Какие параметры оказывают влияние на обеспечение начальной поперечной остойчивости судна

Обновлено: 01.05.2024

192. Вахтенный моторист (машинист) подчиняется вахтенному механику. Он обязан: получить от сдающего вахту сведения о заданном режиме работы технических средств, неисправностях и распоряжениях по вахте; проверить исправность технических средств; доложить о приеме вахты; находиться на своем посту и обеспечивать бесперебойную работу механизмов; докладывать о неисправностях и неполадках; поддерживать порядок в машинном отделении.

Вахтенный котельный машинист

193. Вахтенный котельный машинист подчиняется вахтенному механику. Он обязан: получить от сдающего сведения о заданном режиме работы котельной установки, неисправностях и распоряжениях по вахте; проверить исправность механизмов и средств автоматизации; доложить о приеме вахты; находиться на посту управления котельной установкой и обеспечивать ее бесперебойную работу (включая средства автоматизации); докладывать о неисправностях и неполадках; поддерживать порядок в котельном отделении; при угрозе аварии или безопасности людей остановить работу котельной установки и немедленно доложить вахтенному механику.

Условие остойчивости судна


Допустим, что судно, находящееся в прямом положении равновесия и плавающее по ватерлинию ВЛ, в результате действия внешнего кренящего момента Мкр накренилось так, что исходная ватерлиния ВЛ с новой действующей ватерлинией В1Л1 образует малый угол θ. Вследствие изменения формы погруженной в воду части корпуса распределение гидростатических сил давления, действующих на эту часть корпуса, также изменится. Центр величины судна переместится в сторону крена и перейдет из точки С в точку С1.
Сила поддержания D', оставаясь неизменной, будет направлена вертикально вверх перпендикулярно новой действующей ватерлинии, а ее линия действия пересечет ДП в первоначальном поперечном метацентре m.
Положение центра тяжести судна остается неизменным, а сила веса Р будет перпендикулярна новой ватерлинии В1Л1. Таким образом, силы Р и D', параллельные друг другу, не лежат на одной вертикали и, следовательно, образуют пару сил с плечом GK, где точка К - основание перпендикуляра, опущенного из точки G на направление действия силы поддержания.
Пара сил, образованная весом судна и силой поддержания, стремящаяся возвратить судно в первоначальное положение равновесия, называется восстанавливающей парой, а момент этой пары - восстанавливающим моментом Mθ.
Вопрос об остойчивости накрененного судна решается направлением действия восстанавливающего момента. Если восстанавливающий момент стремится вернуть судно в первоначальное положение равновесия, то восстанавливающий момент положителен, остойчивость судна также положительна — судно остойчиво. На рис. 1 показано расположение сил, действующих на судно, которое соответствует положительному восстанавливающему моменту. Нетрудно убедиться, что такой момент возникает, если ЦТ лежит ниже метацентра.



Нa рис. 2 показан противоположный случай, когда восстанавливающий момент отрицателен ( ц.т. лежит выше метацентра). Он стремится еще больше отклонить судно из положения равновесия, т.к. направление его действия совпадает с направлением действия внешнего кренящего момента Мкр . В этом случае судно неостойчиво.
Теоретически можно допустить, что восстанавливающий момент при наклонении судна равен нулю, т.е. сила веса судна и сила поддержания располагаются на одной вертикали, как это показано на рис. 3.

Отсутствие восстанавливающего момента приводт к тому, что после прекращения действия кренящего момента судно остается в наклоненном положении т.е. судно находится в безразличном равновесии.
Таким образом, по взаимному положению поперечного метацентра m и Ц.Т. G можно судить о знаке восстанавливающего момента или, иными словами, об остойчивости судна. Так, если поперечный метацентр находится выше центра тяжести (рис 1), то судно остойчиво;
Если поперечный метацентр расположен ниже центра тяжести или совпадает с ним (рис.2, 3) судно неостойчиво.
Отсюда возникает понятие метацентрической высоты: поперечной метацентрической высотой называется возвышение поперечного метацентра над центром тяжести судна в начальном положении равновесия.
Поперечная мегацентрическая высота (рис. 1) определяется расстоянием от центра тяжести (т. G), до поперечного метацентра (т. m), т.е. отрезком mG . Этот отрезок является постоянной величиной, т.к. и Ц.Т. ,и поперечный метацентр не изменяют своего положения при малых наклонениях. В связи с этим его удобно принимать в качестве критерия начальной остойчивости судна.
Если поперечный метацентр будет находиться выше центра тяжести судна, то поперечная метацентрическая высота считается положительной. Тогда условие остойчивости судна можно дать в следующей формулировке: Судно остойчиво, если его поперечная метацентрическая высота положительна. Такое определение удобно тем, что оно позволяет судить об остойчивости судна, не рассматривая его наклонения, т.е. при угле крена равном нулю, когда восстанавливающий момент вообще отсутствует. Чтобы установить, какими данными необходимо располагать для получения значения поперечной метацентрической высоты, обратимся к рис. 4, на котором показано относительное расположение центра величины С, центра тяжести G и поперечного метацентра m судна, имеющего положительную начальную поперечную остойчивость. Из рисунка видно, что поперечная метацентрическая высота h может быть определена по одной из следующих формул:h = r ± a; h = ZC + r - ZG; h = Zm - ZG.

Водяная противопожарная система (ВППС предназначена для:

  • обеспечения забортной водой высокого давления потребителей комплекса систем борьбы за живучесть (БЗЖ) - систем орошения и водораспыления, системы защиты вахт и сходов;
  • обеспечения забортной водой высокого давления в качестве рабочей воды эжекторов системы осушения трюмов;
  • обеспечения забортной водой системы "забортной воды", предназначенной для обслуживания мытьевой системы при санобработке л/с и обслуживание смыва в гальюнах.


ВППС выполнена по кольцевой схеме (см. рисунок) с семью боевыми перемычками и состоит из:

Рисунок 1 – Схема водяной противопожарной системы

  • трех турбонасосов ТПЖН-150/10 производительностью 150 куб.м/час и напором 10 м.вод.ст, расположенных в носовом машинно-котельном отделении (МКО), помещении вспомогательного котла (ПВК) и кормовом МКО и служащих для подачи забортной воды в боевые перемычки № 3, 4 и 5;
  • четырех электронасосов НЦВ-160/80 производительностью 160 куб.м/час и напором 80 м.вод.ст, расположенных попарно в насосных отделениях № 1 и 2 и служащих для подачи забортной воды в боевые перемычки № 1,2,6 и 7;
  • семи боевых перемычек, к каждой из которых подключен один пожарный насос. Отбор воды на потребители, указанные выше производится ТОЛЬКО от перемычек;
  • восемнадцати главных разобщительных клапанов с дистанционным управлением из поста энергетики и живучести (ПЭЖ) с помощью электропривода, служащих для разобщения ВППС в боевом режиме и переключения участков ВППС для подачи воды в другие перемычки при выходе из строя каких-либо насосов или участков системы. Эти клапаны помечены на схеме восклицательным знаком;
  • системы дистанционного контроля и управления, состоящей из местных контрольных манометров, расположенных у насосов, дистанционных манометров, расположенных на мнемосхеме в ПЭЖ и запасном ПЭЖ (ПДУ КМКО), а также датчиков давления, подключенных к каждой перемычке и служащих для автоматического запуска дежурного электропожарного насоса при падении давления в ВППС до 6 кГс/кв.см в повседневном режиме. Кроме того, в систему дистанционного контроля и управления входит пускорегулирующая аппаратура электропожарных насосов.

ВППС работает в двух режимах:

  • боевой режим - в этом режиме все главные разобщительные клапаны ЗАКРЫТЫ и работают ВСЕ семь насосов. При этом обеспечивается автономное питание перемычек с их потребителями. При выходе из строя насоса, обслуживающего перемычку и исправном состоянии любой бортовой ветви "кольца" с помощью переключения соответствующих клапанов нерабочая перемычка подключается к работающим.
  • повседневный режим - в этом режиме на стоянке работает ТПЖН № 2, на ходу - ТПЖН № 1 и 3. Все электронасосы, не находящиеся в планово-предупредительном осмотре или ремонте (ППО и ППР) находятся в дежурстве - готовности к автоматическому запуску при падении давления в ВППС до 6 кГс/кв.см.

Нормальное значение давления в ВППС составляет 7-8 кГс/кв.см.

В целом данное конструктивное исполнение ВППС считается классическим и наиболее надежным даже по сравнению с исполнением аналогичной системы на кораблях более поздних проектов. Наиболее сильными сторонами такого решения являются:

  • очень короткие боевые перемычки, расположенные поперек корпуса корабля (минимизирован объем потенциального критического повреждения);
  • наличие трех турбопожарных насосов. Исходя из концепции обеспечения работоспособности паросиловой энергетической установки (ПСУ) при отсутствии электроэнергии на корабле (полное самообеспечение), подача воды в ВППС так же будет происходить несмотря на отсутствие электроэнергии.

Слабым местом конструктивного решения является низкое расположение боевых перемычек и бортовых ветвей "кольца", т.е боевые перемычки вместе с отводами к потребителям попадают в поражаемый объем при подводных взрывах. При расположении перемычек вблизи или на уровне палубы непотопляемости (нижней палубы) этот недостаток мог бы быть изжит.

2.2. Трубы гнут ручным и механизированным способами; в горячем и холодном состоянии; с наполнителями и без наполнителей. Способ гибки зависит от диаметра трубы, величины угла загиба и материала труб.

Гибка труб в горячем состоянии применяется при диаметре более 100 мм. При горячей гибке с наполнителем трубу отжигают, размечают, а затем один конец закрывают деревянной или металлической пробкой. Для предупреждения смятия, выпучивания и появления трещин при гибке трубу наполняют мелким сухим песком, просеянным через сито с ячейками около 2 мм, так как наличие крупных камешков может привести к продавливанию стенки трубы, а слишком мелкий песок для гибки труб непригоден, так как при высокой температуре спекается и пригорает к стенкам трубы.

Гибка труб в холодном состоянии выполняется с помощью различных приспособлений. Простейшим приспособлением для гибки труб диаметром 10 — 15 мм в свободном состоянии является плита с отверстиями, в которой в соответствующих местах устанавливаются штыри, служащие упорами при гибке.

Трубы небольших диаметров (до 40 мм) с большими радиусами кривизны гнут в холодном состоянии, применяя простые ручные приспособления с неподвижной оправкой. Гибочная оправка крепится к верстаку с двух сторон скобками. Трубу для гибки вставляют между гибочной оправкой и хомутиком, нажимают руками и гнут ее по желобообразному углублению гибочной оправки.

Трубы диаметром до 20 мм изгибают в приспособлении. Приспособление крепится к верстаку с помощью ступицы и плиты. На одной оси ступицы и плиты находится неподвижный ролик-шаблон с хомутиком. Подвижный ролик закреплен в скобе с рукояткой. Трубу для изгиба вставляют между роликами так, чтобы конец ее вошел в хомутик. Затем рукояткой повертывают скобу с подвижным роликом вокруг неподвижного ролика-шаблона до тех пор, пока труба не изогнется на требуемый угол.

Гибка медных и латунных труб. Подлежащие гибке в холодном состоянии медные или латунные трубы заполняют расплавленной канифолью или расплавленным стеарином (парафином), или свинцом. Порядок гибки аналогичен описанному ранее. Канифоль после гибки выплавляют, начиная с концов трубы, так как нагрев середины трубы, наполненной канифолью, разрывает трубу.

Дюралюминиевые трубы перед гибкой отжигают при 350 — 400 °С и охлаждают на воздухе.

Основные направления социальной политики: В Конституции Российской Федерации (ст. 7) характеризуется как.



Остойчивость — способность плавучего средства противостоять внешним силам, вызывающим его крен или дифферент и возвращаться в состояние равновесия по окончании воздействия внешних сил (Внешнее воздействие может быть обусловлено ударом волны, порывом ветра, сменой курса и т. п.). Это одно из важнейших мореходных качеств плавучего средства. Запасом остойчивости называется степень защищённости плавучего средства от опрокидывания.В зависимости от плоскости наклонения различают поперечную остойчивость при крене и продольную остойчивость при дифференте. Применительно к надводным судам, из-за удлинённости формы корпуса судна его продольная остойчивость значительно выше поперечной, поэтому для безопасности плавания наиболее важно обеспечить надлежащую поперечную остойчивость. В зависимости от величины наклонения различают остойчивость на малых углах наклонения (начальную остойчивость) и остойчивость на больших углах наклонения. В зависимости от характера действующих сил различают статическую и динамическую остойчивость. Статическая остойчивость — рассматривается при действии статических сил, то есть приложенная сила не изменяется по величине. Динамическая остойчивость — рассматривается при действии изменяющихся (то есть динамических) сил, например ветра, волнения моря, подвижки груза и т. п. Важнейшими факторами, влияющими на остойчивость, являются расположение центра тяжести и центра величины судна(ЦВ).Рассмотрим поперечную остойчивость:Цт -центр тяжести судна. Он постоянно сохраняет свое положение при данном расположении грузов и не зависит от угла крена. Он может сместиться только при изменении нагрузки судна после грузовых операций, приема или откатки балласта, расхода судовых запасов, смещения грузов от качки, обледенения и т. п.
ЦВ -центр величины. Является центром тяжести погруженного объема судового корпуса. В этой точке приложена равнодействующая выталкивающих сил воды. Центр величины перемещается при изменении формы погруженной части корпуса судна, т.е. при крена.
Δ -равнодействующая сила весового водоизмещения судна. Эта сила всегда направлена вниз.
точка А -центр величины в прямом положении судна, т.е. без крена. Если судно на плаву, Δ=ɣV ЦВ -центр величины при крене судна.ɣV -равнодействующая сила выталкивающих сил воды. Она равна произведению объемного веса воды ɣ на объем погруженной части корпуса V и направленная всегда по вертикали вверх.
l -плечо восстанавливающего момента(плечо статической остойчивости). Это кратчайшее расстояние между направлением действия сил Δ и ɣV.МЦ -центр кривизны линии по которой перемещается ЦВ.Zc -возвышение ЦВZg -возвышение ЦТZm -возвышение МЦr -начальный метацентрический радиусa -возвышение ЦТ над ЦВh -метацентрическая высота, или возвышение МЦ над ЦТСоотношение величин: h=Zm-Zg=r+Zc-Zg=r-aСудно будет остойчиво и сможет вернуться в прямое положение, если восстанавливающий момент больше кренящего, а ЦВ находится между линией Δ и наклоненным бортом. Если это условие не будет соблюдено — судно опрокинетсяПри небольших углах крена r остается постоянным и поэтому для l может быть применено выражение:l=h*sinθ где, θ -угол крена.Тогда: Мв=Δ*h*sinθМв -величина восстанавливающего элемента
Запас плавучести — объем непроницаемой для воды надводной части судна, расположенной от грузовой (конструктивной) ватерлинии до верхней непрерывной водонепроницаемой палубы и включающей водонепроницаемые надстройки и рубки. 3апас Плавучести определяет количество воды, поступление которой при аварии выдерживает судно до полного погружения, поэтому является важнейшей характеристикой его непотопляемости. Степень непотопляемости тем выше, чем больше относительно 3апас Плавучести (отношение 3апаса плавучести к расчетнотному объемному водоизмещению судна). Достаточный запас плавучести в процессе проектирования и постройки судна достигается рядом конструктивных мероприятий, к числу которых относятся: обеспечение достаточной высоты надводного борта, устройство водонепроницаемых закрытий и разделение судна на отсеки прочными водонепроницаемыми переборками и палубами. При отсутствии последних, любое повреждение подводной части судна может привести к полной потере запаса плавучести и гибели судна. Запас плавучести в этом случае конструктивно не обеспечен.

Как хорошо известно из физики, любая жидкость имеет свободную поверхность. Наличие свободной поверхности жидкости в судовых цистернах приводит к уменьшению поперечной метацентрической высоты и, следовательно, ухудшает поперечную остойчивость судна. Разумеется, что и продольная метацентрическая высота тоже уменьшается и, следовательно, продольная остойчивость также ухудшается.


Чем больше размеры цистерны, особенно ширина, тем больше влияние свободной поверхности жидкости. Если свободная поверхность жидкости имеется в нескольких цистернах, то их суммарный эффект может быть настолько велик, что судно потеряет остойчивость. Не обязательно, что судно опрокинется, но оно может получить постоянный крен. Величина крена будет зависеть от конкретных параметров поперечной остойчивости судна. Влияние свободной поверхности жидкости вычисляется, как поправка на которую уменьшается начальная поперечная метацентрическая высота и называется поправкой на влияние свободной поверхности жидкости. Поправка к поперечной метацентрической высоте на влияние свободной поверхности жидкости о бозначается:

Наличие свободной поверхности жидкости в судовых цистернах, всегда ухудшает остойчивость судна.

Чем больше величина поправки, и чем меньше начальная поперечная метацентрическая высота, тем большую угрозу представляет свободная поверхность для поперечной остойчивости судна. Во всех расчетах, связанных с поперечной остойчивостью судна, необходимо учитывать влияние свободных поверхностей в судовых цистернах.

Особое внимание необходимо обращать на воду в грузовых трюмах. Свободная поверхность воды в грузовых трюмах может значительно ухудшить остойчивость судна.

Если судовая цистерна заполнена какой-либо жидкостью, на 100%, то считается, что свободной поверхности в данной цистерне нет и ее влияние на остойчивость судна можно рассматривать так же, как влияние любого другого груза, имеющего фиксированный центр тяжести.

Рассмотрим физический смысл влияния свободной поверхности. Если под действием внешнего воздействия жидкость придет в движение, то у свободной поверхности жидкости возникаем момент инерции. Момент инерции свободной поверхности жидкости, относительно собственной оси, приводит к возникновению виртуального центра тяжести на некоторой высоте над ее поверхностью. В этом случае влияние свободной поверхности на поперечную остойчивость судна будет таким же, как если бы груз таким же весом был перемещен из цистерны в точку виртуального центра тяжести. На рисунке 1 показано перемещение жидкости из-за наличия в цистерне свободного пространства и возникновение виртуального центра тяжести.

рисунок

Рисунок 1. Влияние свободной поверхности жидкости на остойчивость судна

На рисунке 1 видно, что если судно накренится на некоторый угол, то часть жидкости переместится, и в результате этого изменится форма объема жидкости в цистерне. Центр тяжести жидкости переместится в точку g1. Так как центр тяжести жидкости одновременно является ее центром величины, то перемещение gg1 можно считать кривой центра величины. Очевидно, что если рассматривать это перемещение по аналогии с наклонением судна, то изменение центром величины своего положения вызовет появление поперечного метацентра в точке m и gm является поперечным метацентрическим радиусом, который может быть вычислен по формуле:

i — Момент инерции жидкости.

v — Объем жидкости.

Влияние виртуального центра тяжести на поперечную остойчивость судна такое же, как если бы груз массой w поместили в точку m. В этом случае перемещение центра тяжести судна может быть найдено по формуле:

gm — Поперечный метацентрический радиус от перемещения жидкости в цистерне.

w — Вес жидкости в цистерне.

D — Весовое водоизмещение судна.

На судне, для облегчения вычислений поправки на свободную поверхность, в Информации об остойчивости судна, для каждой судовой цистерны, указывается так называемый момент свободной поверхности жидкости . Обозначим его буквой I. Как правило, он указывается для плотности жидкости в цистерне равной 1,000 т/м³. Если фактическая плотность жидкости отличаться от расчетной, то значение I необходимо умножить на фактическую плотность.

Поправка на свободную поверхность жидкости вычисляется по формуле:

формула

Пример: Судно после приема в цистерну смазочного масла, плотностью q = 0,92 т/ м ³, имеет водоизмещением D = 4980 т. Поперечная метацентрическая высота h = 0,69 м. Вычислить поправку на влияние свободной поверхности и новое значение начальной поперечной метацентрической высоты. Момент свободной поверхности в цистерне I = 955.

Остойчивостью называется способность судна, отклоненного от положения равновесия, возвращаться к нему после прекращения действия сил, вызвавших отклонение.

Наклонения судна могут происходить от действия набегающих волн, из-за несимметричного затопления отсеков при пробоине, от перемещения грузов, давления ветра, из-за приема или расходования грузов.

Наклонения судна в поперечной плоскости называют креном, а в продольной — дифферентом. Углы, образующиеся при этом, обозначают соответственно θ и ψ

Остойчивость, которую судно имеет при продольных наклонениях, называют продольной. Она, как правило, довольно велика, и опасности опрокидывания судна через нос или корму никогда не возникает.

Остойчивость судна при поперечных наклонениях называется поперечной. Она является наиболее важной характеристикой судна, определяющей его мореходные качества.

Различают начальную поперечную остойчивость при малых углах крена (до 10 — 15°) и остойчивость при больших наклонениях, так как восстанавливающий момент при малых и больших углах крена определяется различными способами.

Начальная остойчивость. Если судно под действием внешнего кренящего момента МКР (например, давления ветра) получит крен на угол θ (угол между исходной WL0 и действующей WL1 ватерлиниями), то, вследствие изменения формы подводной части судна, центр величины С переместится в точку С1 (рис. 5). Сила поддержания yV будет приложена в точке C1 и направлена перпендикулярно к действующей ватерлинии WL1. Точка М находится на пересечении диаметральной плоскости с линией действия сил поддержания и называется поперечным метацентром. Сила веса судна Р остается в центре тяжести G. Вместе с силой yV она образует пару сил, которая препятствует наклонению судна кренящим моментом МКР. Момент этой пары сил называется восстанавливающим моментом МВ. Величина его зависит от плеча l=GK между силами веса и поддержания наклоненного судна: MВ = Pl =Ph sin θ, где h — возвышение точки М над ЦТ судна G, называемое поперечной метацентрической высотой судна.

Из формулы видно, что величина восстанавливающего момента тем больше, чем больше h. Следовательно, метацентрическая высота может служить мерой остойчивости для данного судна.

Величина h данного судна при определенной осадке зависит от положения центра тяжести судна. Если грузы расположить так, чтобы центр тяжести судна занял более высокое положение, то метацентрическая высота уменьшится, а вместе с ней — плечо статической остойчивости и восстанавливающий момент, т. е. остойчивость судна понизится. При понижении положения центра тяжести метацентрическая высота увеличится, остойчивость судна повысится.

Так как для малых углов их синусы приближенно равны величине углов, измеренных в радианах, то можно записать МВ = Рhθ.

Метацентрическую высоту можно определить из выражения h = r + zc — zg, где zc — возвышение ЦВ над ОЛ; r — поперечный метацентрический радиус, т. е. возвышение метацентра над ЦВ; zg — возвышение ЦТ судна над основной.

На построенном судне начальную метацентрическую высоту определяют опытным путем — кренованием, т. е. поперечным наклонением судна путем перемещения груза определенного веса, называемого крен-балластом.

Остойчивость на больших углах крена. По мере увеличения крена судна восстанавливающий момент сначала возрастает, затем уменьшается, становится равным нулю и далее не только не препятствует наклонению, а наоборот, способствует ему

Так как водоизмещение для данного состояния нагрузки постоянно, то восстанавливающий момент изменяется только вследствие изменения плеча поперечной остойчивости lст. По расчетам поперечной остойчивости на больших углах крена строят диаграмму статической остойчивости, представляющую собой график, выражающий зависимость lст от угла крена. Диаграмму статической остойчивости строят для наиболее характерных и опасных случаев нагрузки судна.

Пользуясь диаграммой, можно определить угол крена по известному кренящему моменту или, наоборот, по известному углу крена найти кренящий момент. По диаграмме статической остойчивости можно определить начальную метацентрическую высоту. Для этого от начала координат откладывают радиан, равный 57,3°, и восстанавливают перпендикуляр до пересечения с касательной к кривой плеч остойчивости в начале координат. Отрезок между горизонтальной осью и точкой пересечения в масштабе диаграммы и будет равен начальной метацентрической высоте.

При медленном (статическом) действии кренящего момента состояние равновесия при крене наступает, если соблюдается условие равенства моментов, т. е. МКР = МВ

При динамическом действии кренящего момента (порыв ветра, рывок буксирного троса на борт) судно, наклоняясь, приобретает угловую скорость. Оно по инерции пройдет положение статического равновесия и будет продолжать крениться до тех пор, пока работа кренящего момента не станет равной работе восстанавливающего.

Величину, угла крена при динамическом действии кренящего момента можно определить по диаграмме статической остойчивости. Горизонтальную линию кренящего момента продолжают вправо до тех пор, пока площадь ОДСЕ (работа кренящего момента) не станет равной площади фигуры ОБЕ (работа восстанавливающего момента). При этом площадь ОАСЕ является общей, поэтому можно ограничиться сравнением площадей ОДА и ABC.

Если же площадь, ограниченная кривой восстанавливающих моментов, окажется недостаточной, то судно опрокинется.

В соответствии с требованиями Регистра максимальное плечо диаграммы статической остойчивости lmax должно быть не менее 0,25 м для судов длиной 85 м и не менее 0,20 м для судов более 105 м при угле крена θ более 30°. Угол заката диаграммы (угол, при котором кривая плеч остойчивости пересекает горизонтальную ось) для всех судов должен быть не менее 60°.

Влияние жидких грузов на остойчивость. Если цистерна заполнена не доверху, т. е. в ней имеется свободная поверхность жидкости, то при наклонении жидкость перельется в сторону крена и центр тяжести судна сместится в ту же сторону. Это приведет к уменьшению плеча остойчивости, а следовательно, к уменьшению восстанавливающего момента. При этом чем шире цистерна, в которой имеется свободная поверхность жидкости, тем значительнее будет уменьшение поперечной остойчивости. Для уменьшения влияния свободной поверхности целесообразно уменьшать ширину цистерн и стремиться к тому, чтобы во время эксплуатации было минимальное количество цистерн со свободной поверхностью жидкости.

Влияние сыпучих грузов на остойчивость. При перевозке сыпучих грузов (зерна) наблюдается несколько иная картина. В начале наклонения груз не перемещается. Только когда угол крена превысит угол естественного откоса, груз начинает пересыпаться. При этом пересыпавшийся груз не вернется в прежнее положение, а, оставшись у борта, создаст остаточный крен, что при повторных кренящих моментах (например, шквалах) может привести к потере остойчивости и опрокидыванию судна.

Для предотвращения пересыпания зерна в трюмах устанавливают подвесные продольные полупереборки — шифтинг-бордсы либо укладывают поверх насыпанного в трюме зерна мешки с зерном (мешкование груза).

Влияние подвешенного груза на остойчивость. Если груз находится в трюме, то при подъеме его, например краном, происходит как бы мгновенный перенос груза в точку подвеса. В результате ЦТ судна сместится вертикально вверх, что приведет к уменьшению плеча восстанавливающего момента при получении судном крена, т. е. к уменьшению остойчивости. При этом уменьшение остойчивости будет тем больше, чем больше масса груза и высота его подвеса.

Читайте также: