидны, и страдают почти 40% эмбрионов у женщин старше 40 лет. Большинство из этих эмбрионов в случае переноса в матку либо не имплантируются или приводят к невынашиванию. Это считается основной причиной низкой частоты наступления беременности и родов женщин в возрасте 40 лет и старше. До внедрения ПГД, для увеличения шансов на зачатие в матку переносилось большее число эмбрионов. По-прежнему настоятельно рекомендуется проведение пренатальной диагностики после цикла ЭКО, поскольку это подтверждает прогноз нормального потомства. Возможно также, что аномальные эмбрионы могут быть ошибочно определены как нормальные и перенесены в матку.
  • Женщины с рецидивирующей потерей беременности (привычным невынашиванием): мужчина или женщина пары может иметь ненормальную упаковку хромосом, что может вызвать фатальные аномалии в некоторых беременностях, но не в других.
  • Пары с транслокациями: транслокации – это изменения в конфигурации хромосом, при которых хромосомы прикрепляются друг к другу (робертсоновские) или участки разных хромосомах меняются местами (взаимные или реципрокные). Примерно 1 из 900 человек имеет робертсоновские транслокации с участием хромосом 13, 14, 15, 21, 22. Примерно 1 из 625 человек имеет взаимные транслокации. Для выявления наличия транслокаций может быть проведено кариотипирование обоих партнеров. Пары с транслокациями могут иметь периодические потери беременности, или потомство с психическими или физическими проблемами. При сбалансированной транслокации, когда нет дополнительного или отсутствия хромосомного материала, и разрыв в хромосоме не нарушает функции генов, человек не страдает. Носители сбалансированных транслокаций могут быть затронуты сложными врожденными пороками развития, которые могут или не могут быть связаны с наследственным заболеванием. При несбалансированной транслокации, при которой существует или отсутствует дополнительный материал хромосом, отдельные личности, как правило, не будут затронуты, хотя у некоторых будет наблюдаться снижение фертильности. Однако существует риск того, что яйцеклетки или сперматозоиды от такого человека могут иметь несбалансированные транслокации, в результате чего эмбрион будет несбалансированным. Это может привести к неудаче имплантации, повторному невынашиванию, или потомству с психическими или физическими проблемами.
  • Пары с аутосомно-доминантными заболеваниями, при которых будут затронуты 50% эмбрионов. Пары, которые имеют данные нарушения в семейном анамнезе, или являются носителями, или страдают от наследуемых заболеваний.

Пары с повторными неудачами ЭКО.

  • Пары с историей бесплодия могут быть в состоянии определить этиологию, и, следовательно, выбрать соответствующее лечение.
  • Парам из группы риска для наследования потомством болезни с угрозой для жизни, болезни с поздним началом (болезнь Хантингтона), предпочтительно планировать, выбрать соответствующие методы лечения, или ускорить процесс диагностики (например, ранней диагностики рака молочной железы)
  • Пары, желающие потомство для производства HLA-совпадающих стволовых клеток, для страдающего ребенка со смертельным заболеванием.

Используемые методы

Для анализа на наличие генетических дефектов эмбриона, из него необходимо удалить либо первое полярное тельце из неоплодотворенной яйцеклетки и/или 1 или 2 клетки от каждого эмбриона. Это называется биопсией яйцеклетки или эмбриона и обычно делается перед тем, как происходит оплодотворение, или через 3 дня после оплодотворения. Биопсия на 6-10 клеточной стадии не оказывает отрицательного влияния на преимплантационное развитие. На этом этапе каждая клетка имеет полный набор хромосом. Обычно из эмбриона удаляется только одна клетка, так как ожидается, что будут одинаковыми со всеми другими клетками в эмбрионе. Иногда необходимо удалить вторую клетку из эмбриона, например, если сигнал в первой не обнаружен. Для диагноза предрасположенности с помощью первого и второго полярных телец, как показателей генетического статуса яйцеклетки, используется анализ методом FISH. Недостатком анализа полярных телец заключается в том, что он не принимает во внимание отцовские анеуплоидии.

Анализ биопсированной клетки использует один из двух методов:

  • Флуоресцентная гибридизация in situ (FISH): биопсированная клетка фиксируется на предметном стекле, нагревается и охлаждается, и ее ДНК "помечается" цветными флуоресцентными красителями, называемыми зондами (маленькие кусочки ДНК, которые соответствуют исследуемым хромосомам), по одному для каждой определяемой хромосомы. В настоящее время может быть идентифицировано 8 из 23 хромосом. После завершения эмбриолог учитывает цвета под мощным микроскопом и в состоянии, в большинстве случаев, отличить нормальные от аномальных клеток. Этот процесс занимает около суток. Нормальные эмбрионы будут либо перенесены в матку на 4-й день после поиска яйцеклеток, или подвергнутся продленному культивированию и будут перенесены на 5-й день, как бластоцисты. Клетки, использовавшиеся для ПГД, больше не жизнеспособны, и не будут возвращены в эмбрион, но могут быть сохранены для будущих исследований.
  • Полимеразная цепная реакция (ПЦР): методика, которая увеличивает количество копий специфичных регионов ДНК, чтобы произвести достаточное для анализа количество ДНК. ДНК является двухцепочечной (за исключением некоторых вирусов), и две цепи соединяются очень специфическим образом. "Последовательность кирпичиков" генов представляет собой определенный порядок появления 4-х различных дезоксирибонуклеотидов в сегменте ДНК. Эти 4 компонента: аденин (А), тимидин (T), цитозин (C), и гуанин (G). Последовательность этого 4-буквенного алфавита генерирует состав гена. При этой методике ДНК нагревают (денатурируют), чтобы разделить 2 нити. Далее добавляются праймеры и ДНК охлаждается, с тем чтобы опять образовались двойные нити. Затем в циклы добавляют ферменты, которые могут "прочитать" последовательность гена, что приводит к умножению ДНК. ПЦР используется для диагностики ген-специфических заболеваний, так же как и для выявления болезнетворных вирусов и/или бактерий, или в криминалистике в связи с подозрением в совершении преступления.

Вся информация носит ознакомительный характер. Если у вас возникли проблемы со здоровьем, то необходима консультация специалиста.

Читайте также: