Какое физическое явление положено в основу работы стабилитрона

Обновлено: 16.05.2024

Стабилитрон – это особый тип диодов, которые также называются зенеровскими. У этого типа есть главная особенность – при подаче напряжения, выше определенного номинала, увеличивается ток на выходе. Диод Зенера, который имеет и другое название – стабилитрон, имеет вид диода, который работает в режиме пробоя обратного смещения перехода. До этого, через него проходит небольшой ток, а утечка очень маленькая, что обуславливается большим сопротивлением.

При пробое, номинал тока моментально возрастает, так как его сопротивление в данный отрезок времени несколько долей Ом. В статье изложены принцип работы, где используются и какие функции они выполняют в современной радиоэлектронике. По теме диодов Зенера в статье представлены два интересных видеоролика и подробная научная статья бонусом для читателя.

Диоды Зенера или стабилитрона.

Принцип работы стабилитрона

Стабилитрон называют диодом Зенера (от англ. Zener diode) в честь ученого, впервые открывшего явление туннельного пробоя, американского физика Кларенса Мэлвина Зенера (1905 — 1993). Открытый Зенером электрический пробой p-n перехода, связанный с туннельным эффектом, явлением просачивания электронов сквозь тонкий потенциальный барьер, называется теперь эффектом Зенера, который и служит сегодня в полупроводниковых стабилитронах. Физическая картина эффекта заключается в следующем. При обратном смещении p-n перехода энергетические зоны перекрываются, и электроны могут переходить из валентной зоны p-области в зону проводимости n-области, благодаря электрическому полю, это повышает количество свободных носителей заряда, и обратный ток резко возрастает.

Стабилитрон.

Серийные стабилитроны на данный момент изготавливаются преимущественно из кремния. Пробой при напряжении ниже 5 В — проявление эффекта Зенера, пробой выше 5 В — проявление лавинного пробоя. Промежуточное напряжение пробоя около 5 В, как правило, является результатом сочетания двух этих эффектов. Напряженность электрического поля в момент пробоя стабилитрона составляет около 30 МВ/м. Пробой стабилитрона происходит в умеренно легированных полупроводниках р-типа и сильно легированных полупроводниках n-типа. При повышении температуры на стыке уменьшается срыв стабилитрона и вклад лавинного пробоя увеличивается.

Стабилитрон на схеме.

Характеристики диода Зенера

Стабилитроны имеют следующие типичные характеристики. Vz – напряжение стабилизации. В документации указываются два значения для этого параметра: максимальное и минимальное значение напряжения стабилизации. Iz – минимальный ток стабилизации. Zz – сопротивление стабилитрона. Izk и Zzk– ток и динамическое сопротивление при постоянном токе. Ir и Vr — максимальный ток утечки и напряжение при заданной температуре. Tc — температурный коэффициент. Izrm — максимальный ток стабилизации стабилитрона.

Что такое Диод Зенера

Стабилитроны широко применяют в качестве самостоятельных стабилизирующих элементов, а также источников образцовых напряжений (опорных напряжений) в стабилизаторах на транзисторах. Для получения малых образцовых напряжений стабилитроны включают и в прямом направлении, как обычные диоды, тогда напряжение стабилизации одного стабилитрона будет равно 0,7 – 0,8 вольт.

Максимальная рассеиваемая корпусом стабилитрона мощность, обычно лежит в диапазоне от 0,125 до 1 ватта. Этого, как правило, достаточно для нормальной работы цепей защиты от импульсных помех и для построения маломощных стабилизаторов.

Немного теории

Стабильная зарплата, стабильная жизнь, стабильное государство. Последнее не про Россию, конечно :-). Если глянуть в толковый словарик, то можно толково разобрать, что же такое “стабильность”. На первых строчках Яндекс мне сразу выдал обозначение этого слова: стабильный – это значит постоянный, устойчивый, не изменяющийся. Но чаще всего этот термин используется именно в электронике и электротехнике. В электронике очень важны постоянные значения какого-либо параметра. Это может быть сила тока, напряжение, частота сигнала и другие его характеристики. Отклонение сигнала от какого-либо заданного параметра может привести к неправильной работе радиоэлектронной аппаратуры и даже к ее поломке. Поэтому, в электронике очень важно, чтобы все стабильно работало и не давало сбоев.

В электронике и электротехнике стабилизируют напряжение. От значения напряжения зависит работа радиоэлектронной аппаратуры. Если оно изменится в меньшую, или даже еще хуже, в большую сторону, то аппаратура в первом случае может неправильно работать, а во втором случае и вовсе колыхнуть ярким пламенем. Для того, чтобы не допустить взлетов и падения напряжения, были изобретены различные стабилизаторы напряжения. Как вы поняли из словосочетания, они используются чтобы стабилизировать “играющее” напряжение.

Устройство полупроводникового диода.

Стабилитрон или диод Зенера

Самым простым стабилизатором напряжения в электронике является радиоэлемент стабилитрон. Иногда его еще называют диодом Зенера. На схемах стабилитроны обозначаются примерно так: Вывод с “кепочкой” называется также как и у диода – катод, а другой вывод – анод. Стабилитроны выглядят также, как и диоды. На фото ниже, слева популярный вид современного стабилитрона, а справа один из образцов Советского Союза. Если присмотреться поближе к советскому стабилитрону, то можно увидеть это схематическое обозначение на нем самом, указывающее, где у него находится катод, а где анод.

Напряжение стабилизации

Самый главный параметр стабилитрона – это конечно же, напряжение стабилизации. Что это за параметр? Давайте возьмем стакан и будем наполнять его водой. Сколько бы воды мы не лили в стакан, ее излишки будут выливаться из стакана. Думаю, это понятно и дошкольнику. Теперь по аналогии с электроникой. Стакан – это стабилитрон. Уровень воды в полном до краев стакане – это и есть напряжение стабилизации стабилитрона. Представьте рядом со стаканом большой кувшин с водой. Водой из кувшина мы как раз и будем заливать наш стакан водой, но кувшин при этом трогать не смеем. Вариант только один – лить воду из кувшина, пробив отверстие в самом кувшине.

Маркировка стабилитронов

Для того, чтобы узнать напряжение стабилизации советского стабилитрона, нам понадобится справочник. Например, на фото ниже советский стабилитрон Д814В: Ищем на него параметры в онлайн справочниках в интернете. Как вы видите, его напряжение стабилизации при комнатной температуре примерно 10 Вольт. Зарубежные стабилитроны маркируются проще. Если приглядеться, то можно увидеть незамысловатую надпись:

5V1 – это означает напряжение стабилизации данного стабилитрона составляет 5,1 Вольта. Намного проще, не так ли?

Катод у зарубежных стабилитронов помечается в основном черной полосой.

Как проверить стабилитрон

Как же проверить стабилитрон? Да также как и диод! А как проверить диод, можно посмотреть в этой статье. Давайте же проверим наш стабилитрон. Ставим мультиметр на прозвонку и цепляемся красным щупом к аноду, а черным к катоду. Мультиметр должен показать падение напряжения прямого PN-перехода. Меняем щупы местами и видим единичку. Это значит, что наш стабилитрон в полной боевой готовности. где Uвх – входное напряжение, Uвых.ст. – выходное стабилизированное напряжение. Если внимательно глянуть на схему, мы получили ни что иное, как Делитель напряжения. Здесь все элементарно и просто:

Обозначение стабилитрона.

Вольт-амперная характеристика стабилитрона

Думаю, не помешало бы рассмотреть Вольт амперную характеристику (ВАХ) стабилитрона. Выглядит она примерно как-то так:

Сертификат и скидка на обучение каждому участнику

Любовь Богданова

открытого урока по дисциплине:

Нальчик- 201 5 г.

I .Цель урока:

1. Организовать работу студентов по усвоению новых понятий и углублению имеющихся знаний.

2. Организация самостоятельного анализа, сравнения, умозаключения и обобщения материала.

3. Сформировать убеждение о необходимости разработки данной темы.

развивающая:

1. Развить мысленную деятельность студентов, расширить технический кругозор.

2.Развить у студентов интерес к изучаемой теме.

воспитательная:

1. Привить трудолюбие.

2. Привить любовь к данной дисциплине.

II . Организация учебного процесса.

1) по форме - урок-лекция с применением ИКТ;

2) по методу – объяснение с элементами исследования;

3) по методу опроса – устная форма.

III . Межпредметные связи:

IV . Учебно-наглядные пособия:

Подготовленная к уроку презентация с рисунками и схемами, интерактивная доска.

V .Ход урока

1. Организационный момент: проверка санитарного состояния аудитории, учет посещаемости.

- Структура и принцип работы выпрямительных и импульсных диодов.

- Конструкция, параметры и использование выпрямительных диодов.

3. Изложение нового материала:

- Принцип работы стабилитрона.

- Схема включения стабилитрона.

- Основные параметры стабилитрона.

Полупроводниковый стабилитрон — полупроводниковый диод, работающий при обратном смещении в режиме пробоя. До наступления пробоя через стабилитрон протекают незначительные токи утечки, а его сопротивление весьма высоко. При наступлении пробоя ток через стабилитрон резко возрастает, а его дифференциальное сопротивление падает до величины, составляющей для различных приборов от долей Ома до сотен Ом. Поэтому в режиме пробоя напряжение на стабилитроне поддерживается с заданной точностью в широком диапазоне обратных токов.

Полупроводниковый стабилитрон — это диод, предназначенный для работы в режиме пробоя на обратной ветвивольт - амперной характеристики. В диоде, к которому приложено обратное, или запирающее, напряжение, возможны три механизма пробоя: туннельный пробой, лавинный пробой и пробой вследствие тепловой неустойчивости — разрушительного саморазогрева токами утечки. Тепловой пробой наблюдается ввыпрямительных диодах, особенно германиевых, а для кремниевых стабилитронов он не критичен. Стабилитроны проектируются и изготавливаются таким образом, что либо туннельный, либо лавинный пробой, либо оба эти явления вместе возникают задолго до того, как в кристалле диода возникнут предпосылки к тепловому пробою. Серийные стабилитроны изготавливаются из кремния, известны также перспективные разработки стабилитронов из карбида кремния и арсенида галлия.

hello_html_m2e099a7a.jpg

Рис. 1 Вольт-амперные характеристики стабилитронов с преобладанием лавинного (слева) и туннельного (справа) механизмов пробоя.

Силовые стабилитроны изготавливают из монокристаллического кремния по диффузионно-сплавной или планарной технологии, маломощные — по планарной, реже меза-технологии. В планарном диодном процессе используется две или три фотолитографии. Первая фотолитография вскрывает на поверхности защитного оксида широкие окна, в которые затем вводится легирующая примесь. В зависимости от требуемого профиля легирования могут применяться процессы ионной имплантации, химическое парофазное осаждение и диффузия из газовой среды или из поверхностной плёнки. После первичного ввода примеси её загоняют из поверхностного слоя вглубь кристалла при температуре 1100—1250°C. Затем проводят операцию геттерирования — выталкивания поверхностных дефектов в глубину кристалла и пассивацию его поверхности. Геттерирование и пассивация не только снижают шум стабилитрона, но и радикально повышают его надёжность, устраняя основную причину случайных отказов — поверхностные дефекты. Вторая фотолитография вскрывает окна для нанесения первого, тонкого слоя анодной металлизации. После неё, при необходимости, проводится электронно-лучевое осаждение основного слоя анодной металлизации, третья фотолитография и электронно-лучевое осаждение металла со стороны катода.

hello_html_m62ac0640.jpg

Рис. 2 Устройство маломощного стабилитрона с гибкими выводами в пластиковом (вверху) и стеклянном (внизу) корпусах.

Основная область применения стабилитрона — стабилизация постоянного напряжения источников питания. В простейшей схеме линейного параметрического стабилизатора стабилитрон выступает одновременно и источником опорного напряжения , и силовым регулирующим элементом. В более сложных схемах стабилитрону отводится только функция источника опорного напряжения, а регулирующим элементом служит внешний силовой транзистор .

Прецизионные термокомпенсированные стабилитроны и стабилитроны со скрытой структурой широко применяются в качестве дискретных и интегральных источников опорного напряжения (ИОН), в том числе в наиболее требовательных к стабильности напряжения схемах измерительных аналого-цифровых преобразователей .

Основные параметры стабилитрона.

Напряжение стабилизации - рабочее напряжение на стабилитроне, соответствующее средней точке области стабилизации.

Напряжение зажигания - напряжение, при котором возникает тлеющий разряд.

Ток стабилитрона - наименьший и наибольший ток, при котором стабилитрон работает устойчиво.

Ток стабилизации - ток, который бареттер при длительной работе может поддерживать постоянным.

Напряжение стабилизации - пределы изменения падения напряжения на сопротивлении стабилитрона, при которых ток, протекающий через него, изменяется не более чем на 5 %.

4. Самостоятельная работа.

5. Закрепление материала:

1. Что называется стабилитроном?

2. Что собой представляет структура стабилитрона?

3. Какие два явления заложены в принцип работы стабилитрона?

4. В чем заключается явление туннельного пробоя?

5. В чем заключается явление лавинного пробоя?

6. Что собой представляет конструкция стабилитрона?

7. Каковы основные параметры стабилитрона?

Домашнее задание:

Выучить структуру и принцип работы стабилитрона.

Знать конструкцию и основные параметры стабилитрона.

Список литературы:

Стабилитрон (или диод Зенера) — сильно легированный полупроводниковый диод, который предназначен для работы в обратном направлении. Другими словами, диод, который специально разработан для оптимизации области пробоя, известен как стабилитрон.

Ниже показано графическое обозначение стабилитрона на электрических схемах:

Обозначение стабилитрона или диода Зенера на схеме

Устройство стабилитрона

Устройство стабилитрона показано на рисунке ниже. Стабилитрон используется в режиме обратного смещения. Обратное смещение означает, что материал n-типа диода подключен к положительной клемме источника питания, а материал p-типа подключен к отрицательной клемме источника питания. Область истощения (обедненная область) диода очень тонкая, потому что он сделан из сильно легированного полупроводникового материала.

Принцип работы стабилитрона

Принцип работы стабилитрона

Стабилитрон изготовлен из сильно легированного полупроводникового материала. Сильно легированный означает, что полупроводниковый материал имеет высокое содержание примесей и это повышает его проводимость. Область обеднения стабилитрона очень тонкая из-за примесей. Сильно легирующий материал увеличивает напряженность электрического поля в обедненной области элемента даже при небольшом обратном напряжении.

Когда смещение стабилитрона не применяется, электроны остаются в валентной зоне материала р-типа и ток через диод не протекает. Зона, в которой находятся валентные электроны (крайняя электронная орбита), называется электроном валентной зоны. Электроны валентной зоны легко переходят из одной полосы в другую, когда на нее подается внешняя энергия.

Ток не протекает в схеме потому, что напряжение источника питания не равно напряжению на стабилитроне

Когда обратное смещение применяется к диоду и напряжение питания равно напряжению стабилитрона, оно начинает проводить в обратном направлении смещения. Напряжение стабилитрона — это напряжение, при котором область обеднения полностью исчезает.

Ток протекает в схеме потому, что напряжение источника питания равно напряжению на стабилитроне

Обратное смещение через диод увеличивает напряженность электрического поля в области истощения. Таким образом, это позволяет электронам перемещаться из валентной зоны материала p-типа в зону проводимости материала n-типа. Эта передача электронов валентной зоны в зону проводимости уменьшает барьер между материалом p и n-типа. Когда область истощения исчезает практически полностью, диод начинает проводить в обратном направлении.

Вольт-амперная характеристика стабилитрона

Вольт-амперная характеристика стабилитрона (диода Зенера) показана на рисунке ниже. Эта кривая показывает, что стабилитрон, когда подключен напрямую, ведет себя как обычный диод. Но когда на него подается обратное напряжение и обратное напряжение выходит за пределы заданного значения, в диоде происходит пробой и он начинает работать как стабилитрон.

Вольт-амперная характеристика стабилитрона

При пробое диода Зенера ток начинает течь в обратном направлении. График пробоя стабилитрона не совсем вертикальный, как показано выше, который показывает, что стабилитрон имеет сопротивление. Напряжение на диоде Зенера представлено уравнением, показанным ниже.

Напряжение на диоде Зенера (стабилитроне) формула

Применение стабилитрона

Диод Зенера в основном используется в коммерческих и промышленных применениях. Ниже приведены основные применения стабилитрона:

В качестве стабилизатора напряжения — стабилитрон используется для регулирования напряжения. Он обеспечивает постоянное напряжение от источника напряжения к нагрузке. Стабилитрон подключается параллельно нагрузке и поддерживает постоянное напряжение UZ и, следовательно, стабилизирует напряжение.

Для защиты измерителя — стабилитрон обычно используется в мультиметрах для защиты измерителя от случайных перегрузок. Измерительный элемент подключен параллельно с диодом Зенера. Когда в цепи происходит перегрузка, большая часть тока проходит через стабилитрон. Таким образом, измерительный элемент защищается от повреждений.

Для формирования сигнала — стабилитрон используется для преобразования синусоидальной волны в прямоугольную. Это можно сделать, подключив два стабилитрона встречно последовательно с сопротивлением.

Когда напряжение, подаваемое на нагрузку, меньше напряжения пробоя стабилитрона, диод Зенера имеет высокое внутреннее сопротивление, что эквивалентно разрыву электрической сети (разомкнутый контакт) и ток протекает только через нагрузку. Когда напряжение становится больше напряжения пробоя стабилитрона, сопротивление стабилитрона резко снижается, что является аналогом короткого замыкания (контакт замкнут) и ток протекает через стабилитрон, а не через нагрузку. Из-за чего происходит сильное падение напряжения в цепи, после падения напряжения в цепи ниже напряжения пробоя стабилитрона, сопротивление диода Зенера восстанавливается и ток перестает протекать через него. Таким образом, осуществляется защита чувствительных элементов электрической цепи от перенапряжения.


Цель работы – изучение основных свойств стабилитрона, оценка работы параметрического стабилизатора напряжения.

Стабилитрон - это разновидность полупроводникового диода, рабо­чей областью которого, в отличие от обычного выпрямительного диода, является обратная ветвь вольтамперной характеристики (ВАХ). Эта ветвь имеет область контролируемого лавинного пробоя, который является обра­тимым (в отличие от теплового пробоя, при котором pn-переход разру­шается). Под действием обратного напряжения при высокой напряженно­сти внутреннего электрического поля pn перехода, смещенного в обрат­ном направлении, происходит ударная ионизация нейтральных атомов кристаллической решетки неосновными носителями зарядов, развивается процесс лавинообразного увеличения числа носителей зарядов, в результа­те чего резко возрастает обратный ток. При лавинном характере пробоя pn-перехода незначительное изменение напряжения вызывает резкое из­менение тока, причем в диапазоне от до напряжение на нем прак­тически не меняется (рис. 1). При токах больших происходит тепловой пробой, что приводит к выходу стабилитрона из строя.

Напряжение, при котором происходит пробой, может быть различным, так как зависит от химического состава и технологии из­готовления полупроводника. Это дает возможность выпускать стаби­литроны на различное напряжение.

Стабилитроны применяются в различных устройствах: стабилиза­торах, ограничителях перенапряже­ний, в качестве опорных элементов в системах автоматического управ­ления.


К основным нормируемым параметрам стабилитрона относятся:

мощность рассеяния - мощность потерь энергии в структуре стабилитрона, превышение которой приводит к тепловому пробою стаби­литрона;

напряжение стабилизации - падение напряжения на стабилитро­не при номинальном токе стабилизации;

минимальный ток стабилизации - величина обратного тока стабилитрона, при котором наступает устойчивый лавинный пробой;

максимальный ток стабилизации - величина обратного тока стабилитрона, превышение которого приводит к тепловому пробою стаби­литрона;

динамическое сопротивление - сопротивление стабилитрона в от­крытом состоянии. Величина динамического сопротивления определяется углом наклона рабочей части ВАХ к оси напряжений (см. рис. 1):

температурный коэффициент напряжения стабилизации (ТКН) - из­менение напряжения стабилизации в зависимости от изменения темпера­туры структуры стабилитрона:

Для стабилизации напряжения ста­билитрон включают параллельно нагрузке (рис. 2). Такую схему называют параметри­ческим стабилизатором напряжения. Во входную цепь стабилизатора включают балластный резистор , который ограни­чивает ток, протекающий через стабили­трон.

Маркировка стабилитронов произво­дится в зависимости от мощности и напряжения стабилизации и состоит из четырех элементов:

1-й - материал, из которого изготовлен стабилитрон: буква Г или цифра 1 (германий); буква К или цифра 2 (кремний);

2-й - функциональное назначение полупроводникового прибора: для стабилитрона - буква С;

3-й - номер разработки в зависимости от мощности рассеяния и на­пряжения стабилизации;

4-й - буква, обозначающая разновидность прибора.


Пример условного обозначения стабилитрона: КС235А (2С235А) – кремниевый стабилитрон с мощностью рассеяния до 0,3 Вт и напряжением стабилизации 35 В.

Для стабилизации напряжения в цепи переменного тока применяются встречно включенные стабилитроны или двухсторонние стабилитроны, ВАХ которых представляет собой сочетание двух обратных ветвей.

  1. С помощью виртуального осциллографа снять ВАХ стабилитрона.
  2. Исследовать работу параметрического стабилизатора напряжения с полупроводниковым стабилитроном.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

  1. С помощью виртуального осциллографа снять ВАХ стабилитрона

Для этого нужно собрать схему в соответствии с рис. 3. В качестве источника используется генератор стандартных сигналов. Переключатель формы сигнала необходимо установить в положение “синусоидальное”, регулятор амплитуды – в положение “0”, регулятор частоты – в минимально возможное положение. Сигнал о токе стабилитрона снимается с сопротивления 100 Ом, а сигнал о напряжении на стабилитроне – непосредственно со стабилитрона.


После сборки схемы необходимо запустить программу виртуального осциллографа и снять ВАХ (рис. 5).

По полученной ВАХ определяется напряжение стабилизации:

Также по ВАХ определяется динамическое (дифференциальное) сопротивление стабилитрона, чтобы впоследствии скорректировать расчет параметрического стабилизатора. Динамическое сопротивление стабилитрона определяется по наклону прямолинейного участка обратной ветви ВАХ у оси (см. рис. 6).

  1. Исследовать работу параметрического стабилизатора напряжения с полупроводниковым стабилитроном

Чтобы исследовать работу параметрического стабилизатора напряжения с полупроводниковым стабилитроном необходимо рассчитать параметры схемы стабилизатора.

Читайте также: