Для чего нужен алгоритм работы

Обновлено: 18.05.2024

АЛГОРИТМ – система правил, сформулированная на понятном исполнителю языке, которая определяет процесс перехода от допустимых исходных данных к некоторому результату и обладает свойствами массовости, конечности, определенности, детерминированности.

На протяжении многих веков понятие алгоритма связывалось с числами и относительно простыми действиями над ними, да и сама математика была, по большей части, наукой о вычислениях, наукой прикладной. Чаще всего алгоритмы представлялись в виде математических формул. Порядок элементарных шагов алгоритма задавался расстановкой скобок, а сами шаги заключались в выполнении арифметических операций и операций отношения (проверки равенства, неравенства и т.д.). Часто вычисления были громоздкими, а вычисления вручную – трудоемкими, но суть самого вычислительного процесса оставалась очевидной. У математиков не возникала потребность в осознании и строгом определении понятия алгоритма, в его обобщении. Но с развитием математики появлялись новые объекты, которыми приходилось оперировать: векторы, графы, матрицы, множества и др. Как определить для них однозначность или как установить конечность алгоритма, какие шаги считать элементарными? В 1920-х задача точного определения понятия алгоритма стала одной из центральных проблем математики. В то время существовало две точки зрения на математические проблемы:

Все проблемы алгоритмически разрешимы, но для некоторых алгоритм еще не найден, поскольку еще не развиты соответствующие разделы математики.

Есть проблемы, для которых алгоритм вообще не может существовать.

Идея о существовании алгоритмически неразрешимых проблем оказалась верной, но для того, чтобы ее обосновать, необходимо было дать точное определение алгоритма. Попытки выработать такое определение привели к возникновению теории алгоритмов, в которую вошли труды многих известных математиков – К.Гедель, К.Черч, С.Клини, А.Тьюринг, Э.Пост, А.Марков, А.Колмогоров и многие другие.

Точное определение понятия алгоритма дало возможность доказать алгоритмическую неразрешимость многих математических проблем.

Появление первых проектов вычислительных машин стимулировало исследование возможностей практического применения алгоритмов, использование которых, ввиду их трудоемкости, было ранее недоступно. Дальнейший процесс развития вычислительной техники определил развитие теоретических и прикладных аспектов изучения алгоритмов.

В повседневной жизни каждый человек сталкивается с необходимостью решения задач самой разной сложности. Некоторые из них трудны и требуют длительных размышлений для поиска решений (а иногда его так и не удается найти), другие же, напротив, столь просты и привычны, что решаются автоматически. При этом выполнение даже самой простой задачи осуществляется в несколько последовательных этапов (шагов). В виде последовательности шагов можно описать процесс решения многих задач, известных из школьного курса математики: приведение дробей к общему знаменателю, решение системы линейных уравнений путем последовательного исключения неизвестных, построение треугольника по трем сторонам с помощью циркуля и линейки и т.д. Такая последовательность шагов в решении задачи называется алгоритмом. Каждое отдельное действие – это шаг алгоритма. Последовательность шагов алгоритма строго фиксирована, т.е. шаги должны быть упорядоченными. Правда, существуют параллельные алгоритмы, для которых это требование не соблюдается.

Понятие алгоритма близко к другим понятиям, таким, как метод (метод Гаусса решения систем линейных уравнений), способ (способ построения треугольника по трем сторонам с помощью циркуля и линейки). Можно сформулировать основные особенности именно алгоритмов.

Наличие исходных данных и некоторого результата.

Алгоритм – это точно определенная инструкция, последовательно применяя которую к исходным данным, можно получить решение задачи. Для каждого алгоритма есть некоторое множество объектов, допустимых в качестве исходных данных. Например, в алгоритме деления вещественных чисел делимое может быть любым, а делитель не может быть равен нулю.

Массовость, т.е. возможность применять многократно один и тот же алгоритм. Алгоритм служит, как правило, для решения не одной конкретной задачи, а некоторого класса задач. Так алгоритм сложения применим к любой паре натуральных чисел.

Детерминированность.

При применении алгоритма к одним и тем же исходным данным должен получаться всегда один и тот же результат, поэтому, например, процесс преобразования информации, в котором участвует бросание монеты, не является детерминированным и не может быть назван алгоритмом.

Результативность.

Определенность.

Формы представления алгоритмов.

Для записи алгоритмов необходим некоторый язык, при этом очень важно, какой именно язык выбран. Записывать алгоритмы на русском языке (или любом другом естественном языке) громоздко и неудобно.

Например, описание алгоритма Евклида нахождения НОД (наибольшего общего делителя) двух целых положительных чисел может быть представлено в виде трех шагов. Шаг 1: Разделить m на n. Пусть p – остаток от деления.

Шаг 2: Если p равно нулю, то n и есть исходный НОД.

Шаг 3: Если p не равно нулю, то сделаем m равным n, а n равным p. Вернуться к шагу 1.

Приведенная здесь запись алгоритма нахождения НОД очень упрощенная. Запись, данная Евклидом, представляет собой страницу текста, причем последовательность действий существенно сложней.

На рисунке представлена блок-схема алгоритма нахождения НОД:

Построение блок-схем из элементов всего лишь нескольких типов дает возможность преобразовать их в компьютерные программы и позволяет формализовать этот процесс.

Формализация понятия алгоритмов. Теория алгоритмов.

Приведенное определение алгоритма нельзя считать представленным в привычном математическом смысле. Математические определения фигур, чисел, уравнений, неравенств и многих других объектов очень четки. Каждый математически определенный объект можно сравнить с другим объектом, соответствующим тому же определению. Например, прямоугольник можно сравнить с другим прямоугольником по площади или по длине периметра. Возможность сравнения математически определенных объектов – важный момент математического изучения этих объектов. Данное определение алгоритма не позволяет сравнивать какие-либо две таким образом определенные инструкции. Можно, например, сравнить два алгоритма решения системы уравнений и выбрать более подходящий в данном случае, но невозможно сравнить алгоритм перехода через улицу с алгоритмом извлечения квадратного корня. С этой целью нужно формализовать понятие алгоритма, т.е. отвлечься от существа решаемой данным алгоритмом задачи, и выделить свойства различных алгоритмов, привлекая к рассмотрению только его форму записи. Задача нахождения единообразной формы записи алгоритмов, решающих различные задачи, является одной из основных задач теории алгоритмов. В теории алгоритмов предполагается, что каждый шаг алгоритма таков, что его может выполнить достаточно простое устройство (машина), Желательно, чтобы это устройство было универсальным, т.е. чтобы на нем можно было выполнять любой алгоритм. Механизм работы машины должен быть максимально простым по логической структуре, но настолько точным, чтобы эта структура могла служить предметом математического исследования. Впервые это было сделано американским математиком Эмилем Постом в 1936 (машина Поста) еще до создания современных вычислительных машин и (практически одновременно) английским математиком Аланом Тьюрингом (машина Тьюринга).

История конечных автоматов: машина Поста и машина Тьюринга.

Современный взгляд на алгоритмизацию.

Теория алгоритмов строит и изучает конкретные модели алгоритмов. С развитием вычислительной техники и теории программирования возрастает необходимость построения новых экономичных алгоритмов, изменяются способы их построения, способы записи алгоритмов на языке, понятном исполнителю. Особый тип исполнителя алгоритмов – компьютер, поэтому необходимо создавать специальные средства, позволяющие, с одной стороны, разработчику в удобном виде записывать алгоритмы, а с другой – дающие компьютеру возможность понимать написанное. Такими средствами являются языки программирования или алгоритмические языки.


Конспект по информатике "Алгоритм. Свойства алгоритмов. Блок-схемы. Алгоритмические языки" для подготовки к контрольным, экзаменам и ГИА.

Алгоритм. Свойства алгоритмов.
Блок-схемы. Алгоритмические языки

Код ОГЭ: 1.3.1. Алгоритм, свойства алгоритмов, способы записи алгоритмов.
Блок-схемы. Представление о программировании

Понятие алгоритма является одним из основных понятий вычислительной математики и информатики.

■ Алгоритм — строго определенная последовательность действий для некоторого исполнителя, приводящая к поставленной цели или заданному результату за конечное число шагов.

Любой алгоритм составляется в расчете на конкретного исполнителя с учетом его возможностей. Исполнитель — субъект, способный исполнять некоторый набор команд. Совокупность команд, которые исполнитель может понять и выполнить, называется системой команд исполнителя.

Для выполнения алгоритма исполнителю недостаточно только самого алгоритма. Выполнить алгоритм — значит применить его к решению конкретной задачи, т. е. выполнить запланированные действия по отношению к определенным входным данным. Поэтому исполнителю необходимо иметь исходные (входные) данные — те, что задаются до начала алгоритма.


В результате выполнения алгоритма исполнитель должен получить искомый результат — выходные данные, которые исполнитель выдает как результат выполненной работы. В процессе работы исполнитель может создавать и использовать данные, не являющиеся выходными, — промежуточные данные.

Свойства алгоритмов

Алгоритм должен обладать определенными свойствами. Наиболее важные свойства алгоритмов:

  • Дискретность. Процесс решения задачи должен быть разбит на последовательность отдельных шагов — простых действий, которые выполняются одно за другим в определенном порядке. Каждый шаг называется командой (инструкцией). Только после завершения одной команды можно перейти к выполнению следующей.
  • Конечность. Исполнение алгоритма должно завершиться за конечное число шагов; при этом должен быть получен результат.
  • Понятность. Каждая команда алгоритма должна быть понятна исполнителю. Алгоритм должен содержать только те команды, которые входят в систему команд его исполнителя.
  • Определенность (детерминированность). Каждая команда алгоритма должна быть точно и однозначно определена. Также однозначно должно быть определено, какая команда будет выполняться на следующем шаге. Результат выполнения команды не должен зависеть ни от какой дополнительной информации. У исполнителя не должно быть возможности принять самостоятельное решение (т. е. он исполняет алгоритм формально, не вникая в его смысл). Благодаря этому любой исполнитель, имеющий необходимую систему команд, получит один и тот же результат на основании одних и тех же исходных данных, выполняя одну и ту же цепочку команд.
  • Массовость. Алгоритм предназначен для решения не одной конкретной задачи, а целого класса задач, который определяется диапазоном возможных входных данных.

Способы представления алгоритмов:

  • словесная запись (на естественном языке). Алгоритм записывается в виде последовательности пронумерованных команд, каждая из которых представляет собой произвольное изложение действия;
  • блок–схема (графическое изображение). Алгоритм представляется с помощью специальных значков (геометрических фигур) — блоков;
  • формальные алгоритмические языки. Для записи алгоритма используется специальная система обозначений (искусственный язык, называемый алгоритмическим);
  • псевдокод. Запись алгоритма на основе синтеза алгоритмического и обычного языков. Базовые структуры алгоритма записываются строго с помощью элементов некоторого базового алгоритмического языка.

Словесная запись алгоритма

Произвольное изложение этапов алгоритма на естественном языке имеет свои недостатки. Словесные описания строго не формализуемы, поэтому может быть нарушено свойство определенности алгоритма: исполнитель может неточно понять описание этапа алгоритма. Словесная запись достаточно многословна. Сложные задачи трудно представить в словесной форме.

■ Пример 1. Записать в словесной форме правило деления обыкновенных дробей.

Решение.
Шаг 1. Числитель первой дроби умножить на знаменатель второй дроби.
Шаг 2. Знаменатель первой дроби умножить на числитель второй дроби.
Шаг 3. Записать дробь, числителем которой являет результат выполнения шага 1, знаменателем — результат выполнения шага 2.

Описанный алгоритм применим к любым двум обыкновенным дробям. В результате его выполнения будут получены выходные данные — результат деления двух дробей (исходных данных).

Формальные исполнители алгоритма

Формальный исполнитель — это исполнитель, который выполняет все команды алгоритма строго в предписанной последовательности, не вникая в его смысл, не внося ничего в алгоритм и ничего не отбрасывая. Обычно под формальным исполнителем понимают технические устройства, автоматы, роботов и т. п. Компьютер можно считать формальным исполнителем.

Исполнитель может иметь свою среду (например, систему координат, клеточное поле и др.). Среда исполнителя — это совокупность объектов, над которыми он может выполнять определенные действия (команды), и связей между этими объектами. Алгоритмы в этой среде выполняются исполнителем по шагам.

■ Пример 2. Исполнитель Крот имеет следующую систему команд:

  1. вперед k — продвижение на указанное число шагов вперед;
  2. поворот s — поворот на s градусов по часовой стрелке;
  3. повторить m [команда1 … командаN] — повторить m раз серию указанных команд.

Какой след оставит за собой исполнитель после выполнения следующей последовательности команд?

Повторить 5 [вперед 10 поворот 72]

Решение. Команда вынуждает исполнителя 5 раз повторить набор действий: пройти 10 шагов вперед и повернуть на 72° по часовой стрелке. Так как поворот происходит на один и тот же угол, то за весь путь исполнитель повернет на 5 х 72° = 360°. Поскольку все отрезки пути одинаковой длины и сумма внешних углов любого многоугольника составляет 360°, то в результате будет оставлен след в форме правильного пятиугольника со стороной в 10 шагов исполнителя.

Заметим, что если увеличить количество повторов серии команд, то исполнитель будет повторно передвигаться по тем же отрезкам (произойдет повторное движение по тому же пятиугольнику).


■ Пример 3. В системе команд предыдущего исполнителя Крот сформировать алгоритм вычерчивания пятиступенчатой лестницы (длина ступеньки — 10 шагов исполнителя).

Решение. За каждый шаг цикла должно происходить 4 действия: движение вперед на 10 шагов исполнителя, поворот на 90° по часовой стрелке, еще 10 шагов вперед и поворот на 90° против часовой стрелки (= 270° по часовой). В результате за один шаг цикла формируется ломаная из двух отрезков длиной 10 под прямым углом. За пять таких шагов сформируется 5–ступенчатая лестница (ломаная будет содержать 10 звеньев).

Повторить 5 [вперед 10 поворот 90 вперед 10 поворот 270]

Блок–схема

Блок–схема — наглядный способ представления алгоритма. Блок–схема отображается в виде последовательности связанных между собой функциональных блоков, каждый из которых соответствует выполнению одного или нескольких действий. Определенному типу действия соответствует определенная геометрическая фигура блока. Линии, соединяющие блоки, определяют очередность выполнения действий. По умолчанию блоки соединяются сверху вниз и слева направо. Если последовательность выполнения блоков должна быть иной, используются направленные линии (стрелки).

Основные элементы блок–схемы алгоритма:

Основные элементы блок–схемы алгоритма:

Общий вид блок–схемы алгоритма:

Общий вид блок–схемы алгоритма:

■ Пример 4. Алгоритм целочисленных преобразований представлен в виде фрагмента блок–схемы. Знаком := в нем обозначен оператор присваивания некоторого значения указанной переменной. Запись X := 1 означает, что переменная Х принимает значение 1.

Определить результат работы алгоритма для исходных данных Х = 7, Y = 12.


  1. Блок ввода данных определит исходные значения переменных Х и Y (7 и 12 соответственно).
  2. В первом условном блоке осуществляется сравнение значений Х и Y. Поскольку условие, записанное в блоке, неверно (7 Алгоритмические языки

Алгоритмический язык — это искусственный язык (система обозначений), предназначенный для записи алгоритмов. Он позволяет представить алгоритм в виде текста, составленного по определенным правилам с использованием специальных служебных слов. Количество таких слов ограничено. Каждое служебное слово имеет точно определенный смысл, назначение и способ применения. При записи алгоритма служебные слова выделяют полужирным шрифтом или подчеркиванием.

В алгоритмическом языке используются формальные конструкции, но нет строгих синтаксических правил для записи команд. Различные алгоритмические языки различаются набором служебных слов и формой записи основных конструкций.

Алгоритмический язык, конструкции которого однозначно преобразуются в команды для компьютера, называется языком программирования. Текст алгоритма, записанный на языке программирования, называется программой.

Псевдокод

Псевдокод занимает промежуточное положение между естественным языком и языками программирования. Пример псевдокода — учебный алгоритмический язык. Алфавит учебного алгоритмического языка является открытым. Существенным достоинством этого языка является то, что его служебные слова, конструкции и правила записи алгоритма весьма схожи с теми, что применяются в распространенных языках программирования. Благодаря этому учебный алгоритмический язык позволяет легче освоить основы программирования.

Служебные слова учебного алгоритмического языка:

Служебные слова учебного алгоритмического языка:

Стандартная структура алгоритма

Представление алгоритма на алгоритмическом языке (в том числе и языке программирования) состоит из двух частей. Первая часть — заголовок — задает название алгоритма и включает описание переменных, которые используются в нем. Вторая часть — тело алгоритма — содержит последовательность команд алгоритма.

Общий вид записи алгоритма на учебном алгоритмическом языке:


В начале заголовка записывается служебное слово алг, после чего указывается имя алгоритма. Описание переменных, являющихся аргументами алгоритма и его результатами, приводится после названия в круглых скобках.

В следующих строках конкретизируют, какие именно переменные являются аргументами алгоритма (входными данными), а какие — его результатами (выходными данными). Для этого после служебного слова арг приводится список имен переменных–аргументов; в следующей строке после служебного слова рез приводится список имен переменных–результатов.

Между служебными словами нач и кон размещается тело алгоритма — конечная последовательность команд, выполнение которых предписывает алгоритм. Команды алгоритма записывают одну за одной в отдельных строках. В случае необходимости можно записать две или более команд в одной строке, тогда соседние команды разделяют точкой с запятой. Если в алгоритме применяются промежуточные переменные, их описание приводят в начальной строке тела алгоритма рядом со словом нач.

Примеры заголовков алгоритмов:


В первом примере алгоритм имеет название Объем_шара, один вещественный аргумент Радиус и один вещественный результат Объем. Во втором примере алгоритм под названием Choice имеет три аргумента — целые M и N и логический b, а также два результата — вещественные Var1 и Var2.

Пример алгоритма вычисления гипотенузы прямоугольного треугольника:


На вход алгоритму даются два вещественных аргумента a и b (величины катетов), результатом является вещественная переменная с (гипотенуза). Для ее расчета используется функция вычисления квадратного корня sqrt.

Описание величин и действия над ними

При описании алгоритма необходимо указать названия (обозначения) всех величин, которые будут в нем найдены или использованы.

При представлении алгоритма решения в виде блок–схемы выбранные обозначения величин приводятся отдельно от блок–схемы (как объяснение к ней). Если алгоритм представлен на языке программирования, то характеристика обрабатываемых величин включается в программу. Учебный алгоритмический язык также предусматривает описание величин, используемых в алгоритме.

Все величины в алгоритме разделяют на постоянные (константы) и переменные. Константа не может изменять свои значения в процессе работы алгоритма. Переменная может приобретать различные значения, которые сохраняются до тех пор, пока она не получит новое значение. Переменным величинам назначают имена. Таким образом, переменная — это именуемая величина, которая в процессе выполнения алгоритма может приобретать и хранить различные значения.

В алгоритмическом языке не существует специальных правил именования переменных. Однако их названия не должны совпадать со служебными словами алгоритмического языка. Во многих языках программирования для имен можно использовать только латинские буквы, цифры, знак подчеркивания. Имена обязательно должны начинаться с буквы, при этом строчные и прописные буквы в именах не различаются. В одном алгоритме не могут существовать разные объекты с одинаковыми именами. Все имена являются уникальными. Имена переменных и констант стараются выбирать так, чтобы они напоминали их смысл. Например, имена переменных и констант: S, p12, result, итог.

При представлении алгоритма на алгоритмическом языке именуются не только величины, но и сам алгоритм, и другие объекты. Имя алгоритма выбирают так же, как и имена переменных.

Величина — переменная, с которой связывается определенное множество значений. Этой величине присваивается имя (в языках программирования его называют идентификатор).

Значение — то, чему равна переменная в конкретный момент. Значение переменной можно задать двумя способами: присваиванием и с помощью процедуры ввода.

Тип переменной определяет диапазон всех значений, которые может принимать данная переменная, и допустимые для нее операции. Существует несколько предопределенных типов переменных. К стандартным типам относятся числовые, литерные и логические типы.

Числовой тип предназначен для обработки числовых данных. Различают целый и вещественный числовые типы. Целый тип в учебном алгоритмическом языке обозначается служебным словом цел, к нему относятся целые числа некоторого определенного диапазона. Они не могут иметь дробной части, даже нулевой. Число 123,0 является не целым, а вещественным числом. Вещественные величины относятся к вещественному типу данных и обозначаются в учебном алгоритмическом языке служебным словом вещ. Такие величины могут отображаться двумя способами: в форме с фиксированной запятой (например, 0,0511 или –712,3456) и с плавающей запятой (те же примеры: 5,11*10 -2 и –7,123456*10 2 ).

Над числовыми данными можно выполнять арифметические операции и операции сравнения.

обозначение операций

Над целыми числами можно также выполнять две операции целочисленного деления div и mod. Операция div обозначает деление с точностью до целых чисел (остаток от деления игнорируется). Операция mod позволяет узнать остаток при делении с точностью до целых чисел. Например, результатом операции 100 div 9 будет число 11, а результатом 100 mod 9 — число 1.

Учебный алгоритмический язык использует следующие команды для реализации алгоритма:


ОПЕРАЦИЯ ПРИСВАИВАНИЯ

Вычисления в операторе присваивания выполняются справа налево: сначала необходимо вычислить значение выражения справа от знака присваивания. Поэтому допустимы конструкции вида H := Н + 10. В этом случае сначала будет вычислено выражение в правой части (12 + 10), а его результат будет присвоен в качестве нового значения переменной Н (значение 22).

Для оператора присваивания обязательно должны быть определены значения всех переменных в его правой части. Кроме того, типы данных в левой и правой части должны соответствовать друг другу.

ВВОД И ВЫВОД ДАННЫХ

При записи алгоритма с помощью блок–схемы ввод и вывод данных отображаются с помощью блоков ввода/вывода (параллелограммов). При этом только указывается перечень данных для ввода или вывода, а сам процесс не детализируется.

Описание алгоритма средствами псевдокода может вовсе не предусматривать команды ввода или вывода данных. В заголовке алгоритма указывается, какие данные являются аргументами, какие — результатами работы алгоритма. Считается, что аргументы будут предоставлены до выполнения алгоритма, результаты будут выведены после его выполнения, и описывается лишь процесс превращения аргументов в результаты.

В записи алгоритма с помощью учебного алгоритмического языка для операций ввода/вывода используются команды ввод и вывод. После этих служебных слов указывается список ввода или вывода. Элементы этих списков перечисляются через запятую.

Список ввода может содержать только имена переменных. После выполнения команды ввод алгоритм получит значения перечисленных в списке переменных.

Список вывода может содержать имена переменных, константы и выражения. Если в списке вывода указано имя переменной, будет выведено ее значение. Если список вывода содержит выражение, будет выведен результат его вычисления. Текстовые константы следует записывать в списке вывода в кавычках (выводиться они будут без кавычек).


Если при выполнении алгоритма ввести значения 20 и 10, то переменная v примет значение 20, а переменная t — значение 10. По окончании работы алгоритма будет выведен результат:

Путь 200 м

Тот же результат был бы получен, если бы изменить строку вывода на

Геометрия развивает геометрическое мышление, математика — абстрактное математическое, логика — логическое, физика — физическое… А какое мышление развивает информатика? Информатика есть наука, служащая информационным технологиям. Но фундаментальными достижениями этой науки оказались не сами технологии, а общие методы построения систем и решения сложных задач. Базисом этих методов являются алгоритмы и системный подход к решению задач. Поэтому информатика развивает алгоритмическое мышление и учит системному подходу к решению задач.

Сегодня мы познакомимся с понятиями алгоритма и исполнителя. Оказывается, не так-то просто понять, чем определяется сущность алгоритма.

Понятие алгоритма — одно из основных в программировании и информатике [1] . Это последовательность команд, предназначенная исполнителю, в результате выполнения которой он должен решить поставленную задачу. Алгоритм должен описываться на формальном языке, исключающем неоднозначность толкования. Исполнитель может быть человеком или машиной. Исполнитель должен уметь выполнять все команды, составляющие алгоритм. Множество возможных команд конечно и изначально строго задано. Действия, выполняемые по этим командам, называются элементарными.

4 1.JPG

Приведём для примера простой алгоритм действия пешехода, который позволит ему безопасно перейти улицу:

  1. Подойти к дороге.
  2. Дождаться зелёного сигнала светофора.
  3. Перейти дорогу.
  4. Если впереди есть ещё одна дорога, то перейти к шагу 1.

Алгоритмы обладают свойством детерминированности (определённости): каждый шаг и переход от шага к шагу должны быть точно определены так, чтобы его мог выполнить любой другой человек или механическое устройство.

Кроме детерминированности, алгоритмы также должны обладать свойством конечности и массовости:

Конечность Алгоритм всегда должен заканчиваться за конечное число шагов, но это число не ограничено сверху. Массовость Алгоритм применяется к некоторому классу входных данных (чисел, пар чисел, набору букв и тому подобному). Не имеет смысла строить алгоритм нахождения наибольшего общего делителя только для одной пары чисел 10 и 15.

Операция суммирования бесконечного ряда не является элементарной ни для современных компьютеров, ни для человека, а если разложить эту операцию на отдельные шаги сложения, то получим бесконечное число шагов. Алгоритмы же по определению должны выполняться за конечное число шагов и через конечное число шагов предоставлять результат вычислений.

Алгоритмы по определению должны сводиться к последовательности элементарных действий над элементарными объектами. Какие действия и объекты элементарны, а какие — нет, зависит от исполнителя (вычислительной машины). Набор элементарных действий и элементарных объектов для каждого исполнителя чётко зафиксирован. Элементарные действия оперируют с небольшим числом элементарных объектов. Все остальные объекты и действия являются совокупностью элементарных. В современных компьютерах рациональные числа и иррациональные числа не являются элементарными объектами [3] . Элементарным объектом в современных компьютерах является бит — это ячейка памяти, в которую может быть записано число 0 или 1. С помощью набора бит можно записывать целые и действительные числа. В частности, существует простой способ представить целые числа от 0 до 2 8 − 1 = 255 -1=255> в виде последовательности 8 бит:

0 → 00000000
1 → 00000001
2 → 00000010
3 → 00000011
4 → 00000100
5 → 00000101
→ …
250 → 11111010
251 → 11111011
252 → 11111100
253 → 11111101
254 → 11111110
255 → 11111111

Указанный способ представления натуральных чисел в виде последовательности нулей и единиц называется двоичной записью числа. Каждому биту в этом представлении соответствует степень двойки. Самому правому биту соответствует 1 = 2 0 > , второму справа — 2 = 2 1 > , третьему справа — 4 = 2 2 > , и так далее. Двоичная запись соответствует разложению числа в сумму неповторяющихся степеней двойки. Например:

4 2.jpg

Конечный набор элементарных объектов может принимать лишь конечное число значений. Так, например, упорядоченный набор 8 бит (один байт) имеет 256 возможных значений. Из этого простого факта следует очень важное утверждение: среди команд исполнителя не может быть команд сложения или умножения произвольных натуральных (действительных) чисел.

При изучении языка программирования, вы встретитесь с таким явлением, как переполнение — ситуация, когда результат элементарной арифметической операции выходит за пределы подмножества чисел, которые можно записать в выбранном машинном представлении.

Итак, для компьютеров лишь некоторые действительные числа являются элементарными объектами [4] Множество этих чисел конечно. Какие именно действительные числа элементарны, зависит от используемого машинного представления. Многие современные процессоры поддерживают несколько типов машинного представления действительных чисел. Целые числа практически везде представляются одинаковым образом. В процессорах с 32-битной архитектурой большая часть команд связана с числами, записанными в 32 битах. При представлении неотрицательных чисел в 32 бита помещается просто двоичная запись. Множество представимых таким образом чисел — это все неотрицательные числа меньше 2 32 > . Этому машинному представлению в языке Си соответствует тип данных unsigned int . Если мы попытаемся сложить с помощью команды процессора два числа типа unsigned int , сумма которых больше либо равна 2 32 > , то возникнет переполнение — старший 33-й бит результата будет утерян.

У каждого исполнителя есть конечный набор элементарных команд (действий), оперирующих элементарными объектами, которых также конечное число.

В компьютерах элементарным объектом является бит. Есть несколько стандартных способов записи чисел (действительных, целых, и целых неотрицательных) в виде последовательности бит фиксированной длины.

Алгоритм входным данным сопоставляет выходные данные и этим он чем-то похож на обыкновенную функцию. Но главной особенностью алгоритма является то, что он содержит описание того, как это сделать. Функция может быть задана неявно, а алгоритм — нет. Алгоритм описывает, что нужно сделать с входными данными, чтобы получить результат. При этом предполагается, что инструкции алгоритма выполняет исполнитель с ограниченными способностями: собственная память исполнителя конечна, также конечен и чётко зафиксирован набор инструкций, которые он может исполнять. В большинстве классических исполнителей присутствует внешняя память, которая в принципе не ограничена. Например у человека под рукой есть сколь угодно много листов бумаги, уложенных в бесконечный ряд (ячеек памяти), которые он может использовать. Заметьте, что информация о том, что на каком листке записано в какой-то момент может не поместиться в конечную память исполнителя и эту информацию ему также нужно будет записывать на листах.

Алгоритмы можно описывать человеческим языком — словами. Так и в математике — все теоремы и утверждения можно записывать без специальных обозначений. Но специальный формальный язык записи утверждений сильно облегчает жизнь математикам: исчезает неоднозначность, появляются краткость и ясность изложения. Всё это позволяет математикам говорить и писать на одном языке и лучше понимать друг друга.

Большинство используемых в программировании алгоритмических языков имеют общие черты. В то же время, не всегда целесообразно пользоваться каким-либо конкретным языком программирования и загромождать изложение несущественными деталями. Здесь мы будем использовать псевдокод, который похож на язык Pascal, но не является таким строгим.

Разницу между программой и алгоритмом можно пояснить следующим образом. Алгоритм — это метод, схема решения какой-то задачи. А программа — это конкретная реализация алгоритма, которая может быть скомпилирована и выполнена на компьютере. Алгоритм, в свою очередь, является реализацией идеи решения. Это можно проиллюстрировать следующей схемой:

Идея решения → Алгоритм → Программа

Стрелка означает переход к следующему этапу решения задачи с повышением уровня подробности описания метода решения.

Запишем этот алгоритм с помощью псевдокода.

Псевдокод 1. Алгоритм Евклида

Покажем, что наш алгоритм нахождения НОДа чисел a и b .

В математике для описания функций часто используются рекуррентные соотношения, в которых значение функции определяется через её значение при других (обычно меньших) аргументах. Наиболее известным примером является последовательность Фибоначчи 1, 1, 2, 3, 5, 8, 13, …, определяемая следующими соотношениями:

Используя это рекуррентное соотношение, можно построить рекурсивный алгоритм вычисления чисел Фибоначчи:

Псевдокод 2. Числа Фибоначчи

При анализе рекурсивной функции обычно возникает два вопроса: почему функция работает правильно и почему она завершает работу? Ответ на первый вопрос обычно прост, — если рекуррентные отношения правильны и интерпретатор (компилятор) сработал правильно, то единственное значение, которое может вернуть программа, — правильное. Но есть ещё другая альтернатива — программа может не закончить свою работу [5] .

Наибольший интерес в этом алгоритме представляет строчка 5:

Fibtree.jpg

Рис. 1. Дерево рекурсивных вызовов для F 6 > .

Для того, чтобы рекурсивный алгоритм заканчивал свою работу, необходимо, чтобы дерево рекурсивных вызовов при любых входных данных обрывалось и было конечным. В данном примере дерево рекурсивных вызовов обрывается на F 1 > и F 2 > , для вычисления которых не используются рекурсивные вызовы.

Пользоваться рекурсивными алгоритмами нужно осторожно, так как они могут быть очень неэффективными с точки зрения времени работы. К сожалению рекурсивные алгоритмы не всегда являются хорошими. Попробуем оценить количество операций, необходимых для того, чтобы вычислить n -й член последовательности Фибоначчи (здесь под операцией мы понимаем строчку в программе). Обозначим это число как T ( n ) .

Как мы видим, в данном случае рекурсивный алгоритм оказался существенно менее эффективным (дольше работающим при больших n ), нежели нерекурсивный алгоритм.

Но это не значит, что использовать рекурсию не надо. Рекурсия очень важный и удобный инструмент программирования. С помощью рекурсии успешно реализуют важный подход к решению задач: разделяй и властвуй.

Псевдокод 3. Числа Фибоначчи: нерекурсивный алгоритм

От экспоненциального роста времени вычисления рекурсивных алгоритмов легко избавится с помощью запоминания вычисленных значений. А именно, в памяти хранят вычисленные значения, а в начале функции помещается проверка на то, что требуемое значение уже вычислено и хранится в памяти. Если это так, то это значение возвращается как результат, а вычисления и рекурсивные вызовы осуществляются лишь в том случае, когда функция с такими аргументами ещё ни разу не вызывалась. Подробнее этот метод мы рассмотрим при изучении динамического программирования.

-hanoi.jpg

Псевдокод 4. Ханойские башни

Здесь мы сформулируем несколько простых алгоритмических задач, которые полезно прорешать, чтобы освоится с понятием алгоритма.

Сколько раз в рекурсивном алгоритме вычисления Fibo(10) будет вызвана процедура вычисления Fibo(1) ?

Сколько раз в рекурсивном алгоритме вычисления Fibo(n) будет вызвана процедура вычисления Fibo(m) ?

Напишите рекурсивный алгоритм вычисления n ! = 1 ⋅ 2 ⋅ ⋯ ⋅ n на псевдокоде.

Квадратный бумажный лист сложили пополам по вертикали (так, что изгиб шёл посредине, сверху вниз) (1-я операция), потом по горизонтали (2-я операция), затем снова по вертикали (3-я операция) и так далее, сделав всего n операций. Затем сделали разрез по горизонтали. Напишите рекурсивный алгоритм, вычисляющий число получившихся бумажек.

Дано множество прямых на плоскости, никакие три из которых не пересекаются в одной точке. Напишите рекурсивный алгоритм (псевдокод) закраски получившихся многоугольников в чёрный и белый цвета так, чтобы многоугольники одного цвета не имели общей стороны.

Рассмотрим следующее рекуррентное соотношение для функции f ( n ) = a n >> :

С помощью компьютера специалисты по информационным системам записывают новые программы, а также анализируют работу и исправляют ошибки в уже имеющихся. Но всё это невозможно совершить без знания алгоритмов. В информатике к изучению этого понятия приступают ещё в школе. Ученики получают первое представление о разных видах алгоритмов, их свойствах и способах создания.

Алгоритм это в информатике

Особенности понятия

Современное определение алгоритма в информатике — это описание действий, последовательное выполнение которых позволяет решить поставленную задачу за конкретное количество шагов.

С этим человек сталкивается каждый день, когда читает рецепты в кулинарных книгах, инструкции к различной технике, правила решения заданий. Но обычно все эти действия выполняются автоматически, без их анализа. Родители сталкиваются с этим понятием, когда объясняют детям, как открыть двери ключом или почистить зубы. Алгоритмов в окружающем мире множество, но есть общие признаки для всех их видов.

Свойства и виды

Для изучения понятия нужно разобраться в свойствах алгоритма в информатике. Их существует несколько:

Свойства алгоритма в информатике.

  • дискретность;
  • детерминированность или определенность;
  • понятность;
  • завершаемость или конечность;
  • массовость или универсальность;
  • результативность.

Согласно свойству дискретности, алгоритмы должны описывать весь процесс решения задания в виде выполнения простых шагов. При этом на пункты отводится определенное количество времени. Каждый шаг должен определяться состоянием системы, то есть при одних и тех же исходных данных результат не меняется. Но есть и вероятностные алгоритмы, где пункты зависят от системы и случайно генерируемых чисел. В этой ситуации понятие становится подвидом обычного.

Понятность заключается в том, что команды алгоритма должны быть доступны конкретному исполнителю и входить в его личную систему. В ходе работы математическая функция при правильно заданных исходных данных выдает результат за определенное количество шагов. Иногда процедура может не завершиться, но вероятность таких случаев стремится к нулю.

Универсальность или массовость позволяет использовать алгоритм с разными наборами начальных данных. Последнее свойство обеспечивает его завершение в виде определенного числа — результата.

У каждого алгоритма есть свои начальные условия, цели и пути решения задачи. Существует большая разница между вычислительными и интерактивными видами. Происхождение первых связано с опытами ученого Тьюринга, они могут преобразовать входные данные в выходные. Вторые предназначены для связи с объектом управления, они работают только под внешним воздействием. Ученые выделяют несколько видов алгоритмов в информатике:

  • детерминированные или жесткие;
  • гибкие;
  • линейные;
  • разветвляющиеся;
  • циклические;
  • вспомогательные;
  • структурные блок-схемы.

Виды алгоритмов

Жесткие еще называются механическими, так как чаще всего они используются для работы двигателя или машины. Они задают действия в единственно верной последовательности, что приводит к искомому или требуемому результату при условии выполнения процессов, для которых они и разработаны.

Гибкие алгоритмы делятся на эвристические и вероятностные. Первые используются при различных умственных выводах без строгих аргументов, а вторые дают возможность получить один результат несколькими способами.

Линейный тип — это набор команд, которые выполняются в строгой последовательности. Разветвляющийся включает хотя бы одно условие и при проверке дает разделение на несколько блоков. Появляются альтернативные ветвления программы.

В циклических видах несколько раз повторяются одни и те же действия, при этом меняются исходные данные. Сюда относятся переборы вариантов и бо́льшая часть способов расчета. Циклом в этом случае называют последовательность команд, которые нужно выполнить множество раз для достижения требуемого результата.

Алгоритм для быстрого решения задачи.

Подчиненный или вспомогательный вид является ранее разработанным алгоритмом для быстрого решения задачи. Он необходим для сокращения записи, если в структуре есть одинаковые команды. Схемами называются графические изображения с помощью блоков и соединяющих их прямых линий. Их используют перед программированием в качестве наглядных примеров, поскольку зрительное восприятие позволяет быстрее осмыслить процесс обработки информации и выявить возможные ошибки. В блоках отображаются исходные данные, которые вносятся в компьютер для вычислений.

Способы записи

Алгоритмы записываются несколькими методами. В информатике используется всего три:

  • словесно-формульный;
  • графический;
  • программный.

В первом случае алгоритм записывается простым языком — словами и математическими формулами, что необходимо для понимания его теории. Здесь учитываются исходные данные, действия с ними и условия получения результата. Второй тип записи — компьютерное описание. Для этого применяются языки программирования и сами программы — форсы представления расчетов для их выполнения машиной.

Графическое описание состоит из связанных между собой географических фигур. Основные элементы блок-схем:

  • прямоугольники;
  • эллипсы;
  • ромбы;
  • шестиугольники;
  • стрелки;
  • пунктирные линии;
  • соединительные фигуры.

Графическое описание

В прямоугольниках записывают процессы, они указывают на выполнение операций, которые изменяют форму или значение данных. Ромбы содержат способы решения, здесь выбирается следующее направление в зависимости от поставленных условий. Модификации могут передаваться в шестиугольниках, где записываются операции, меняющие команды.

В блок-схемах можно выделить ручной ввод и предопределенные процессы. Первая фигура позволяет исполнителю ввести данные во время работы алгоритма через устройства, подключенные к компьютеру. Второе понятие заключается в использовании заранее записанных алгоритмов.

Графическое изображение содержит блоки документов и дисплеев. Оператор может вводить данные с бумаги и выводить их на нее, а также с помощью устройств, которые воспроизводят информацию на экране (проекторы для интерактивных досок, подключенные к компьютерам планшеты и ноутбуки).

Линии и соединительные фигуры указывают на связи между разными блоками и их последовательность. В схеме есть блоки начала и конца алгоритма, его прерывания, которое может произойти из-за сбоев в программе. Можно также указывать комментарии и пояснения исполнителя, для этого есть отдельные фигуры.

Правила создания

Правила создания алгоритмов

Существует несколько правил создания алгоритмов. Если их соблюдать, то в ходе работы всегда будет верный результат. Форма должна быть настолько простой, чтобы ее понял тот, кто занимается ее разработкой. Также не должно возникнуть проблем с чтением у того, кто будет выполнять описанные действия.

Объект, который проводит расчеты в алгоритме, называется исполнителем. Идеальными считаются роботы, компьютеры и другие машины. Они работают с программами, то есть схемами, написанными определенным языком программирования.

Разобраться с действиями помогут простые примеры алгоритмов по информатике. Когда есть ряд чисел от 1 до 100 и необходимо найти из них простые, то выбираются те, что делятся на единицу и себя. В этом случае используется циклическая структура:

  • сначала нужно взять число 1;
  • проверить, меньше ли оно, чем 100;
  • если да, то узнать, простое ли оно;
  • при выполнении условия записать;
  • перейти к числу 2;
  • повторить операцию.

Такие действия проводят со всеми числами. При этом первые четыре шага будут постоянно повторяться. Если попадается число, не являющееся простым (4, 6, 8 и т. д. ), то его нужно просто пропустить. Алгоритм в этом случае обладает предусловиями, то есть проверки происходят в начале цикла.

Анализ работы

Распространение информационных технологий привело к увеличению риска сбоев в работе программ. Предотвратить появление ошибок в алгоритмах можно с помощью доказательства их корректности математическими средствами. Такой анализ называется формальным методом, он предусматривает использование специального набора инструментов.

Анализ работы алгоритма

Гипотеза Ричарда Мейса утверждает, что избежать ошибок легче, чем их устранить. Благодаря доказательству корректности программ можно выявить их свойства, применяемые ко всем видам входных данных. Само понятие делится на две разновидности — частичную и полную. При первом типе корректности алгоритм дает правильный результат только для тех случаев, когда он завершается. Во втором случае программа завершает работу корректно для всего диапазона данных.

Исполнители во время проверки сравнивают выдаваемые данные со спецификой требуемого результата. Для доказательства корректности используются предусловия и постусловия. Первые должны выполняться перед включением программы, вторые — после завершения ее работы. Формальные методы успешно применяются для многих задач: верификации программ и микропроцессоров, разработки искусственного интеллекта, электронных схем и автоматических систем для железной дороги, спецификации стандартов.

Для выполнения алгоритма нужно только конкретное количество шагов, но на практике для этого потребуется много времени. В связи с этим введено понятие сложности. Она бывает временной, вычислительной и связанной с размерами алгоритма. Для увеличения эффективности используются быстрые программы, которые появились еще в 50-х годах прошлого века.

Читайте также: