Что такое коэффициент режима работы несущего винта

Обновлено: 14.05.2024

У этого термина существуют и другие значения, см. Винт.

Основная статья: Винт (лопастной)



Пропеллер немецкого дирижабля SL1 (1911) диаметром 4,4 м



Винт английского дирижабля R29 (1918) в шотландском музее



Современный воздушный винт транспортного самолёта A400M



Винты АВ-60К самолёта Ту-142

Возду́шный винт

(
пропе́ллер
) — лопастной агрегат работающий в воздушной среде, приводимый во вращение двигателем и являющийся движителем, преобразующим мощность (крутящий момент) двигателя в действующую движущую силу тяги. Воздушные винты, выполняющие (помимо функций движителя), дополнительные, либо иные функции, имеют специальные названия: ротор, маршевый винт, несущий винт (винтокрылых летательных аппаратов), рулевой винт, фенестрон, импеллер, вентилятор, ветряк, винтовентилятор.

Воздушный винт применяется в качестве движителя для летательных аппаратов (самолётов, автожиров, цикложиров (циклокоптеров) и вертолётов с поршневыми и турбовинтовыми двигателями), а также в том же качестве — для экранопланов, аэросаней, аэроглиссеров и судов на воздушной подушке. У автожиров и вертолётов воздушный винт применяется также в качестве несущего винта, а у вертолётов ещё и в качестве рулевого винта.

Воздушный винт, работающий в качестве движителя, в сочетании с двигателем образуют винтомоторную установку (ВМУ) — входящую в состав силовой установки.

Технические параметры[ | ]

Лопасти винта, вращаясь, захватывают воздух и отбрасывают его в направлении, противоположном движению. Перед винтом создаётся зона пониженного давления, за винтом — повышенного.

  • В зависимости от способа использования воздушные винты делятся на тянущие
    и
    толкающие
    .
  • В зависимости от наличия возможности изменения шага лопастей воздушный винт подразделяются на винты фиксированного
    и
    изменяемого
    шага.

Определяющими являются диаметр и шаг винта. Шаг винта соответствует воображаемому расстоянию, на которое передвинется винт, ввинчиваясь в несжимаемую среду за один оборот. Существуют винты с возможностью изменения шага как на земле, так и в полёте. Последние получили распространение в конце 1930-х годов и применяются практически на всех самолётах (кроме некоторых сверхлёгких) и вертолётах. В первом случае изменение шага используют, чтобы создать большую тягу в широком диапазоне скоростей при мало изменяющихся (или неизменных) оборотах двигателя, соответствующих его максимальной мощности, во втором — из-за невозможности быстрого изменения оборотов несущего винта.

Вращение лопастей воздушного винта приводит к разворачивающему эффекту, воздействующему на летательный аппарат, причины которого в следующем:

  • Реактивный момент винта
    . Любой воздушный винт, вращаясь в одну сторону, стремится накренить самолет или развернуть вертолёт в противоположную сторону. Именно из-за этого возникает асимметрия при поперечном управлении самолётом. Например, самолет с винтом левого вращения совершает развороты, перевороты и бочки вправо гораздо легче и быстрее, чем влево. Этот же реактивный момент является одной из причин неуправляемого разворота самолета вбок в начале разбега.
  • Закручивание струи винта
    . Воздушный винт закручивает воздушный поток, что также вызывает несимметричную обдувку плоскостей и хвостового оперения справа и слева, различную подъёмную силу крыла справа и слева и разницу в обдуве управляющих поверхностей. Несимметричность потока хорошо видна на авиационных хим.работах при наблюдении за движением распыляемого вещества.
  • Гироскопический момент винта
    . Любое быстро вращающееся тело имеет гироскопический момент (эффект волчка), заключающийся в стремлении к сохранению своего положения в пространстве. Если принудительно наклонить ось вращения гироскопа в какую-либо сторону, например, вверх или вниз, то она не просто будет противодействовать этому отклонению, а будет уходить в направлении, перпендикулярном произведённому воздействию, то есть в данном случае вправо или влево. Так, при изменении в установившемся полёте угла тангажа самолёт будет стремиться самостоятельно поменять курс, а при начале разворота возникает стремление самолёта к самостоятельному изменению угла тангажа.
  • Момент, вызванный несимметричным обтеканием винта.
    В полёте ось винта отклонена от направления набегающего потока на угол атаки. Это приводит к тому, что опускающаяся лопасть обтекается под большим углом атаки, чем поднимающаяся. Правая часть воздушного винта будет создавать большую тягу, чем левая. Таким образом, будет создаваться момент рыскания влево. Наибольшую величину этот момент будет иметь на максимальном режиме работы двигателя и максимальном угле атаки.

Все четыре причины разворота — реактивный момент, действие струи, гироскопический момент и несимметричное обтекание винта, всегда действуют в одну сторону

: при винте левого вращения разворачивают самолет вправо, а при винте правого вращения — влево. Этот эффект проявляется особенно сильно на мощных одномоторных самолётах при взлёте, когда самолёт движется с небольшой поступательной скоростью и эффективность работы воздушных рулей низкая. С ростом скорости разворачивающий момент ослабевает ввиду резкого увеличения эффективности действия рулей.

Для компенсации разворачивающего момента все самолёты делают несимметричными – как минимум, отклоняют руль направления от центральной строительной оси самолёта.

Кроме гироскопического эффекта двух из этих трёх недостатков лишены соосные воздушные винты.

Реактивный и гироскопический момент также присущ всем турбореактивным двигателям и учитывается в конструкции самолёта. Для компенсации реактивного момента винта вертолёта приходится применять рулевой винт, предотвращающий вращение фюзеляжа, либо использовать несколько несущих винтов (обычно два).

Коэффициентом полезного действия (КПД) воздушного винта называют отношение полезной мощности, затрачиваемой на преодоление сопротивления движению летательного аппарата, к мощности двигателя. Чем ближе КПД к 1, тем эффективнее расходуется мощность двигателя, и тем большую скорость или грузоподъёмность может развить при той же энерговооружённости.

Положительные и отрицательные стороны[ | ]

КПД современных воздушных винтов достигает 82—86%, что делает их очень привлекательными для авиаконструкторов. Самолёты с турбовинтовыми силовыми установками значительно экономичнее, чем самолёты с реактивными двигателями. Однако воздушный винт имеет и некоторые ограничения, как конструктивного, так и эксплуатационного характера. Часть этих ограничений описана ниже.


Теория винта

По своей сути любой винт самолета представляет собой некие подвижные крылья в миниатюре, живущие по тем же законам аэродинамике, что и крыло. То есть, передвигаясь в атмосферной среде лопасти, благодаря своему профилю и наклону, создают поток воздуха, который является движущей силой летательного аппарата. Сила этого потока, помимо конкретного профиля, зависит от диаметра и частоты оборотов винта. При этом зависимость тяги от оборотов – квадратичная, а от диаметра – даже в 4-й степени. Общая формула тяги выглядит следующим образом: P = α * ρ * n2 * D4 , где:

  • α – коэффициент тяги винта (зависит от конструкции и профиля лопастей);
  • ρ — плотность воздуха;
  • n – число оборотов винта;
  • D – диаметр винта.

Интересно сравнить с приведенной формулой, еще одну, выведенную из той же теории винта. Это потребная мощность для обеспечения вращения: T = Β * ρ * n3 * D5 , где Β – расчетный коэффициент мощности винта.

Из сопоставления этих двух формул видно, что, усиливая обороты винта самолета и увеличивая диаметр пропеллера, потребная мощность двигателя растет экспоненциально. Если уровень тяги пропорционален квадрату оборотов и 4-й степени диаметра, то потребная мощность двигателя растет уже пропорционально кубу оборотов и 5-й степени диаметра винта. С ростом мощности двигателя растет и его вес, что требует еще большей тяги. Очередной заколдованный круг в авиастроении.

капот в винтом


Смотреть галерею

История[ | ]

Чертёж вертолёта Да Винчи. 1480-е годы.
Идея воздушного винта происходит от архимедова винта.

Известен чертёж Леонардо Да Винчи с изображением прообраза вертолёта с несущим винтом. Винт всё ещё выглядит как архимедов.

Аэродромическая машина М. В. Ломоносова. Модель.

В июле 1754 года Михаил Ломоносов провёл демонстрацию аэродромической модели. На ней лопасти уже уплощены, что приближает их к современному виду. Предполагается, что Ломоносов использовал образ китайской детской игрушки — бамбукового вертолётика.

Современная японская игрушка такетомбо — бамбуковый вертолёт, происходящая от китайского варианта. Слева — бамбук, справа — пластик.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Несущий винт самолета с изменяемым углом рабочих лопастей, имеющий механизм привода синхронного поворота лопастей, вращающийся блок с вмонтированными в него тягами по числу лопастей несущего винта и тяги, шарнирно соединенные с рычагами, соединенными с рабочими лопастями несущего винта, которые установлены с возможностью поворота в ступице на определенный рабочий угол, отличающийся тем, что механизм привода синхронного поворота рабочих лопастей несущего винта установлен на приводном валу посредством двух роликоподшипников с возможностью свободного перемещения вдоль приводного вала, на механизме привода синхронного поворота лопастей установлен вращающийся блок на двух радиально-упорных шарикоподшипниках с вмонтированными в блок тягами по числу лопастей несущего винта, передвижение механизма привода синхронного поворота лопастей вдоль приводного вала осуществлено посредством штока гидроцилиндра, который соединен шарнирно с проушиной, вмонтированной в корпус механизма привода синхронного поворота лопастей.

Перспективные разработки[ | ]

Авиаконструкторы идут на определённые технические ухищрения, чтобы такой эффективный движитель, как воздушный винт, нашёл место на самолётах будущего.

  • Преодоление эффекта запирания. На самом мощном в мире турбовинтовом двигателе НК-12 крутящий момент силовой установки делится между двумя соосными воздушными винтами, вращающимися в разные стороны.
  • Применение саблевидных лопастей. Многолопастный воздушный винт с тонкими саблевидными лопастями позволяет затянуть волновой кризис, и тем самым увеличить максимальную скорость полёта. Такое техническое решение реализовано, например, на самолёте АН-70.
  • Разработка сверхзвуковых воздушных винтов. Эти разработки ведутся уже много лет, но никак не приведут к реальным техническим воплощениям. Лопасть сверхзвукового воздушного винта имеет крайне сложную форму, что затрудняет её прочностной расчёт. Кроме того, экспериментальные сверхзвуковые винты оказались очень шумными.
  • Импеллер. Заключение воздушного винта в аэродинамическое кольцо. Весьма перспективное направление, поскольку позволяет снизить концевое обтекание лопастей, снизить шумность, и повысить безопасность (защищая людей от увечий). Однако вес самого кольца служит ограничивающим фактором для широкого распространения такого конструкторского решения в авиации. Зато на аэросанях, аэроглиссерах, судах на воздушной подушке и дирижаблях импеллер можно увидеть достаточно часто.
  • Вентилятор. Так же, как импеллер, заключён в кольцо, но кроме того, имеет входной и иногда выходной направляющий аппарат. Направляющий аппарат представляет собой систему неподвижных лопастей (статор), позволяющих регулировать поток воздуха, попадающий на ротор вентилятора, и тем самым поднять его эффективность. Очень широко применяется в современных авиационных двигателях.

Достоинства

этажерка братьев райт


Смотреть галерею

Винты с изменяемым шагом

Практически на всех современных средних и крупных самолетах устанавливаются винты с изменяемым шагом. При большом шаге лопастей достигается большая тяга, но если обороты двигателя довольно низкие, набор скорости будет производиться крайне медленно. Это очень похоже на ситуацию с автомобилем, когда на высших передачах пытаться тронуться с места.

Высокая скорость и маленький шаг винта создают опасность срыва потока и падения тяги до ноля. Поэтому в процессе полета шаг постоянно изменяется. Сейчас это делает автоматика, а раньше пилот сам должен был постоянно следить за этим и вручную корректировать угол наклона. Механизм изменения шага винта представляет собой специальные втулки с приводным механизмом, поворачивающие лопасти относительно оси вращения на требуемый градус.

испытания нового винта


Смотреть галерею

Калькулятор Ecalc

Крайне удобный калькулятор, которые находится на официальном сайте Ecalc. В нём ты сможешь задать те запчасти, которые будешь использовать для своего проекта, а он выдаст тебе (очень) примерную модель поведения коптера.


Давай рассмотрим его поближе, так как он тебе точно пригодится.

Основное

Аккумулятор

Регулятор

  • Из списка выбираешь свой регулятор скорости
  • В навесном оборудовании пишешь суммарное потребление и вес всей той фигни, что ты хочешь повесить на свой дрон. Камера, диоды, сервоприводы, мелкокалиберные орудия. Если ты уже указал их вес в основном весе модели, то поле вес оставляешь с нулём

Мотор

Пропеллер

  • Выбираешь тип пропеллера из списка. Угол кручения (угол атаки), диаметр винта и его шаг ты узнаешь из спецификации
  • Передаточное число используешь, если твой пропеллер присоединён к мотору через редуктор

Если в списках нет нужной позиции, то можно воспользоваться строкой Custom, и ввести всё самостоятельно.

Читайте также: