Какие принципы положены в основу работы электрических машин кратко

Обновлено: 28.04.2024

Главное меню

Судовые двигатели

Главная Электродвигатели Свойства электродвигателей Режимы работы электрических машин

Электрической машиной называется устройство, служащее для преобразования механической энергии в элек­трическую или, наоборот, электрической энергии в механиче­скую. В первом случае машина называется электрическим ге­нератором, во втором случае — электродвигателем.

В основу работы электрических генераторов положен прин­цип электромагнитной индукции. Известно, что если провод­ник пересекает магнитное поле, то в нем будет наводиться электродвижущая сила (э.д. с.), которая по законам электро­магнитной индукции зависит от интенсивности магнитного по­ля, длины проводника, скорости его движения и угла между вектором поля и вектором движения проводника. Если этот проводник замкнуть, то в цепи появится электрический ток. Так как причиной наведения электродвижущей силы в проводнике является пересечение им магнитных силовых линий, той в том случае, когда проводник неподвижен, а движется (из­меняется) магнитное поле, в проводнике также будет наводиться э. д. с.

Это физическое явление и положено в основу работы элек­трических генераторов. Любой генератор состоит из устройства, служащего для создания магнитного потока (например, элек­тромагнита), и электрической обмотки, в которой наводится э. д. с. У генераторов постоянного тока обмотка обычно раз­мещается на вращающейся части, называемой якорем. Якорь располагается между полюсами, создающими магнитное поле. При вращении якоря механическим двигателем в этом магнит­ном поле в обмотке наводится э. д. с., которая прямо пропор­циональна скорости вращения и величине магнитного потока. С помощью коллектора ток подается во внешнюю цепь.

Очевидно, что для получения электроэнергии якорь (ротор) генератора должен .вращаться каким-либо двигателем, являю­щимся источникам механической энергии.

Действие электродвигателей основано на свойстве провод­ника с током двигаться в магнитном поле. Известно, что если проводник с электрическим током поместить в магнитное поле, то на него со стороны поля будет действовать сила F, завися­щая от интенсивности магнитного поля, длины проводника и ве­личины тока в нем. Таким образом, пропуская электрический ток по обмотке якоря электрической машины, можно заставить его вращаться в магнитном поле.

Характерным свойством электрических машин является их обратимость. Действительно, если якорь машины постоянного тока вращается в магнитном поле полюсов механическим дви­гателем, то машина будет источником электрической энергии. Та же машина может использоваться и как источник механи­ческой энергии. Для этого к обмотке якоря с помощью щеток и коллектора нужно подвести электрическую энергию, и якорь придет во вращение.

Таким образом, для электродвигателей возможны два основ­ных режима работы: двигательный и генераторный, часто называемый также тормозным режимом.

В двигательном режиме (рис. 1,а) к зажимам электродвигателя подводится электрическая энергия, преобразуемая им в механиче­скую. Создаваемый при этом вращающий момент принято считать положительным, так как направле­ние момента совпадает с направ­лением вращения.

При работе электродвигателя в тормозном режиме (рис. 1, б) к валу подводится механическая энергия, которая машиной преобразуется в электрическую. Создаваемый при этом вращающий момент будет отрицатель­ным, так как он препятствует вращению машины.

Любой электродвигатель может работать в любом из этих режимов при определенных условиях. При работе в двигатель­ном режиме к валу электродвигателя приложены два момента: момент, развиваемый электродвигателем, и момент, создавае­мый приводимым в движение механизмом. Последний называ­ют статическим моментом или моментом сил сопротивления на валу электродвигателя. В дальнейшем момент, развиваемый в двигательном режиме, будем называть вращающим, а момент, развиваемый в генераторном режиме, — тормозным.

Вращающий момент любого электродвигателя, прямо про­порционален магнитному потоку и току в обмотке якоря (ро­тора). Статический момент, создаваемый приводимым механизмом, определяет нагрузку электродвигателя и может быть по­ложительным и отрицательным. Статический момент положи­телен, когда его направление совпадает с направлением движе­ния, и отрицателен, когда он направлен против движения. В первом случае статический момент называется движущим, а во вторам — моментом сопротивления.

Отрицательные статические моменты создаются силами тре­ния, силами сопротивления резанию, сжатию, растяжению и скручиванию неупругих тел, а также силой тяжести при подъе­ме груза. Положительные статические моменты создаются на валу электродвигателя силой тяжести при спуске груза. Ста­тический момент может также состоять из нескольких слагае­мых, имеющих разные знаки. Например, при спуске груза си­ла тяжести создает положительный статический момент, а си­ла трения будет создавать отрицательный статический момент. Знак результирующего статического момента будет зависеть от величины первого и второго слагаемых.

Условимся момент, развиваемый электродвигателем (вра­щающий или тормозной), обозначать М, а статический момент (движущий или момент сопротивления) — M c .

Когда электродвигатель работает в установившемся режи­ме, т. е. ) при равномерном движении, всегда поддерживается равенство

±М М с . (1)

В общем случае связь между моментом электродвигателя и статическим моментом выражается уравнением

±М±М с = М j , (2)

где М — момент, развиваемый электродвигателем, кГм;

М с — статический момент, создаваемый механизмом на валу электродвигателя, кГм;

М j — динамический или избыточный момент на валу электро­двигателя, кГм.

Динамический момент является результирующим моментом рассматриваемой механической системы. Он определяется по выражению

где J — момент инерции движущих частей, приведенный к валу электродвигателя, кГм·сек 2 ;

d? / dt — угловое ускорение электродвигателя, рад/сек 2 .

Угловое ускорение двигателя определяется величиной и зна­ком динамического момента, который может быть ускоряющими тормозным.

При ± М ± М с > 0 угловое ускорение d?/dt >0 и, следователь­но, скорость двигателя увеличивается (динамический момент яв­ляется ускоряющим); при ±ММ с = 0 угловое ускорение d?/dt = 0 (имеет место установившийся режим работы электродви­гателя); при ±ММ с d?/dt М с . Если же М> М c , то имеет место ускоренное вращение электродвигателя, а при М М c — замедленное вращение электродвигателя.


Unfortunately, you are using an outdated browser. Please update your browser to improve performance, quality of the displayed material, and improve security.

Электрический двигатель (коротко – электродвигатель) преобразует энергию тока в механическое движение. Принцип работы устройства основан на магнетизме, что определяет присутствие в конструкции магнитов (постоянных, электромагнитов, материалов с магнитными свойствами).

Виды электродвигателей

Таблица классификации различает электродвигатели по разным признакам, основные из них – тип питания и принцип работы. Первый делит устройства на электродвигатели постоянного тока (работают на аккумуляторах, батарейках, других источниках) и переменного тока (запитаны напрямую от электрической сети).

По принципу работы электрические двигатели делят на синхронные и асинхронные.

  • Синхронные электродвигатели сложнее в плане конструкции. У них есть обмотка ротора, а питание подается через щеточный механизм. Свое название получили благодаря синхронности вращения с магнитным полем, которое его запускает.
  • Асинхронные просты в сборке, а потому пользуются самой большой популярностью (нет обмотки, щеток и т. д.). Их роторы двигаются медленнее магнитного поля, что определяет асинхронность вращения электродвигателя и его название.

В быту и промышленности встречаются электрические двигатели различных видов, типов, классов, мощностей. Самыми востребованными остаются простые в конструкции устройства, которые решают задачу преобразования электроэнергии в механическое вращение вала. Но даже в этой группе есть масса нюансов, которые нужно знать, чтобы правильно эксплуатировать оборудование. Начинается такая практика (грамотного использования электродвигателей для любых целей) с понимания того, как оно функционирует (принципов работы).

Принцип работы синхронного электродвигателя на видео

Принцип работы асинхронного электродвигателя на видео

Конструкция электродвигателя

  • коллектору;
  • щеточному механизму (2 щетки + 2 пластины/ламели);
  • ротору электрического двигателя (якорь, в синхронном двигателе имеет 1 обмотку);
  • статору, на котором устанавливаются магниты (в электродвигателях постоянного тока – постоянные).

Ротор

Ротор – подвижный элемент электрического двигателя, запускаемый магнитным полем, совершает вращательные движения вместе с валом. Имеет минимум 3 зуба, один из которых стабильно попадает в область подключения.

Коллектор электродвигателя

Ротор переключается автоматически. За эту функцию отвечает коллектор – конструкция из двух ламелей, закрепленных на роторном валу и двух щеток, выполняющих функцию токосъемных контактов (обеспечивают подачу постоянного тока на ламели). Принцип работы такой:

  • ротор вращается, меняя направление тока;
  • когда якорь совершает поворот на 180 градусов, ламели меняются местами;
  • при смене позиций пластин меняется и направление тока, и (соответственно) полюсы магнита;
  • одноименные полюсы, подчиняясь законам физики, взаимно отталкиваются – катушка вращается, ее полюсы притягиваются к противоположным полюсам на другой стороне магнита.

Статор электрического двигателя

Статор – стационарный или неподвижный блок электродвигателя. Другое название – индуктор . Он включает несколько обмоток со сменяемой полярностью (при прохождении переменного тока), что и обеспечивает образование магнитного поля. В большинстве случаев статор имеет 2 пары основных полюсов, но может включать и вспомогательные для лучшего переключения ротора на коллекторе.

Принцип работы электрического двигателя

3.jpg

Принцип работы электродвигателя построен на процессах взаимного притяжения и отталкивания одно- и разноименных полюсов магнитов на роторе (находится в движении) и статоре (его магнит неподвижен). В самой простой сборке электродвигателя постоянного тока в роли ротора выступает катушечный узел, а индуктором – сам магнит.

Магнитное поле электродвигателя

Принцип работы статорного электродвигателя (также называется индукционным) тоже основан на формировании магнитного поля статора. Оно образуется во время прохождения токов через его обмотки. Это поле (вращающееся магнитное) формирует магнитное поле ротора через индукцию токов в обмотках его проводников.

Оно же (статорное поле) создает собственный магнитный поток, при этом наблюдается пропорциональная связь:

  • магнитное поле статора пропорционально электронапряжению в сети;
  • магнитный поток, создаваемый вращающимся полем, пропорционален току.

Характеристики поля статора зависят от токов, проходящих через обмотки, и числа обмоток фаз. Магнитное поле ротора, в свою очередь, тоже формирует поток, движущийся медленнее потока статора. Оба потока (статора и якоря) взаимно притягиваются, принуждая ротор совершать вращательные движения.

Так возникает крутящий момент – тот самый ключевой процесс, ради которого собирается вся конструкция электродвигателя . Учитывая роль статора и ротора в работе электродвигателя переменного тока, несложно заключить, что именно эти 2 элемента имеют самое большое значение в его сборке.

Электрический двигатель постоянного тока (принцип работы синхронного электродвигателя)

4.jpg

Под синхронными электрическими двигателями понимают устройства постоянного тока. Принцип работы такого устройства можно кратко описать 4 пунктами:

  • к обмотке статора (ее еще называют индукторной или обмоткой возбуждения) подается постоянный ток;
  • проходя через обмотку, ток образует постоянное магнитное поле возбуждения (используется постоянный магнит);
  • к роторной обмотке тоже подается постоянный ток, на который воздействует поле статора, обеспечивая возникновение крутящего момента;
  • под действием вращательной силы, ротор поворачивается на 90 градусов.

Это один цикл. После поворота обмотка якоря снова подпадает под влияние статорного магнитного поля, и ротор снова совершает поворот.

Токосъемные щетки, которые представляют собой графитовые стержни с высокой проводимостью и низким коэффициентом трения при скольжении, необходимы для присоединения коллектора к сети. В качестве магнитов могут применяться физически существующие материалы с высокими магнитными свойствами. Но часто из-за их массы в электродвигателях постоянного тока увеличенной мощности магниты заменяют несколькими металлическими штифтами/стержнями. При этом:

У синхронных электрических двигателей высокой мощности, обслуживаемых постоянным током, есть ряд конструктивных нюансов, ряд из которых проявляется в динамике (во время функционирования устройства). Среди них – смещение щеток роторного коллектора по отношению к валу на определенный угол против его вращения при изменении нагрузки на двигатель. Это необходимо, чтобы компенсировать эффект, называемый реакцией ротора/якоря и предупреждению торможения вала электродвигателя, которое снижает эффективность работы подключенного к нему оборудования.

Способы подключения синхронного электродвигателя

5.jpg

Преимущество синхронных электродвигателей, обеспечиваемое принципом их работы, – поступательное (плавное) регулирование скорости вращения, это обеспечило их высокую эффективность при работе с тягой – на грузоподъемниках и электромашинах. В современной практике применяют 3 схемы подключения электрических двигателей постоянного тока: с параллельным, последовательным и комбинированным возбуждением.

В первом случае вместе (параллельно) с обмоткой ротора запускается дополнительная регулируемая (обычно) обмотка-реостат. Такой вариант эффективен, когда для нормальной работы машины требуется плавная регулировка скоростей вращательного движения и максимальной стабильности количества оборотов в минуту. Примеры – электродвигатели кранов, промышленных станков и линий.

При последовательном подключении вспомогательная роторная обмотка в цепь процессов возбуждения ротора включается последовательно. Это обеспечивает возможность резкого увеличения усилия электрического двигателя в определенные моменты (на старте движения состава, например).

Устройство синхронного электродвигателя на видео

Принцип работы УКД (коллекторных электродвигателей универсального применения)

УКД (двигатели универсального использования) применяются в маломощных устройствах и электроинструментах (бытовых, профессиональных) – везде, где требуется высокий момент вращения на хорошей скорости, плавная регулировка числа оборотов и небольшие пусковые токи. По конструкции УКД повторяют синхронные с последовательной схемой электродвигателя .

Принцип работы УКД:

  • при подаче напряжения на статоре возникает магнитное поле;
  • исполнение магнитного провода в УКД несколько отличается – здесь они сделаны не цельнолитыми, а сборными во избежание перемагничивания и нагрева токами Фуко;
  • вспомогательная обмотка ротора (индуктивность) подключается к питанию последовательно, что позволяет настраивать одинаковую направленность магнитных полей статора и ротора в одной фазе;
  • магнитные поля индуктора и якоря практически полностью синхронны – электродвигатель набирает скорость вращения при высоких нагрузках, что важно для работы многих инструментов (перфораторов, шуруповертов, пылесосов, точильных аппаратов и т. д.).

При включении в цепь электродвигателя регулируемого трансформатора добавляется еще и возможность плавной регулировки его скорости вращения. А вот изменять вектор магнитного поля, если это коллекторный двигатель переменного тока, невозможно ни при каких обстоятельствах.

Коллекторный электродвигатель общего назначение имеет много плюсов. Он выдает высокий крутящий/вращающий момент, способен развивать высокую вращательную скорость, при этом весит и места занимает немного. Есть и минусы: графитовые щетки имеют низкую износостойкость (быстро стираются на больших скоростях вращения), снижая ресурс всей сборки.

Асинхронные электрические двигатели

6.jpg

Электродвигатель переменного тока (он же асинхронный) тоже использует магнитное поле для создания крутящего момента. Его изобретатель – российский физик-электротехник, Михаил Осипович Доливо-Добровольский. Первый образец асинхронного электрического двигателя появился в 1890-м (с него начались теория и практика применения 3-фазного переменного тока).

Конструкция и устройство электродвигателей переменного тока:

  • на каждый статор наматывается 3 обмотки;
  • к каждой обмотке подключается 1 из 3 фаз;
  • для охлаждения обмоток, которые сильно нагреваются, пропуская через себя переменные токи, на торцовый вал электрического двигателя устанавливается кулер (вентилятор).
  • напряжение, подаваемое с 3 фаз на обмотки статора, образует магнитное поле (частота его вращения равна частоте вращения в сети – 50 Гц);
  • ротор располагается внутри индуктора, и в нем тоже возникает свое поле;
  • поле ротора отталкивается от поля статора, образуя вращательный момент.

За счет того, что в электрических двигателях переменного тока используется короткозамкнутая система, при взаимодействии магнитного поля статора и обмотки ротора, в последнем образуется очень большой ток. Он и формирует собственное поле якоря. Контактируя по законам взаимного притяжения/отталкивания полюсов с магнитным потоком индуктора, поле ротора приводит в движение вал электродвигателя в направлении, аналогичном направлению этого поля.

Устройство электродвигателя переменного тока на видео


Почему асинхронный?

В результате при старте работы такого электродвигателя происходит соединение с питанием и поступательное снижение активного сопротивления в цепи ротора до нуля. Нет миганий, перегрузок электросети – двигатель переменного тока запускается плавно.

Преимущества электродвигателей переменного тока

7.jpg

Электродвигатели асинхронного типа сделали возможной эксплуатацию 3-фазной сети, которая, по сути, сформирована тремя отдельными цепями с синусоидальными движущими силами (ЭДС) в каждой из них. ЭДС в фазах имеют одинаковую частоту, создаются одним источником (обычно это 3-фазный генератор), но сдвинуты по отношению друг к другу на 120 градусов.

3-фазная сеть – это уравновешенная система с константной мгновенной суммарной мощностью, а электродвигатель переменного тока, который от нее питается, имеет неоспоримые преимущества. Среди них:

Однофазные электродвигатели

Наряду с 3-фазным, в практике широко применяются и 1-фазные асинхронные электродвигатели. Они представляют собой электрооборудование, питаемое от бытовой сети с напряжением 220 В (частота – 50 Гц). Как и 3-фазный аналог, он работает на преобразование получаемой электроэнергии в механическое действие – вращение.

Устройство и принцип работы 1-фазного двигателя проще:

  • на статоре формируются минимум 2 обмотки – пусковая и рабочая;
  • оси обмоток должны быть сдвинуты по отношению друг к другу на 90%;
  • в конструкции добавляется еще один элемент – фазосдвигающий (это может быть катушка, конденсатор или резистор);
  • питание осуществляется через подачу переменного тока на обмотку.

1-фазные электродвигатели переменного тока устанавливаются на приборах бытового применения (от центрифуг стиральных машин до холодильников) и маломощных станках для обрабатывающих предприятий.

Сравнение одно- и трехфазных электрических двигателей

9.jpg

По сравнению с 3-фазными 1-фазные асинхронные двигатели несколько проигрывают по ряду характеристик:

  • мощность первых как минимум на 30% ниже при аналогичных размерах;
  • однофазные устройства не способны работать на холостом ходу дольше 5–10 минут;
  • перегрузочная способность у трехфазных значительно выше.

Главный плюс коллекторного электродвигателя общего назначения (который может питаться от постоянного тока и переменного) – экономичность. Максимальный крутящий момент и потребление тока такими устройствами ограничены благодаря индуктивному сопротивлению на малых оборотах.

Двигатели с увеличенным скольжением

В отдельную группу электродвигателей стоит выделить трехфазные устройства с повышенным сопротивлением роторной обмотки, которая обеспечивает критическое скольжение. Оно составляет в механизмах с увеличенным скольжением 40%. Сами они применяются в машинах с высокой инерционностью, работающих в режиме частых кратковременных запусков.

Каталог электродвигателей по цене производителя

Электрическая машина — это электро-механический преобразователь энергии [1] , основанный на явлениях электромагнитной индукции и силы Лоренца, действующей на проводник с током, движущийся в магнитном поле.

Классификация


Если электрическая энергия преобразуется в механическую работу и тепло, тогда электрическая машина является электрическим двигателем; когда механическая работа преобразуется в электрическую энергию и тепло, тогда электрическая машина является электрическим генератором; когда электрическая энергия одного вида преобразуется в электрическую энергию другого вида, тогда электрическая машина является электромеханическим преобразователем и когда механическая и электрическая энергии преобразуются в тепло, тогда электрическая машина является электромагнитным тормозом. Для большинства машин выполняется принцип обратимости, когда одна и та же машина может выступать как в роли двигателя, так и в роли генератора или электромагнитного тормоза.

В большинстве электрических машин выделяют ротор — вращающуюся часть, и статор — неподвижную часть, а также воздушный зазор, их разделяющий.

По принципу действия выделяют нижеследующие виды машин:

    — электрическая машина переменного тока, где частота вращения ротора не равна частоте вращения магнитного поля в воздушном зазоре. — электрическая машина переменного тока, где вращение ротора совпадает с вращением магнитного поля в зазоре. — электрическая машина переменного тока, в которой ротор и статор в общем случае имеют разные частоты питающего тока. В результате ротор вертится с частотой, равной сумме питающих частот. — электрическая машина, питаемая постоянным током и имеющая коллектор. — электрическая машина [2] переменного тока (электрический преобразователь), преобразующая электрический ток напряжения одного номинала в электрический ток напряжения другого номинала. Существуют статические и поворотные трансформаторы. на базе электрической машины.

Функции

  • Преобразование энергии — основное назначение электрических машин в качестве двигателя или генератора.
  • Преобразование переменного тока в постоянный.
  • Преобразование величины напряжения.
  • Усиление мощности электрических сигналов. В этом случае электрическая машина называется электромашинным усилителем.
  • Повышение коэффициента мощности электрических установок. В этом случае электрическая машина называется синхронным компенсатором. [3]

Примечания

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Электрические машины" в других словарях:

электрические машины — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN electrical machinery … Справочник технического переводчика

ЭЛЕКТРИЧЕСКИЕ МАШИНЫ судовые — устройства для преобразования механической энергии в электрическую и обратно. Электрические машины делятся на два основных вида: генераторы и электродвигатели. Конструктивно Электрические машины состоят из неподвижной и вращающейся системы… … Морской энциклопедический справочник

вспомогательные электрические машины железнодорожного тягового подвижного состава — вспомогательные электрические машины железнодорожного тягового подвижного состава: Электрические машины, обеспечивающие работу тяговых электрических двигателей, электрической и пневматической аппаратуры, систем управления и торможения. [ГОСТ Р… … Словарь-справочник терминов нормативно-технической документации

МАГНИТО-ЭЛЕКТРИЧЕСКИЕ МАШИНЫ — см. ДИНАМОМАШИНА. Словарь иностранных слов, вошедших в состав русского языка. Павленков Ф., 1907 … Словарь иностранных слов русского языка

двигатель Шраге (вращающиеся электрические машины) — двигатель Шраге Коллекторный двигатель параллельного возбуждения с двойным комплектом щёток. [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики машины… … Справочник технического переводчика

Машины ручные электрические класса I — Машины класса I (class I tool): машины, в которых защита от поражения электрическим током не только обеспечена основной, двойной или усиленной изоляцией, но и включает в себя дополнительные меры безопасности, при которых проводящие доступные… … Официальная терминология

Машины ручные электрические класса II — Машины класса II (class II tool): машины, в которых защита от поражения электрическим током не только обеспечена основной изоляцией, но и предусмотрены дополнительные меры безопасности, такие как двойная или усиленная изоляция, при этом не… … Официальная терминология

Машины ручные электрические класса III — Машины класса III (class III tool): машины, в которых защита от поражения электрическим током обеспечена питанием безопасным сверхнизким напряжением и в которых не возникают напряжения, превышающие безопасные сверхнизкие напряжения. Источник:… … Официальная терминология

МАШИНЫ ШПИЛЕВЫЕ — судовые вспомогательные механизмы, служащие для выбирания ката и др. тяжелых работ по тяге тросов и цепей. М. Ш. бывают паровые и электрические. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР,… … Морской словарь

МАШИНЫ РУЛЕВЫЕ — для управления современными быстроходными судами приходится к румпелю руля прикладывать весьма значительные усилия, не говоря уже о том, что в связи с этой же причиной появилось новое требование скорости перекладки руля. Все это привело к… … Морской словарь

Электродвигатель – устройство для преобразования электроэнергии во вращательное движение вращающейся части электрической машины. Преобразование энергии в двигателях происходит за счет взаимодействия магнитных полей обмоток статора и ротора. Эти электрические машины широко используются во всех отраслях промышленности, в качестве привода электротранспорта и инструментов, в системах автоматизации, бытовой техники и так далее.

Существует множество видов электродвигателей, различающихся по принципу действия, конструкции, исполнению и другим признакам. Рассмотрим основные типы этих электрических машин.

По принципу действия различают магнитоэлектрические и гистерезисные электрические машины. Несмотря на простоту конструкции, высокий пусковой момент, последние не получили широкого распространения. Эти электродвигатели имеют высокую цену, низкий коэффициент мощности, ограничивающие их применение. Подавляющее большинство выпускаемых электродвигателей – магнитоэлектрические.

По типу напряжения питания различают:

  • Электродвигатели постоянного тока.
  • Двигатели переменного тока.
  • Универсальные электрические машины.

По конструкции различают электродвигатели с горизонтально и вертикально расположенным валом. Кроме того, электрические машины классифицируют по назначению, климатическому исполнению, степени защиты от попадания влаги и посторонних предметов, мощности и другим параметрам.

Классы электродвигателей:

  • Постоянного тока
    • Бесщеточные ЕС (электронно-коммутируемые)
    • Со щетками
      • С последовательным возбуждением
      • С параллельным возбуждением
      • Со смешанным возбуждением
      • С постоянными магнитами
      • Переменного тока
        • Универсальные
        • Синхронные
        • Индукционные
          • Однофазные
          • Трехфазные

          Таблица классификации электронных двигателей:


          Электродвигатели постоянного тока

          Двигатели постоянного тока широко применяются в качестве привода электротранспорта, промышленного оборудования, а также микропривода исполнительных механизмов. Такие электрические машины обладают следующими преимуществами:

          • Возможность регулировки частоты вращения путем изменения напряжения в обмотке возбуждения. При этом крутящий момент на валу ДПТ (двигатели постоянного тока) остается неизменным.
          • Высокий к.п.д. (коэффициент полезного действия) у машин постоянного тока несколько выше, чем у самых распространенных асинхронных двигателей переменного тока. При неполной нагрузке на валу к.п.д. ДПТ выше на 10-15%.
          • Возможность изготовления ДПТ небольших габаритов. Практически все используемые микроприводы рассчитаны на постоянный ток.
          • Простота схем управления. Для пуска, реверса и регулирования скорости и момента не требуется сложного электронного оборудования и большого количества аппаратов для коммутации.
          • Возможность работы в режиме генератора. Электродвигатели такого типа можно использовать в качестве источников постоянного тока.
          • Высокий пусковой момент. ДПТ используют в составе электроприводов кранов, тяговых и грузоподъемных механизмов, где требуется запуск под значительной нагрузкой.

          ДПТ различают по способу возбуждения, они бывают:

          • С постоянными магнитами. Такие двигатели отличаются малыми габаритами. Основная область их применения – микроприводы.
          • С электромагнитным возбуждением.

          Электрические машины с электромагнитами такого типа получили самое широкое распространение. Их классифицируют по способу подключения обмотки статора:

          • Двигатели с параллельным возбуждением. Обмотки якоря и статора в электрической машине такого типа соединены параллельно. Такие электрические машины не требуют дополнительного источника питания для обмотки возбуждения, скорость вращения ротора практически не зависит от нагрузки. Их используют для привода металлорежущих станков и другого оборудования.
          • Электродвигатели с последовательно включенной обмоткой статора. ДПТ этого типа имеют значительный пусковой момент. Их применяют в качестве привода электротранспорта и промышленных установок с необходимостью пуска под нагрузкой.
          • Двигатели с независимым возбуждением. Для питания обмотки статора таких электромашин используется независимый источник постоянного тока. ДПТ такого типа отличаются широким диапазоном регулирования скоростей.
          • Электрические машины со смешанным возбуждением. Электромагнит возбуждения в таких двигателях поделен на 2 части. Одна из них включена параллельно, вторая последовательно обмотке якоря. Электрические машины такого типа используются в механизмах и оборудовании, где необходим высокий пусковой момент, а также переменная и постоянная скорость при переменном моменте.

          Электродвигатели переменного тока

          Электрические машины такого типа широко используют для приводов всех типов технологического оборудования, электроинструментов, автоматических регуляторов. По наличию разности между скоростью вращения магнитного поля статора и частотой вращения ротора различают синхронные и асинхронные двигатели.


          Асинхронные электродвигатели

          Благодаря дешевизне и простоте конструкции электрические машины такого типа получили самое широкое распространение. Их принципиальное отличие – наличие так называемого скольжения. Это разность между частотой вращения магнитного поля неподвижной части электрической машины и скоростью вращение ротора. Напряжение на вращающейся части индуцируется за счет переменного магнитного поля обмоток статора двигателя. Вращение вызывает взаимодействие поля электромагнитов неподвижной части и магнитного поля ротора, возникающего под влиянием наведенных в нем вихревых токов. По особенностям обмоток статора выделяют:

          • Однофазные двигатели переменного тока. Двигатели такого типа требуют для пуска наличия внешнего фазосдвигающего элемента. Это может быть пусковой конденсатор или индуктивное устройство. Область применения однофазных двигателей – маломощные приводы.
          • Двухфазные электрические машины. Такие двигатели имеют 2 обмотки со смещенными относительно друг друга фазами. Их также используют для бытовых устройств и оборудования, имеющего небольшую мощность.
          • Трех- и многофазные электродвигатели. Наиболее распространенный тип асинхронных машин. Электрические двигатели такого типа имеют от 3-х и более обмоток статора, сдвинутых по фазе на определенный угол.

          По конструкции ротора асинхронные электрические машины делят на двигатели с короткозамкнутым и фазным ротором.

          Обмотка ротора электрических машин первого типа представляет собой несколько неизолированных стержней, выполненных из сплавов меди или алюминия, замкнутых с двух сторон кольцами (конструкция “беличья клетка”). Асинхронные двигатели такого типа обладают следующими преимуществами:

          • Достаточно простая схема пуска. Такие электрические машины можно подключать непосредственно к электрической сети через аппараты коммутации.
          • Допустимость кратковременных перегрузок.
          • Возможность изготавливать электрические машины высокой мощности. Двигатель такого типа не содержит скользящих контактов, препятствующих наращиванию мощности.
          • Относительно простое ТО и ремонт. Асинхронные электромашины имеют несложную конструкцию.
          • Невысокая цена. Двигатели асинхронного типа стоят дешевле синхронных машин и ДПТ.

          Электрические машины с короткозамкнутым ротором имеют свои недостатки:

          • Предельная скорость вращения составляет не более 3000 об/мин при входе в синхронный режим.
          • Технически сложная реализация регулирования частоты вращения.
          • Высокие пусковые токи при прямом запуске.

          Электродвигатели с фазным ротором частично лишены недостатков, присущих машинам с ротором конструкции “беличья клетка”. Вращающаяся часть электрической машины такого типа имеет обмотки, соединенные в схему “звезда”. Напряжение подводится к обмотке через 3 контактных кольца, закрепленных на роторе и изолированных от него.

          Такие электродвигатели обладают следующими достоинствами:

          • Возможность ограничивать пусковые токи при помощи резистора, включенного в цепь электромагнитов ротора.
          • Больший, чем у электромашин с короткозамкнутым ротором, пусковой момент.
          • Возможность регулировки скорости.

          Недостатками таких двигателей являются относительно большие габариты и масса, высокая цена, более сложный ремонт и сервисное обслуживание.

          Синхронные двигатели переменного тока

          Как и в асинхронных электродвигателях, вращение ротора в синхронных машинах достигается взаимодействием полей ротора и статора. Скорость вращения ротора таких электрических машин равна частоте магнитного поля, создаваемого обмотками статора.

          Обмотка неподвижной части двигателя рассчитана на питание от трехфазного напряжения. К электромагнитам ротора подключается постоянное напряжение. Различают явнополюсные и неявнополюсные обмотки. В синхронных двигателях малой мощности используют постоянные магниты.

          Запуск и разгон синхронной машины осуществляется в асинхронном режиме. Для этого на роторе двигателя имеется обмотка конструкции “беличья клетка”. Постоянное напряжение подается на электромагниты только после разгона до номинальной частоты асинхронного режима. Синхронные двигатели имеют следующие особенности:

          • Постоянная скорость вращения при переменной нагрузке.
          • Высокий к.п.д. и коэффициент мощности.
          • Небольшая реактивная составляющая.
          • Допустимость перегрузки.

          К недостаткам синхронных электродвигателей относятся:

          • Высокая цена, относительно сложная конструкция.
          • Сложный пуск.
          • Необходимость в источнике постоянного напряжения.
          • Сложность регулировки скорости вращения и момента на валу.

          Универсальные двигатели

          В отдельную группу выделяют универсальные электродвигатели, которые могут работать от сети переменного тока и от источников постоянного напряжения. Они используются в электроинструментах, бытовой технике, а также других маломощных устройствах. Конструкция такой электрической машины принципиально не отличатся от двигателя постоянного тока. Главное отличие – конструкция магнитной системы и обмоток ротора. Магнитная система состоит из изолированных друг от друга секций для снижения магнитных потерь. Обмотка ротора такой машины поделена на 2 части. При питании от переменного тока напряжение подается только на ее половину. Это делается в целях снижения радиопомех, улучшения условий коммутации.

          К преимуществам таких машин относятся:

          • Высокая скорость вращения. Универсальные электродвигатели развивают скорость до 10 000 об/мин и более.
          • Питание от переменного и постоянного напряжения. Двигатели такого типа широко применяют для электроинструментов, имеющих дополнительные аккумуляторные батареи.
          • Возможность регулирования скорости без использования дополнительных устройств.

          Однако, такие электромашины имеют свои недостатки:

          • Ограниченная мощность.
          • Необходимость обслуживания коллекторного узла.
          • Тяжелые условия коммутации при питании от переменного напряжения из-за наличия трансформаторной связи между обмотками.
          • Электромагнитные помехи при подключении к сети переменного тока.

          Каждый тип двигателя имеет свои достоинства и недостатки. Выбор электрической машины для привода любого оборудования делается исходя из условий эксплуатации, требуемой частоты вращения, экономической целесообразности, типа нагрузки и других параметров.

          Читайте также: