Принцип работы какого насоса положен в основу работы г 600

Обновлено: 30.06.2024

Использование открытых водоисточников для тушения пожаров

Для тушения пожаров используют запасы воды естественных и искусственных водоисточников. Для забора воды из этих водоисточников к ним устраивают подъезды, оборудуют места водозабора. Время забора воды из открытых водоисточников зависит от типа всасывающего аппарата, герметичности всасывающей линии и насоса. мощности двигателя и расстояния от оси насоса до зеркала воды.

Допустимая высота всасывания воды, подаваемой на тушение, зависит от ее температуры:

При необходимости забрать воду с температурой более 60 °С или на высоту выше максимально допустимой, но не превышающей 7 м, следует заполнить насос и всасывающую линию водой из цистерны или другого водоисточника. При подаче горячей воды для тушения пожара целесообразно насос ставить так, чтобы уровень воды был выше уровня насоса, т. е. насос работал под заливом. Продолжительность работы пожарных машин, установленных на водоеме с ограниченным запасом воды, при подаче стволов на тушение определяют по формуле (3.10). В практических расчетах продолжительность работы водяных стволов от пожарных автомобилей, установленных на водоемы, принимают по табл. 4.4.

Забор и подача воды на пожар из водоисточников с неудовлетворительными подъездами и местами водозабора представляют особую сложность. Так, если расстояние от места установки пожарной машины до места забора воды по горизонтали небольшое, воду забирают с помощью удлиненной всасывающей линии. В этом случае следует помнить, что всасывающая линия должна состоять не более чем из трех-четырех рукавов длиной по 4 м. При этом высота всасывания воды не должна превышать 4. 5 м.

Из водоисточников с плохими подъездами воду можно забрать с помощью переносных и прицепных мотопомп, которые устанавливают и закрепляют на отдельных площадках у места забора. Затем от мотопомпы вода подается к боевым позициям или в емкость автоцистерны, от которой обеспечивается работа стволов на пожаре.

Предельное расстояние, на которое можно подать воду от мотопомп, установленных на водоисточники, к стволам или в емкость автоцистерн, определяют по формуле (3.9). Некоторые варианты подачи воды от мотопомп с учетом предельных расстояний приведены в табл. 3.14. Максимальное количество воды, подаваемой мотопомпами, установленными на водоисточники, зависит от производительности и напора на насосе, высоты подъема местности, вида рукавов и длины магистральной линии и определяется по формуле:

где Q - подача воды от мотопомпы, л/с; H м.л. - потери напора в магистральной рукавной линии, м. которые определяются по формуле (4.9); N р. м.л. - число рукавов магистральной линии, шт.; S - сопротивление одного напорного рукава длиной 20 м (табл. 4.5).


Рис. 4.1. Схемы забора воды гидроэлеваторами Г-600

1 – пожарные рукава диаметром 66 мм; 2 – пожарные рукава диаметром 77 мм; 3 – перпеходное разветвление для выпуска воздуха призаборе воды; 4 - напорновсасывающие рукав; 5 – всасывающая линия для забора воды из цистерны.


ТАБЛИЦА 4.4. ПРОДОЛЖИТЕЛЬНОСТЬ РАБОТЫ ВОДЯНЫХ СТВОЛОВ ОТ ПОЖАРНЫХ МАШИН, УСТАНОВЛЕННЫХ НА ВОДОЕМЫ

10 ´ 13 или 5 ´ 19

12 ´ 19 или 7 ´ 25

Примечания: 1. В расчетах расход воды со створов принят при напоре 40 м.

2. Прочерки означают, что возможна работа стволов в течение 11 ч и более.




ТАБЛИЦА 4.5. СОПРОТИВЛЕНИЕ ОДНОГО НАПОРНОГО РУКАВА ДЛИНОЙ 20 м

Пример: Определить количество воды, подаваемой мотопомпой МП-1600 в водобак автоцистерны, установленной на расстоянии 200 м от водоисточника, при подъеме местности 15 м и магистральной линии из прорезиненных рукавов диаметром 6 мм.

Решение: напор на насосе мотопомпы принимаем равным 90 м, а свободный напор с учетом высоты автоцистерны - 3 м. Тогда

При плохих подъездах к открытым водоемам и при наличии водоисточников с уровнем воды ниже 7 м от оси насоса забор се осуществляют с помощью гидроэлеваторных систем. Схемы забора воды гидроэлеваторами приведены на рис. 4.1. Гидроэлеваторными системами можно также забирать воду с глубины до 20 м или по горизонтали до 100 м. В качестве струйных насосов в этих системах используют гидроэлеваторы Г-600 и Г-600А.

Тактико-техническая характеристика гидроэлеватора Г-600А

Подача при напоре в линии перед гидроэлеватором 80 м, л/мин ___­­­­­­­­­­­­­­­­­­­­­­­______________________600

Рабочий расход воды при напоре 80 м, л/мин _________­­­______________________________550

Рабочий напор, м _____________________________________________________________20-120

Напор за гидроэлеватором при подаче 600 л/мин, м____________________________________ 17

Наибольшая высота подъема подсасываемой воды, м,

При рабочем напоре 120 м _________________________________________________________19

20 м ________________________________________________________________1,5

Условный проход, мм, патрубка:

(входного)______________________________________________________________________70 (выходного)_____________________________________________________________________80

Габаритные размеры, мм:

Длина __________________________________________________________________________685

Ширина_______________________________________________________________________ 290

Высота ________________________________________________________________________160

Масса, кг _______________________________________________________________________5,6

Объем одного рукава длиной 20 м в зависимости от его диаметра приведен ниже:

Требуемое количество воды для запуска гидроэлеваторных систем приведено в табл. 4.6

ТАБЛИЦА 4.6. КОЛИЧЕСТВО ВОДЫ, НЕОБХОДИМОЙ ДЛЯ ЗАПУСКА ГИДРОЭЛЕВАТОРНЫХ СИСТЕМ

Примечание: во всех гидроэлеваторных системах используют прорезиненные рукава диаметром 77 мм.

Требуемое количество воды для запуска гидроэлеваторной системы определяют по формуле:

где V сист. - количество воды для запуска гидроэлеваторной системы, л; N р - число рукавов в гидроэлеваторной системе, шт.; V р - объем одного рукава длиной 20 м; K - коэффициент, который зависит от числа гидроэлеваторов в системе, работающей от одной пожарной машины, и равен: для одногидроэлеваторной системы - 2, для двухгидроэлеваторной - 1,5.

Определив требуемое количество воды для запуска гидроэлеваторной системы по формуле (4.5) или по табл. 4.6, сравнивают полученный результат с запасом воды, находящейся в пожарной автоцистерне, и выявляют возможность запуска системы в работу. Далее определяют возможность совместной работы насоса пожарной машины с гидроэлеваторной системой. Для этой цели вводят понятие коэффициент использования насоса И. Коэффициент использования насоса - это отношение расхода воды гидроэлеваторной системы Q сист к подаче насоса Он при рабочем напоре. Расход воды гидроэлеваторной системы определяют по формуле:

где N г - число гидроэлеваторов в системе, шт.; Q 1 - рабочий расход воды одного гидроэлеватора, л/с; Q 2 - подача одного гидроэлеватора, л/с.

Следовательно, коэффициент использования насоса можно определить по формуле:

где Q сист И Q н , - соответственно расход воды гидроэлеваторной подача насоса пожарной машины, л/с.

Коэффициент И должен быть менее единицы. Наиболее устойчивая совместная работа гидроэлеваторной системы и насоса при И = 0,65 - 0,7.

При заборе воды с больших глубин (18 - 20 м и более) на насосе необходимо создавать напор, равный 100 - 120 м. В этих условиях рабочий расход воды в гидроэлеваторной системе будет повышаться, а расход воды насоса - снижаться по сравнению с номинальным и могут создаться условия, когда суммарный рабочий расход гидроэлеваторов превысит расход насоса. В этих случаях гидроэлеваторная система не будет работать совместно с насосом.

При заборе воды одним гидроэлеватором Г-600 (Г-600А) и обеспечении работы определенного числа водяных стволов напор на насосе (если длина прорезиненных рукавов диаметром 77 мм до гидроэлеватора не превышает 30 м) определяют но табл. 4.7. В тех случаях, когда длина рукавных линий превышает 30 м (см. табл. 4.7), необходимо учитывать дополнительные потери напора. Эти потери на один рукав составляют: 7 м - при расходе воды 10,5 л/с (три ствола Б), 4 м - при расходе 7 л/с (два ствола Б) и 2 м - при расходе 3,5 л/с (один ствол Б). Поэтому при определении напора на насосе следует учитывать условную высоту подъема воды Z усл., под которой понимают фактическую высоту Z ф от уровня воды до оси насоса или горловины цистерны плюс потери на участке линии свыше 30 м. Условную высоту подъема воды определяют по формуле:

где N р - число рукавов, шт.; h р - потери напора в одном рукаве, м.

Определив условную высоту подъема воды, по табл. 4.7 находят соответствующий напор на насосе. Предельное расстояние, на которое пожарная машина обеспечит работу соответствующего числа стволов, зависит от напора на насосе, вида и диаметра рукавов магистральной линии, подъема местности, подъема стволов на пожаре и определяется по формуле 3.9.

ТАБЛИЦА 4.7. ОПРЕДЕЛЕНИЕ НАПОРА НА НАСОСЕ ПРИ ЗАБОРЕ ВОДЫ ГИДРОЭЛЕВАТОРОМ Г-600 И РАБОТЕ СТВОЛОВ ПО СООТВЕТСТВУЮЩИМ СХЕМАМ ПОДАЧИ ВОДЫ НА ТУШЕНИЕ ПОЖАРА

ПОЖАРНЫЙ ГИДРОЭЛЕВАТОР Г-600А, ПРИНЦИП ДЕЙСТВИЯ ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА, ПОРЯДОК ИСПОЛЬЗОВАНИЯ ПРИ УБОРКЕ ВОДЫ ИЗ ПОМЕЩЕНИЙ И ЗАБОРЕ ВОДЫ ИЗ ВОДОИСТОЧНИКОВ.

ПОЖАРНЫЙ ГИДРОЭЛЕВАТОР Г-600А, ПРИНЦИП ДЕЙСТВИЯ ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА, ПОРЯДОК ИСПОЛЬЗОВАНИЯ ПРИ УБОРКЕ ВОДЫ ИЗ ПОМЕЩЕНИЙ И ЗАБОРЕ ВОДЫ ИЗ ВОДОИСТОЧНИКОВ.

Г-600А.Предназначен для забора воды из открытых водоисточников, которые находятся ни­же уровня насоса до 20 м и удалены от пожарного авто­мобиля на расстояние до 100 м. Гидроэлеватор может забирать воду из водоисточников с небольшой глубиной (5. 10см). Это свойство гидроэлеваторов позволяет ис­пользовать их для откачки воды, пролитой при тушении пожара.

Гидроэлеватор Г-600А состоит из корпуса, на котором шпильками закреплены колено и диффузор со смесительной камерой. Внутри корпуса установлен конический насадок, через который проходит поток рабочей жидкости, подаваемой от центробежного насоса ПА. Эжектируемая жидкость из открытого водоисточника через всасывающую сетку поступает в вакуумную камеру и далее вместе с потоком рабочей жидкости перемещается в смесительную камеру и диффузор. Для соединения гидроэлеватора пожарными рукавами предусмотрены на колене гидроэлеватора и диффузора муфтовые соединительные головки

При заборе воды с использованием гидроэлеватора Г-600 применяются следующие способы:

А. Через емкость пожарной автоцистерны .

Б. Через всасывающую полость насоса

Водоструйный насос – гидроэлеватор пожарный входит в комплект ПТВ каждого пожарного автомобиля. Он используется для забора воды из водоисточников с уровнем воды, превышающим геодезическую высоту всасывания пожарных насосов. С его помощью можно забирать воду из открытых водоисточников с заболоченными берегами, к которым затруднен подъезд пожарных машин. Он может быть использован как эжектор для удаления из помещений воды, пролитой при тушении пожаров.

Пожарный гидроэлеватор представляет собой устройство эжекторного типа. Вода (рабочая жидкость) от пожарного насоса поступает по рукаву, подсоединенному к головке, в колено и далее в сопло. При этом потенциальная энергия рабочей жидкости преобразуется в кинетическую энергию. В камере смешения происходит обмен количества движения между частицами рабочей и всасываемой жидкости: при поступлении смешанной жидкости в диффузор осуществляется переход кинетической энергии смешанной и транспортируемой жидкости в потенциальную. Благодаря этому в камере смешения создается разрежение. Этим обеспечивается всасывание подаваемой жидкости. Затем в диффузоре давление смеси рабочей и транспортируемой жидкостей значительно повышается в результате снижения скорости движения. Это позволяет осуществлять нагнетание воды.

Количество воды, эжектируемое гидроэлеватором, зависит от высоты всасывания и давления на насосе.

Производительность при давлении в напорной линии

перед гидроэлеватором 0,8 МПа (8 кгс/см2), л/мин, не менее . 600

Рабочий расход воды при давлении 0,8 Мпа (8 кгс/см2), л/мин. 550

Висота всасивания 20м.

Условный проход, мм, патрубка:

Масса, кг, не более. 5,6

ОСОБЕННОСТИ РАБОТЫ НАСОСНЫХ СТАНЦИЙ 1-ГО ПОДЪЕМА

Насосные станции 1 подъема забирают воду из источника и подают ее на очистные сооружения или, если не требуется очистка воды, в аккумулирующие емкости (резервуары чистой воды, водонапорные башни, гидропневматинеские баки), а в некоторых случаях непосредственно в распределительную сеть. Характерной особенностью насосных станций 1 подъема является более или менее равномерная подача в течение суток.

НАЗНАЧЕНИЕ И УСТРОЙСТВО ЛЕГКОСБРАСЫВАЕМЫХ КОНСТРУКЦИЙ.

Защитное действие легкосбрасываемых ограждающих конструкций состоит в том, что они разрушаются в начальной стадии взрыва, когда давление газов - продуктов взрыва - не достигло ещё большого значения и является неопасным для основных (несущих) конструкций.

Через проёмы, которые образовались в результате разрушения легкосбрасываемых кострукций, избыточные объёмы газов - несгоревшей смеси и продуктов взрыва - вытесняются из помещения здания наружу. За счёт выброса некоторой части избыточных объёмов газа давление и, следовательно, нагрузка на основные конструкции уменьшаются по сравнению с той нагрузкой, которая имела бы место при взрыве такой же смеси в замкнутом объёме.

Площадь легкосбрасываемых конструкций следует определять путём расчёта. При отсутствии расчётных данных площадь легкосбрасываемых конструкций должна составлять не менее 0,05 м2 на 1 м3 объёма помещения категории А и не менее 0,03 м2 - категории Б. При этом конструкции остекления относятся к легкосбрасываемым, если толщина стекла составляет 3; 4 и 5 мм, а его площадь не менее соответственно 0,8; 1 и 5 м2.

НАЗНАЧЕНИЕ, УСТРОЙСТВО И ПРИНЦИП РАБОТЫ СПРИНКЛЕРНЫХ УСТАНОВОК ВОДЯНОГО ПОЖАРОТУШЕНИЯ.

Спринклерные установки предназначены для местного (локального) тушения и локализации пожаров в помещениях распыленной водой. В зависимости от температурных условий объекта они подразделяются на три вида: водяные, в которых вся система трубопроводов круглогодично заполнена водой; применяются в отапливаемых помещениях с гарантированной температурой воздуха не ниже 5° С; воздушные, в которых трубопроводы заполнены водой до контрольно-пускового узла, а остальная сеть, находящаяся в режиме дежурства, постоянно заполнена сжатым воздухом; применяются в неотапливаемых помещениях со среднесуточной температурой 8° С и ниже в районах с продолжительностью отопительного сезона более 240 дней в году; воздушно-водяные (переменные), которые в теплый период года действуют как водяные, а в холодный — как воздушные.

Установка работает следующим образом. При возникновении пожара вскрывается легкоплавкий замок спринклера 5. Вода из распределительной сети 6 подается в очаг пожара. Давление в распределительном 4 и магистральном 8 трубопроводах падает, после чего открывается клапан контрольно-пускового узла с клапаном ВС (КПУ) 7, пропуская воду в сеть к вскрывшемуся спринклеру. Вода в этот период поступает к КПУ с открытым клапаном от автоматического водопитателя (пневмобака) 14. Одновременно с началом тушения пожара вода от КПУ по кольцевой выточке клапана водосигнального ВС и трубопроводу поступает к сигнализатору давления 3. Импульс от сигнализатора давления подается по электропроводам к сигнальному устройству, которое при помощи звукового сигнала сообщает о возникновении и начале тушения пожара, а световое табло информирует о месте его возникновения. Продолжительность подачи воды от автоматического водопитателя на тушение пожара зависит от его вместимости, а также числа вскрывшихся спринклеров.

ПОЖАРНЫЙ ГИДРОЭЛЕВАТОР Г-600А, ПРИНЦИП ДЕЙСТВИЯ ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА, ПОРЯДОК ИСПОЛЬЗОВАНИЯ ПРИ УБОРКЕ ВОДЫ ИЗ ПОМЕЩЕНИЙ И ЗАБОРЕ ВОДЫ ИЗ ВОДОИСТОЧНИКОВ.

Г-600А.Предназначен для забора воды из открытых водоисточников, которые находятся ни­же уровня насоса до 20 м и удалены от пожарного авто­мобиля на расстояние до 100 м. Гидроэлеватор может забирать воду из водоисточников с небольшой глубиной (5. 10см). Это свойство гидроэлеваторов позволяет ис­пользовать их для откачки воды, пролитой при тушении пожара.

Гидроэлеватор Г-600А состоит из корпуса, на котором шпильками закреплены колено и диффузор со смесительной камерой. Внутри корпуса установлен конический насадок, через который проходит поток рабочей жидкости, подаваемой от центробежного насоса ПА. Эжектируемая жидкость из открытого водоисточника через всасывающую сетку поступает в вакуумную камеру и далее вместе с потоком рабочей жидкости перемещается в смесительную камеру и диффузор. Для соединения гидроэлеватора пожарными рукавами предусмотрены на колене гидроэлеватора и диффузора муфтовые соединительные головки

При заборе воды с использованием гидроэлеватора Г-600 применяются следующие способы:

А. Через емкость пожарной автоцистерны .

Б. Через всасывающую полость насоса

Водоструйный насос – гидроэлеватор пожарный входит в комплект ПТВ каждого пожарного автомобиля. Он используется для забора воды из водоисточников с уровнем воды, превышающим геодезическую высоту всасывания пожарных насосов. С его помощью можно забирать воду из открытых водоисточников с заболоченными берегами, к которым затруднен подъезд пожарных машин. Он может быть использован как эжектор для удаления из помещений воды, пролитой при тушении пожаров.

Пожарный гидроэлеватор представляет собой устройство эжекторного типа. Вода (рабочая жидкость) от пожарного насоса поступает по рукаву, подсоединенному к головке, в колено и далее в сопло. При этом потенциальная энергия рабочей жидкости преобразуется в кинетическую энергию. В камере смешения происходит обмен количества движения между частицами рабочей и всасываемой жидкости: при поступлении смешанной жидкости в диффузор осуществляется переход кинетической энергии смешанной и транспортируемой жидкости в потенциальную. Благодаря этому в камере смешения создается разрежение. Этим обеспечивается всасывание подаваемой жидкости. Затем в диффузоре давление смеси рабочей и транспортируемой жидкостей значительно повышается в результате снижения скорости движения. Это позволяет осуществлять нагнетание воды.

Количество воды, эжектируемое гидроэлеватором, зависит от высоты всасывания и давления на насосе.

Производительность при давлении в напорной линии

перед гидроэлеватором 0,8 МПа (8 кгс/см2), л/мин, не менее . 600

Рабочий расход воды при давлении 0,8 Мпа (8 кгс/см2), л/мин. 550

Висота всасивания 20м.

Условный проход, мм, патрубка:

Масса, кг, не более. 5,6

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

Работа от гидранта. Работа с гидроэлеватором. Схемы забора воды.

Схема гидранта и пожарной колонки
Необходимые действия при работе от гидранта

  • Установить колонку на гидрант
  • Присоединить 2 напорно-всасывающих рукава от колонки к всасывающему штуцеру насоса через водосборник.
  • Закрыть сливной краник и все вентили у насоса.
  • Открыть полностью клапан гидранта.
  • Открыть шиберы у пожарной колонки.
  • Выпустить воздух из насоса через вакуум-клапан.
  • Включить насос.
  • Открыть выкидной штуцер.
  • Установить необходимое давление.
  • При необходимости открыть вентили теплообменника.
Наиболее характерные ошибки допускаемые водителями при работе
  1. Неполное открывалке клапана гидранта и шиберов колонки.
  2. Вращение центральным ключом при открытых шиберах колонки.
  3. Выключение сцепления при больших оборотах двигателя.
  4. Резкое включение сцепления.
Дополнения и пояснения

При работе с гидрантом необходимо прежде всего уяснить конструкцию гидранта московского образца и назначение разгрузочного клапана. Необходимо различать гидрант московского образца и новые гидранты ГОСТ 8220—85, т. к. для полного открытия клапана у первого требуется сделать 11—12 полных оборотов, а у второго 12—15 оборотов центральным ключом колонки (т. о. не менее 24 полуоборотов).

Полное открывание клапана должно контролироваться по прекращению выхода воды из сливного отверстия гидранта.

Работа с гидроэлеватором

Гидроэлеваторное кольцо может быть составлено по следующим основным схемам: (для перехода нажмите на каждую схему)

  1. Насос — гидроэлеватор — насос.
  2. Насос — гидроэлеватор — разветвление — насос.
  3. Насос — гидроэлеватор — цистерна — насос (ленинградский способ).

Кроме этого гидроэлеватор может использоваться для уборки воды из помещении с установкой автомобиля (мотопомпы) на водоисточник.

Работа гидроэлеваторгого кольца с использование рукавов 66 мм

Схема работы с гидроелеватором

Для работы гидроэлеватора Г-600 должны применяться прорезиненные рукава диаметром 77 мм. При прокладке линии из рукавов 66 мм производительность гидроэлеватора резко падает, т. к. эти рукава обладают значительно большим сопротивлением. Так при спрыске 19 мм гидроэлеватор может обеспечить подачу воды с расстояния только до 40 м без подъема. Полноценную замену могут дать 2 параллельные обратные линии из рукавов 66 мм (см. рис. 1). Для этой цели на гидроэлеватор присоединяют тройник от старого лафетного ствола ПЛС-75 или изготавливают его специально и держат навернутым на диффузоре вместо муфтовой головки. Запуск системы не отличается от описанных способов ничем.

Забор воды гидроэлеватором с установкой автомобиля на водоисточник

Уборка воды гидроэлеватором

При наличии водоисточника (гидранта или водоема) его надо использовать при уборке (откачке) воды из помещения. Для этого вода из водоисточника подается насосом в напорную линию гидроэлеватора, а от гидроэлеватора идет в канализацию (см. рис. 2). Такая схема надежнее в работе, чем замкнутое гидроэлеваторное кольцо и не требует специальных навыков.

Давление на насосе можно держать от 6 до 9 атм. В отдельных случаях, при напоре в гидранте 3—4 атм, уборку воды можно проводить без установки автомобиля, присоединив напорную линию гидроэлеватора непосредственно к колонке.

Забор воды с помощью гидроэлеваторных систем

Непосредственному забору воды пожарными автомобилями из естественных водоисточников часто препятствуют крутые и заболоченные берега. В таких случаях необходимо применять для забора воды гидроэлеватор Г-600 и его модификации. Возможные схемы забора воды с помощью гидроэлеватора представлены на рис. 10.2. Сформулируем рассматриваемую задачу следующим образом. На тушение пожара требуется подать определенное количество стволов – Nст с общим расходом Q. Подъезд к водоисточнику возможен не ближе L1, высота перепада местности от места забора воды до автомобиля составляет h. Чтобы определить требуемый напор на насосе автоцистерны и предельную длину магистральной линии от автомобиля до позиции ствольщика lпр (м), составляется расчетная схема развертывания для забора и подачи воды с помощью гидроэлеватора, которая показана на рис.10.1. Техническая характеристика гидроэлеваторов приведена в таблице 10.2.

Показатели Единицы измерения Марки гидроэлеваторов
Г-600 Г-600А
Производительность при давлении перед гидроэлеватором 0,8 – 1 МПа Л мин
Рабочее давление МПа 0,2-1,0 0.2-1,2
Рабочий расход воды при давлении перед гидроэлеватором 0,8 – 1 МПа Л мин
Коэффициент эжекции - 1,1 1,1
Наибольшая высота подъема подсасываемой воды: При рабочем давлении 1,2 МПа При рабочем давлении 0,2МПа М 1,5 1,5
Масса кг 6,9 5,6


Рис. 10. 1. Расчетная схема развертывания отделения на АЦ для забора воды гидроэлеватором и подачи стволов к месту пожара.

Классификация и принцип работы струйных насосов, их разновидности и функциональные особенности. Назначение, технические характеристики, устройство и работа гидроэлеватора Г-600, возможности и распространенные ошибки при эксплуатации. Газоструйные насосы.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 09.12.2012
Размер файла 726,3 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1. Классификация

Струйные насосы относятся к классу динамических насосов. По природе преобладающих сил, действующих на жидкость при работе струйных насосов, они относятся к смешанному виду, так как перекачиваемая жидкость получает энергию за счет действия на неё как массовых сил (сил инерции), так и силы жидкостного трения.

В пожарной охране применяют два типа струйных насосов по состоянию рабочей среды, подводимой к насосу: газоструйные и водоструйные.

Принцип работы струйного насоса. Рабочая среда подходит к насадку 1, который имеет сопло. На выходе из сопла жидкость, обладая запасом кинетической энергии, имеет максимальную скорость.

Увеличение скорости потока рабочей жидкости приводит к уменьшению давления в струе и камере 2 ниже атмосферного. Эжектируемая жидкость под действием атмосферного давления поступает в камеру 2 и уносится рабочей струёй в расширяющуюся камеру диффузора 3, где уменьшается скорость (скоростной напор) и увеличивается пьезометрический напор (давление) жидкости. Расход жидкости Q3 в камере диффузора 3 равен сумме расходов рабочей Q1 и эжектируемой жидкости Q2:

Физические зависимости работы струйного насоса могут быть выражены уравнением неразрывности потока и уравнением сохранения энергии:

Q = SV и P/г + V 2 /2q + Z = const

Струйные насосы характеризуются следующими основными параметрами:

- коэффициентом эжекции = QЭ/Q1;

- коэффициентом подпора = H2/ H1;

- коэффициентом площади сечений m = 2/ 1;

- коэффициентом полезного действия = ;

Q3 - подача эжектируемой жидкости, (м 3 /с);

Q1 - подача рабочей жидкости, (м 3 /с);

H2 - напор за диффузором, (м);

H1 - напор перед соплом, (м);

2 - площадь сечения горловины диффузора, (м 2 );

1 - площадь сечения сопла, (м).

Параметры струйных насосов зависят от конструктивных особенностей, рода и температуры рабочей жидкости, шероховатости поверхностей и во многом от соотношения площадей 1 и 2.

2. Водоструйные насосы

Водоструйные насосы в пожарной технике применяются для забора и подачи из открытого водоисточника дополнительного количества воды, а так же в качестве смесителей при необходимости получения раствора пенообразующего вещества или смачивателя в воде.

Представителем первого из них является гидроэлеватор Г-600А, второго - стационарные (ПС-5, ПС-12) и переносные (ПС-1, ПС-2, ПС-3) пенные смесители.

3. Назначение, т.т.х., устройство и работа гидроэлеватора Г-600

Назначение и устройство

Предназначен для забора воды из открытых водоисточников, которые находятся ниже уровня насоса до 20 м и удалены от пожарного автомобиля на расстояние до 100 м. Гидроэлеватор может забирать воду из водоисточников с небольшой глубиной (5…10 см). Это свойство гидроэлеваторов позволяет использовать их для откачки воды, пролитой при тушении пожара.

Техническая характеристика гидроэлеватора Г-600

Производительность при давлении в напорной линии перед гидроэлеватором 0,8 МПа (8 кгс/см 2 ),

Рабочий расход воды при давлении 0,8 МПа

Рабочее давление, МПа (кгс/см 2 )…. ………. 0,2…1,2

Давление за гидроэлеватором при производительности 600 л/мин, не менее 0,17

Наибольшая высота подъема подсасываемой воды, м, при рабочем давлении, МПа:

Условный проход, мм, патрубка:

Забор и подачу воды Г-600 осуществляют в следующем порядке:

· установить АЦ и собрать рукавную линию по схеме, устранить резкие перегибы в рукавах, в цистерну через люк опустить напорно-всасывающий рукав и для устранения резких перегибов закрепить его рукавной задержкой;

· выжав сцепление, включить коробку отбора мощности на насос и плавно отпустить педаль сцепления;

· выключить сцепление рычагом из насосного отсека; открыть одну напорную задвижку на насосе (к гидроэлеватору) и задвижку на трубопроводе от цистерны; остальные задвижки и краны должны быть закрыты;

· при возвращении воды от гидроэлеватора в цистерну открыть задвижку на напорном коллекторе насоса (к стволу);

· установить необходимый напор на насосе (70…80 м);

Гидроэлеватор Г-600 обеспечивает работу одного ствола со спрыском диаметром 19 мм или трех стволов со спрыском диаметром 13 мм.

В случаях когда необходимо подавать воду на тушение пожаров через два ствола (расход до 10 л/с), а диаметр трубопровода из цистерны в насос недостаточен для поддержания уровня воды в емкости и стабильной работы насосной установки, необходимо всасывающий рукав от насоса опустить в емкость через люк.

Для насосов ПН-40 и ПН-30 в этом случае достаточно использовать водосборник, на один патрубок которого установлена заглушка, а к другому подсоединен рукав от гидроэлеватора.

Во время запуска вакуумный клапан должен быть открыт для выпуска воздуха. После запуска такой системы необходимо закрыть задвижку от цистерны, и затем подать воду к стволам.

В некоторых случаях устанавливают разветвление перед водосборником, через которое выпускают воздух при запуске системы, воздух в насос не попадает, что ускоряет запуск системы.

При подаче воды на пожар в количестве 10…20 л/с используют два гидроэлеватора, включаемые параллельно. Запускают в работу гидроэлеваторы поочередно: сначала один, потом другой.

Наиболее характерными ошибками при работе с гидроэлеваторами являются:

· перекручивание и перегибы рукавов при прокладке рукавных линий;

· резкое открывание напорных задвижек при подаче воды к стволам;

· снижение давления в рукавной линии от гидроэлеватора к водосборнику на всасывающей полости насоса;

· при использовании водосборника подача воды к стволам при открытой задвижке на трубопроводе от емкости цистерны;

· неполное открывание напорной задвижки на насосе при подаче воды к гидроэлеватору при запуске;

· превышение предельного расстояния до водоисточника.

При использовании гидроэлеваторов для забора и подачи воды к пожару необходимо знать количество воды, необходимое для запуска системы. Воды в емкости должно быть достаточно для заполнения всей рукавной системы до гидроэлеватора и от него к насосу. С учетом продолжительности запуска системы расчетный объем воды должен быть с коэффициентом запаса не менее двух.

Данные по объему воды в одном пожарном рукаве длиной 20 м при диаметре рукава: 51 мм - 40 л; 66 мм - 70 л и 77 мм - 95 л.

При техническом обслуживании гидроэлеваторов необходимо проверять; наличие и исправность резиновых прокладок в соединительных головках; крепление и чистоту решеток во всасывающем отверстии; плотность фланцевых соединений и затяжку гаек; чистоту отверстия конического насадка.

4. Газоструйные насосы

насос газоструйный гидроэлеватор

Газоструйные насосы в пожарной технике нашли применение в качестве вакуумных аппаратов для создания разряжения во всасывающей рукавной линии и в центробежном насосе. Работают от выхлопных газов двигателей пожарных автомобилей, а на мотопомпе МП-800Б - на воздухе, подаваемом одним из цилиндров двигателя, работающем при включении вакуум-аппарата как компрессор. В связи с изложенным, все газоструйные аппараты на всех отечественных эксплуатирующихся пожарных автомобилях устанавливаются на выхлопных тракторах двигателей перед глушителем.

Конструктивно большинство газоструйных вакуумных аппаратов отличаются незначительно.

Назначение - первоначальное заполнение насоса и всасывающей линии водой при работе из водоема осуществляется вакуумной системой, состоящей из вакуумного струйного насоса, установленного на выхлопной линии автомобиля, вакуумного затвора, установленного в верхней части насоса, трубопроводов и рычагов управления.

Вакуумный затвор служит для соединения полости насоса с камерой разрежения диффузора вакуумного струйного насоса при отсасывании воздуха из полости насоса.

При повороте до упора на себя рукоятки 8 (рис. 7) кулачок валика открывает нижний клапан 12 (верхний клапан 7 закрыт) и соединяет полость насоса с камерой разрежения вакуумного струйного насоса. При включении вакуумного затвора кулачок валика открывает верхний клапан (нижний клапан закрыт) и соединяет трубопровод, идущий к вакуумному струйному насосу, с атмосферой через отверстие, имеющееся в корпусе вакуумного затвора, что способствует быстрому сливу воды. из трубопровода.

Блок вакуумного струйного насоса и газовой сирены служит для создания в камере диффузора разрежения и получения сигнала тревоги.

Газовая сирена включается из кабины водителя рычагом 1 (рис. 2) через систему тяг 4 и рычаг 5 (рис. 3). В обычном положении заслонки прижаты пружиной к своим седлам и выхлопные газы проходят свободно по трубопроводам. При включении сирены заслонка 3 перекрывает прямое движение выхлопных газов, и они попадают через распределитель в резонатор /. Положение заслонки фиксируется «рычагом и давлением выхлопных газов.

Выхлопная и вакуумная системы:

Блок вакуумного струйного насоса и газовой сирены:

6-ось; 7-крышка; 9-пружина; 10-сопло; 11-диффузор

К нижнему патрубку корпуса через прокладку закреплен диффузор 11 с соплом 10.

Включение вакуумного струйного насоса из насосного отделения производится рычагом 8 (см. рис. 10) через систему тяг 5. При включении заслонки 12 (рис. 10), перекрывается прямое движение выхлопных газов и они попадают в сопло и далее через диффузор в атмосферу.

Камера разрежения соединена через трубу и вакуумный затвор с внутренней полостью насоса.

Чтобы включить вакуумную систему, необходимо открыть вакуумный затвор, включить вакуумный струйный насос и увеличить обороты двигателя. Когда вода заполнит всасывающий рукав, насос и появится в глазке 1 вакуумного затвора, необходимо закрыть затвор, снизить обороты и включить вакуумный струйный насос.

5. Система управления двигателем и вакуумным струйным насосом

насос газоструйный гидроэлеватор

В насосном отделении установлены рычаги Для управления вакуумным струйным насосом, сцеплением и оборотами двигателя.

Вакуумный струйный насос включать перемещением рычага 8 на себя. Заслонка перекрывает движение выхлопных газов по основному газопроводу, направляя его в сопло 10.

Сцепление включается при помощи пневмоцилиндра 11 через качалки 10, 13 и тяги 4, 14 пневмораспределителем 9, который соединен трубопроводами с пневмосистемой автомобиля.

Рычаг 7 (рис. 10) которым управляют оборотами двигателя, связан тросом 3 и тягой 6 с педалью 2 управления дроссельной заслонкой карбюратора. При перемещении рычага на себя в крайнее положение дроссельная заслонка полностью открыта, а в положении от себя - закрыта (до режима холостого хода - малый газ). В крайних и промежуточных положениях рычаг фиксируется на зубцах сектора.

Для безотказной работы системы управления необходимо следить за тем, чтобы тяги были правильно отрегулированы, не имели случайных прогибов, а кронштейны качалок были надежно закреплены.

Оси вращения и другие трущиеся места необходимо периодически смазывать.

Вывод: Водоструйные насосы еще длительное время будут использоваться в пожарных частях, так как они компактны, имеют маленькую массу и просты в использовании. А газоструйные насосы заменяются вакуумные насосы с электроприводом, преимуществом которых являются компактность и простота в устройстве и работе.

Подобные документы

Насосы - гидравлические машины, предназначенные для перемещения жидкостей. Принцип действия насосов. Центробежные насосы. Объемные насосы. Монтаж вертикальных насосов. Испытания насосов. Применение насосов различных конструкций. Лопастные насосы.

реферат [305,4 K], добавлен 15.09.2008

Описание рабочего процесса объёмных насосов, их виды и характеристики, устройство и принцип действия, достоинства и недостатки. Конструктивные особенности и область применения насосов различных конструкций. Техника безопасности при их эксплуатации.

реферат [909,2 K], добавлен 11.05.2011

Понятие и классификация гидравлических машин, их разновидности и функциональные особенности. Общая характеристика и свойства насосов, параметры и факторы, которые на них влияют. Основное уравнение турбомашин. Характеристики центробежного насоса.

презентация [491,3 K], добавлен 14.10.2013

Принцип работы поршневого насоса, его устройство и назначение. Технические характеристики насосов типа Д, 1Д, 2Д. Недостатки ротационных насосов. Конструкция химических однопоточных центробежных насосов со спиральным корпусом. Особенности осевых насосов.

контрольная работа [4,1 M], добавлен 20.10.2011

Описание и работа изделия ПН46Т, его внутренняя структура и функциональные возможности, назначение и цели использования. Технические характеристики привода, режимы его работы. Правила эксплуатации и главные факторы, влияющие на эффективность устройства.

отчет по практике [63,2 K], добавлен 21.07.2014

Понятие, структура и основные элементы, технологическое назначение насосов для молока. Работа насосов для молока и молочных продуктов, их разновидности, оценка преимуществ и недостатков каждого их них. Методика и этапы расчета насосной установки.

курсовая работа [1,5 M], добавлен 20.05.2011

Основные типы насосов и гидродвигателей, их назначение, классификация и область применения. Параметры гидромашин. Устройство, принцип действия шестеренного насоса. Классификация гидродвигателей. Пластинчатые насосы однократного и двукратного действия.

Пожарно-техническое вооружение

Рукавный водосборник – это приспособление, предназначенное для сбора воды из двух всасывающих рукавов и подвода ее к пожарному насосу. Как правило, водосборник входит в комплектацию технического оборудования пожарных автомобилей. Технические характеристики и материал изготовления водосборников позволяют использовать их в любом климате: умеренном, тропическом или холодном.

К примеру, водосборник ВС-125 имеет следующие характеристики: диаметр условного прохода выходного патрубка- 125мм; диаметр условного прохода двух входных патрубков- 80мм; рабочее давление – 1 МПа (10 кгс/см2). Данная модель имеет длину 290мм, ширину – 260мм, массу – не более 3,6кг.

Водосборники должны отвечать некоторым требованиям, предъявляемым государственным стандартом. К техническим характеристиками предъявляются следующие требования: конструкция должна выдерживать гидравлическое давление 1,5 + 0,1 МПа; герметичность затворного устройства при гидравлическом давлении должна составлять 0,05—0,1 МПа. Литые детали по ГОСТу изготавливаются из алюминиевого сплава (марки АК7 (АЛ9В) или АЛ9). Также в производстве водосборников возможно использовать сплавы других марок, которые обладают механическими и антикоррозийными свойствами, не ниже, чем у перечисленных выше марок сплава.

Резиновые детали водосборников должны изготавливаться из материала с диапазоном температур не меньше ±60°С. Уплотнительные прокладки по стандарту изготавливаются из картона марки А. Все литые детали водосборника должны быть целыми, без трещин, царапин и других дефектов, способных повлиять на прочность и герметичность. Допустимо наличие отдельных раковин (глубина не более 25% от толщины стенки деталей), размер которых – не более 3мм (для наружных поверхностей) и не более 5мм (для внутренних).

Гидроэлеватор для перемещения по трубопроводу жидкостей и гидросмесей

Гидроэлеватор Г – 600 представляет собой устройство эжекторного типа, служит для забора воды с глубины до 20 метров или с удаленного до 100 метров водоисточника, а также для удаления воды из помещения.

Гидроэлеватор состоит из корпуса с закрепленным на нем коленом и диффузором со смесительной камерой. Внутри корпуса находится конический насадок, проводящий поток рабочей жидкости из центробежного насоса. Также гидроэлеватор имеет всасывающую сетку (решетку), соединительную головку на входном (напорном) патрубке, соединительную головку на выходном патрубке и соединительную шпильку.

Вода с большой скоростью проходит через проточную часть гидроэлеватора, тем самым создавая при вылете перепад давления. Таким образом, транспортируемый материал поступает в смесительную камеру в гидроэлеватор и образуется гидросмесь. Далее, после смесительной камеры, струя гидросмеси проходит в диффузор, где снижается ее скорость. Так как часть кинетической энергии струи переходит в потенциальную энергию потока, давление струи повышается. Это обеспечивает перемещение гидросмеси по трубопроводам. КПД гидроэлеватора – не более 20-25%.

Гидроэлеватор достаточно прост в управлении, так как его конструкция не предусматривает движущихся частей. Довольно часто данный аппарат используют при гидромеханизации горных и строительных работ, при удалении шламов на обогатительных фабриках, в котельных и электростанциях для удаления шламов, а также при транспортировке гравия и песка.

Головки заглушки и другие типы рукавных головок: назначение, характеристики

Назначение головки заглушки – закрывать соединительные отверстия насосов и пожарный напорный рукав. Головки данного типа блокируют не использующиеся каналы подачи воды или пены. Технические характеристики головок-заглушек разные – это зависит непосредственно от модели. Как правило, модели различают размеры, вес и диаметр условного прохода.

Напорные головки-заглушки используются для напорных типов пожарных рукавов, а всасывающие – соответственно, для всасывающих рукавов. Так же и муфтовые, и цапковые головки. Таким образом, основное отличие всех вышеперечисленных рукавных головок заключается в том, что они применяются для различных типов пожарных рукавов.

Также при выборе той или иной рукавной головки следует учитывать диаметр пожарного рукава. Эти характеристики, как правило, можно найти в каталоге с описанием каждой модели. Стоит отметить, что довольно часто в каталогах указывается лишь сокращенные наименования моделей.

Например, ГР- это напорная соединительная рукавная головка; ГМ- напорная муфтовая; ГЦ – напорная цапковая; ГЗ – головка-заглушка; ГП- переходная головка; ГМВ –муфтовая всасывающая; ГРВ – всасывающая рукавная; ГЗВ- заглушка всасывающая. При выборе рукавной головки следует обратить особое внимание на качество материалов, из которых она изготовлена (это может быть пластмасса, латунь и др.).

Технические характеристики (вес, кг)

Усл. проход (DN), мм

40

50

70

80

90

100

125

150

ГЗ

ГЗВ

Головки муфтовые: назначение, технические характеристики, строение

Муфтовые головки, также как и другие типы (рукавные и цапковые), применяются для быстрого и герметичного соединения пожарных рукавов между собой или с пожарным оборудованием. Муфтовые головки бывают всасывающие и напорные и отличаются между собой тем, что применяются для всасывающих и напорных пожарных рукавов соответственно.

Соединительные муфтовые головки состоят из следующих элементов: втулка с внутренней резьбой и канавкой для уплотняющего кольца на торцовой кромке; два клыка со спиральными наклонными площадками на наружной поверхности втулки. Как правило, в каталогах компаний Вы найдете соединительные головки различных моделей. Они отличаются между собой некоторыми техническими характеристиками – размерами, диаметром условного прохода, весом, шириной по клыкам, высотой между наклонными площадками, длинной.

Как правило, муфтовые головки изготавливают из алюминиевого сплава. Этот материал испытывают на прочность путем создания гидравлического давления. Рукавные головки диаметром 80мм проходят испытание под давлением 3 кгс/см2 , а головки диаметром 100 и 125мм – под давлением 2 кгс/см2.

Также перед выпуском проводится проверка на герметичность. Такие испытания проходят под разрежением 600 мм рт. ст.в течение пяти минут, но падение вакуума не должно быть более 20 мм рт. ст. Также возможно использование муфтовых головок из пластика. Головки из этого материала, как правило, применяются для внутренних пожарных кранов.

Довольно важно при выборе рукавной головки учитывать качество материалов, из которых она изготовлена. Надежные, прочные рукавные головки позволяют удобно и быстро соединить пожарный рукав с оборудованием, а это экономит драгоценное время, которое становиться особенно ценным при пожаре.


Технические характеристики (вес, кг)

Усл. проход (DN), мм

40

50

70

80

90

100

125

150

ГМ

ГМВ

Головки муфтовые , головки муфтовые всасывающие предназначены для быстрого. прочного и герметичного соединения пожарных рукавов как между собой, так и с различным пожарным оборудованием.
Для внутренних пожарных кранов возможно использование ГМ-50П в пластмассовом исполнении.

Головки переходные для соединения пожарных рукавов различных диаметров

Переходные головки используются для быстрого, герметичного и прочного соединения пожарных рукавов различного диаметра между собой или с оборудованием. Головки такого типа служат в качестве переходника и позволяют осуществлять переход с одного диаметра на другой.

Переходные головки могут быть различных моделей, которые отличаются весом, габаритами, диаметром условного входа и некоторыми другими характеристиками. Существуют следующие модели: ГП 50x70, 50x80 и 70x80. Модель 50x70 имеет массу не более 0,7кг, внутренний диаметр 42-57м, диаметр по клыкам – 157мм. Модель 50x80 обладает следующими техническими характеристиками: масса не более 1кг, внутренний диаметр – 42-69мм, диаметр по клыкам – 142мм. В модели 70x80 внутренний диаметр составляет 57-69мм, диаметр по клыкам – 142мм, масса данной модели – не более 0,96кг.

Также различают следующие типы соединительных головок: муфтовые, цапковые, заглушки, рукавные. Заглушки используются для блокирования не использующихся каналов потока воды или пены в пожарном оборудовании. Остальные типы головок схожи в специфике применения и используются для соединения пожарных рукавов между собой или с оборудованием.

Все виды соединительных головок различаются между собой некоторыми техническими характеристиками и строением. Например, рукавные головки состоят из двух втулок с резиновыми уплотняющими кольцами и двух обойм, свободно надевающихся на соответствующие втулки. На обоймах – два клыка с наклонными спиральными площадками.

Муфтовые головки состоят из втулки с внутренней резьбой с одной стороны и канавкой для уплотняющего кольца – с другой. На наружной поверхности – два клыка со спиральными наклонными площадками. Головка-заглушка представляет собой крышку с присоединенной частью, схожей по конструкции с муфтовой головкой.

Головка переходная (ГП)

Диаметр, мм / вес , кг

ГП

Головки рукавные и другие разновидности пожарных головок для соединения пожарных рукавов

Основное предназначение рукавных головок – соединение пожарных рукавов между собой или с пожарным оборудованием. Головки рукавные могут быть изготовлены из алюминия, сплава и пластмассы. Рукавные головки, как правило, представлены различных моделей, различающихся диаметром условного прохода. Диаметр может варьироваться от 38 до 200 мм.

Также различают муфтовые, цапковые, переходные и всасывающие рукавные головки. Цапковые и муфтовые используются для соединения пожарных напорных рукавов и водопроводной арматуры. Переходные применяются для соединения пожарных рукавов с оборудованием различного типа.

Головка рукавная (ГР) Головка рукавная
(ГР латунь)
Головка рукавная
пластмассовая
(ГР-50 П)
Головка рукавная
всасывающая (ГРВ)

Технические характеристики (вес, кг)

Усл. проход (DN), мм

40

50

70

80

90

100

125

150

ГР

ГРВ

Соединительные головки ГР(головки рукавные) , ГРВ (головки рукавные всасывающие) предназначены для быстрого и герметичного соединения пожарных рукавов как между собой, так и с различным пожарным оборудованием.
Для внутренних пожарных кранов возможно использование ГР-50 П в пластмассовом исполнении (вес не более 0,14 кг).



Технические характеристики:

Наименование

Длина в рабочем состоянии, мм

Длина в транспорт-ном состоянии, мм

Ширина лестницы в свету, мм

Ширина в транспортном положении, мм

Высота в сложенном состоянии, мм

Вылет крюка, мм

Масса, кг, не более

лестница штурмовая металлическая ЛШ
ТУ 4854-034-00323890-99

Трёхколенная металлическая Л -3К
ТУ 4854-035-00323890-99

I кол. - 355±2;
II кол. - 392±2;
III кол. - 427±2

Лестница-палка металическая ЛПМ
ТУ 4854-063-00323890-2005

Лестница пожарная штурмовая металлическая - переносная конструкция, входящая в состав пожарно-технического вооружения пожарного автомобиля. Предназначена для обеспечения боевых действий при тушении пожаров и проведения связанных с ними первоочередных аварийно-спасательных работ на высотах. Она используется для подъема пожарных по наружной стене зданий и сооружений. а также для обеспечения работ при вскрытии кровли на крутых крышах. Лестница соответствует климатическому исполнению УХЛ для категории размещения 1 согласно ГОСТ 15150. Изготовлена из высококачественного металла, что обеспечивает высокую прочность и отличает этим показателем от аналогов. Не применяются металлы,взаимодействие которых приводит к контактной коррозии. Тетивы лестницы изготавливаются из профилей прессованных из алюминия и алюминиевых сплавов по ГОСТ 8617. Вся продукция проходит испытания: приемо-сдаточные, периодические и типовые.

Лестница пожарная ручная трехколенная металлическая (Л-ЗК) -переносная конструкция. входящая в состав пожарно-технического вооружения пожарного автомобиля. Предназначена для обеспечения боевых действий при тушении пожаров и проведения связанных с ними первоочередных аварийно-спасательных работ на высотах.Лестница соответствует климатическому исполнению УХЛ для категории размещения 1 согласно ГОСТ 15150. Изготовлена из высококачественного металла, что обеспечивает высокую прочность и отличает этим качеством от аналогов. Вся продукция проходит испытания: приемо-сдаточные, периодические и типовые.

Лестница-палка пожарная металлическая ЛПМ - служит средством подъема пожарных на высоту первого этажа. а также для пробивания перегородок и отбивания штукатурки. Лестница соответствует климатическому исполнению УХЛ для категории размещения 1 согласно ГОСТ 15150. Изготовлена из высококачественного металла, что обеспечивает высокую прочность и отличается этим показателем от аналогов. Не применяются металлы,взаимодействие которых приводит к контактной коррозии. Тетивы, ступеньки лестницы изготавливаются из профилей прессованных из алюминия и алюминиевых сплавов по ГОСТ 8617. Вся продукция проходит испытания: приемо-сдаточные, периодические и типовые.

Лестница пожарная ручная трехколенная металлическая Л3К – переносная конструкция, входящая в состав пожарно-технического вооружения пожарного автомобиля и предназначена для обеспечения боевых действий при тушении пожаров и проведения, связанных с ними первоочередных аварийно-спасательных работ на высотах.

Лестница соответствует климатическому исполнению УХЛ для категории размещения 1, согласно ГОСТ 15150.


фото лестниц (макеты)

Лестница веревочная спасательная ЛВС-10, ЛВС-15 - предназначена для спуска человекас высоты. в аварийной, чрезвычайной ситуации. Используется в качестве средства экстренной эвакуации персонала с мостовых кранов, буровых вышек и при проведении строительно-монтажных. отделочных и ремонтных работ на зданиях и сооружениях.

Вашему вниманию предлагаются огнетушители воздушно-пенные, применяемые при тушении пожаров класса А и В - возгорание органических твердых материалов, горение жидкостей - нефтепродуктов, масел и др. Подобная модель огнетушителя весьма востребована, благодаря своей эффективности и безопасности.

Принцип действия, который определяет огнетушитель воздушно-пенный основывается на использовании огнетушащей пены, образованной за счет пенообразователя, водного раствора и вытесняющего газа из баллона высокого давления в головке огнетушителя. Такая пена, практически полностью состоит из воздуха (доля содержащегося в пене воздуха доходит до 90%), также в ней содержится небольшой процент пенообразующего вещества - 0,2 % и воды (9.8%). Пенообразователь смешивается с водой, под действием рабочего газа, исключительно в момент применения.

Область использования воздушно-пенных огнетушителей ограничивается температурным режимом от +5 С до +50 С. Сфера применения подобных огнетушителей - начальные стадии возгорания твердых или жидких веществ, таких, как дерево, масла и т.д.

Категорически запрещается использовать воздушно-пенные огнетушители при тушении работающих электроприборов, поскольку существует высокая вероятность короткого замыкания и некоторых химических веществ, которые при взаимодействии с водой выделяют водород, усиливающий процесс горения.

Необходимое условие при использовании огнетушителя воздушно-пенного типа, которое гарантирует его надежность и, соответственно, Вашу безопасность - ежегодная перезарядка и проверка огнетушителя на специализированных станциях. Также, к неудобствам и недостаткам подобного типа огнетушителя можно отнести ограниченный температурный режим и возможность повреждения предметов, в зоне использования огнетушителя.

Использование данного оборудования подразумевает соблюдение определенных правил, исполнение которых является гарантией Вашей безопасности и длительного и эффективного срока службы огнетушителя. Во-первых, категорически запрещается прямой нагрев заряженного баллона, посредством любых источников тепла (прямые солнечные лучи, батареи, электрические обогреватели и другие)

Также, недопустимо воздействие атмосферных осадков на корпус огнетушителя, изготовленного из нержавеющей стали, защищенного специальным полимерным покрытием, огнетушители пенные могут быть выведены из строя по причине экстремальных условий хранения.

Кроме того, следует избегать механических воздействий на корпус огнетушителя - ударов, срыва пломб и т.д, и эксплуатации огнетушителя с неисправным клапаном. Воздушно-пенные огнетушители поставляются полностью заряженными и готовыми к работе.

Читайте также: