Оборудование стоящее между сетями использующими разные протоколы называется

Обновлено: 17.05.2024


OSI расшифровывается как Open System Interconnection - эталонная модель, которая описывает, как информация из программного приложения на одном компьютере перемещается через физический носитель к программному приложению на другом компьютере.
OSI состоит из семи уровней, и каждый уровень выполняет определенную сетевую функцию.
Модель OSI была разработана Международной организацией по стандартизации (ISO) в 1984 году, и теперь она рассматривается как архитектурная модель для межкомпьютерных коммуникаций.
Модель OSI делит всю задачу на семь небольших и управляемых задач. Каждому слою назначается определенная задача.
Каждый уровень является автономным, поэтому задача, назначенная каждому уровню, может выполняться независимо.

Характеристики модели OSI:

· Модель OSI разделена на два уровня: верхние и нижние уровни.
· Верхний уровень модели OSI в основном связан с проблемами приложений, и они реализованы только в программном обеспечении. Уровень приложений наиболее близок к конечному пользователю. И конечный пользователь, и прикладной уровень взаимодействуют с программными приложениями. Верхний слой относится к слою чуть выше другого слоя.
· Нижний уровень модели OSI занимается проблемами передачи данных. Канальный уровень и физический уровень реализованы в аппаратном и программном обеспечении. Физический уровень является самым низким уровнем модели OSI и наиболее близок к физической среде. Физический уровень в основном отвечает за размещение информации на физическом носителе.

Функции уровней OSI

Есть семь уровней OSI. Каждый слой имеет разные функции. Список из семи слоев приведен ниже:

1. Физический слой, Уровень приложений, так же называют прикладной
2. Уровень представления
3. Сессионный слой
4. Транспортный уровень
5. Сетевой уровень
6. Канал данных, так же называют канальным
7. Физический слой,

Физический слой

Основная функциональность физического уровня заключается в передаче отдельных битов от одного узла к другому узлу.
Это самый низкий уровень модели OSI.

· Он устанавливает, поддерживает и деактивирует физическую связь.
Он определяет механические, электрические и процедурные характеристики сетевого интерфейса.
Функции физического уровня:
· Конфигурация линии: определяет способ физического соединения двух или более устройств.
· Передача данных : определяет режим передачи между двумя устройствами в сети: симплексный, полудуплексный или полудуплексный.
· Топология : определяет способ организации сетевых устройств.
· Сигналы: определяет тип сигнала, используемого для передачи информации.
Канальный

1. Этот слой отвечает за безошибочную передачу кадров данных. Он определяет формат данных в сети, обеспечивает надежную и эффективную связь между двумя или более устройствами, отвечает за уникальную идентификацию каждого устройства, которое находится в локальной сети.
Уровень содержит содержит два подслоя:
1) Уровень управления логической связью:
Отвечает за передачу пакетов на сетевой уровень принимающего получателя.
Так же идентифицирует адрес протокола сетевого уровня из заголовка.
Это также обеспечивает управление потоком.
2) Уровень контроля доступа к медиа:
Уровень управления доступом к среде является связующим звеном между уровнем управления логическим каналом и физическим уровнем сети.
Он используется для передачи пакетов по сети.

Функции канального уровня

Сетевой уровень.

Это уровень 3, который управляет адресацией устройств, отслеживает расположение устройств в сети.
Он определяет наилучший путь для перемещения данных из источника в место назначения в зависимости от состояния сети, приоритета обслуживания и других факторов.
Канальный уровень передачи данных отвечает за маршрутизацию и пересылку пакетов.
Маршрутизаторы - это устройства уровня 3, они указаны на этом уровне и используются для предоставления услуг маршрутизации в пределах межсетевого взаимодействия.
Протоколы, используемые для маршрутизации сетевого трафика, называются протоколами сетевого уровня. Примерами протоколов являются IPV4 и Ipv6.

Функции сетевого уровня:

  • Межсетевое взаимодействие : межсетевое взаимодействие является основной обязанностью сетевого уровня. Это обеспечивает логическую связь между различными устройствами.
  • Адресация : Сетевой уровень добавляет адрес источника и назначения в заголовок кадра. Адресация используется для идентификации устройства в интернете.
  • Маршрутизация . Маршрутизация является основным компонентом сетевого уровня и определяет оптимальный оптимальный путь из нескольких путей от источника к месту назначения.
  • Пакетирование : сетевой уровень получает пакеты от верхнего уровня и преобразует их в пакеты. Этот процесс известен как Пакетирование. Это достигается с помощью интернет-протокола (IP).

Транспортный уровень

Два протокола, используемые на этом уровне:

  1. Протокол управления передачей
    Это стандартный протокол, который позволяет системам общаться через Интернет.
    Он устанавливает и поддерживает связь между хостами.
    Когда данные отправляются через соединение TCP, тогда протокол TCP делит данные на более мелкие единицы, известные как сегменты. Каждый сегмент проходит через Интернет, используя несколько маршрутов, и они прибывают в пункт назначения в разных порядках. Протокол управления передачей переупорядочивает пакеты в правильном порядке на принимающей стороне.
  2. Протокол пользовательских датаграмм
    Протокол пользовательских дейтаграмм - это протокол транспортного уровня.
    Это ненадежный транспортный протокол, так как в этом случае получатель не отправляет подтверждение при получении пакета, отправитель не ожидает подтверждения. Следовательно, это делает протокол ненадежным.

Функции транспортного уровня:

Сессионный слой

Это уровень 3 в модели OSI.
Сеансовый уровень используется для установления, поддержания и синхронизации взаимодействия между устройствами связи.
Функции сессионного слоя :

  • Диалоговое управление : Сеансовый уровень действует как диалоговый контроллер, который создает диалог между двумя процессами, или мы можем сказать, что он обеспечивает связь между двумя процессами, которые могут быть либо полудуплексными, либо полнодуплексными.
  • Синхронизация : Сеансовый уровень добавляет некоторые контрольные точки при передаче данных в последовательности. Если во время передачи данных произойдет какая-либо ошибка, то передача будет повторяться с контрольной точки. Этот процесс известен как Синхронизация и восстановление.

Уровень представления

Уровень представления в основном касается синтаксиса и семантики информации, которой обмениваются две системы.
Он действует как переводчик данных для сети.
Этот слой является частью операционной системы, которая преобразует данные из одного формата представления в другой формат.
Уровень представления также известен как уровень синтаксиса.

Функции презентационного слоя :

Уровень приложений

Прикладной уровень служит окном для пользователей и процессов приложений для доступа к сетевому сервису.
Он решает такие вопросы, как прозрачность сети, распределение ресурсов и т. Д.
Прикладной уровень не является приложением, но он выполняет функции прикладного уровня.
Этот уровень предоставляет сетевые услуги конечным пользователям.
Функции прикладного уровня :

Стек протоколов TCP/IP - это альфа и омега Интернета. Тот самый стек, на базе которого построена всемирная система объединенных компьютерных сетей Интернет, его важно знать и нужно понимать.

Через модель описывается, как необходимо строить сети на базе различных технологий, чтобы в них работал стек протоколов TCP/IP.

Сравнение моделей OSI и TCP/IP

Последняя включает в себя 4 уровня:

Самый нижний, уровень сетевых интерфейсов, обеспечивает взаимодействие с сетевыми технологиями (Ethernet, Wi-Fi и т. д.). Это объединение функций канального и физического уровней OSI.

Уровень Интернет стоит выше, и по задачам перекликается с сетевым уровнем модели OSI. Он обеспечивает поиск оптимального маршрута, включая выявление неполадок в сети. Именно на этом уровне работает маршрутизатор.

Транспортный отвечает за связь между процессами на разных компьютерах, а также за доставку переданной информации без дублирования, потерь и ошибок, в необходимой последовательности.

Прикладной объединил в себе 3 уровня модели OSI: сеансовый, представления и собственно, прикладной. То есть он выполняет такие функции, как поддержка сеанса связи, преобразование протоколов и информации, а также взаимодействие пользователя и сети.

Модель OSI обладает хорошей теоретической проработкой, но протоколы не используются. С моделью TCP/IP все иначе: протоколы широко используются, но модель подходит исключительно для описания сетей на базе TCP/IP.

Важно не путать их:

TCP/IP -- это стек протоколов, представляющий собой основу Интернета.

Модель OSI (Базовая Эталонная Модель Взаимодействия Открытых Систем) - подходит для описания самых разных сетей.

Стек протоколов TCP/IP

Рассмотрим каждый уровень более подробно:

Нижний уровень сетевых интерфейсов включает в себя Ethernet, Wi-Fi и DSL (модем). Данные сетевые технологии формально не входят в состав стека, но крайне важны в работе интернета в целом.

Основной протокол сетевого уровня -- IP (Internet Protocol). Это маршрутизированный протокол, частью которого является адресация сети (IP-адрес). Здесь также работают такие дополнительные протоколы, как ICMP, ARRP и DHCP. Они обеспечивают работу сетей.

На транспортном уровне расположились TCP -- протокол, обеспечивающий передачу данных с гарантией доставки, и UDP -- протокол для быстрой передачи данных, но уже без гарантии.

Стек протоколов TCP/IP задает стандарты связи между устройствами и содержит соглашения о межсетевом взаимодействии и маршрутизации.

Сети подразумевают передачу информации.

Самый простой способ передачи информации - это текст.

Протоколы - это наборы соглашений, что обеспечивают передачу данных.

Поток может быть большим. Как же в этом случае работает протокол? Допустим, вы скачиваете файл, который весит несколько Гб. В протоколе поток будет разбиваться на сегменты, и каждый из этих сегментов - отправляться получателю. На стороне получателя все части снова собираются.

Как это работает?

От отправителя к получателю "уходит" некий сегмент данных.

Приняв этот сегмент, получатель посылает отправителю подтверждение (ACK или Acknowledgement).

Данный процесс повторяется, пока передаются данные.

А вот что происходит, если при передаче произошла ошибка: сегмент теряется в сети, не доходит до получателя, и подтверждение не отправляется. Со стороны отправителя есть таймер, который задает время ожидания подтверждения. По истечении этого времени и за неимением ACK сегмент отправляется повторно.

Вот только в протоколе TCP подтверждаются сразу несколько сегментов, которые отправляются друг за другом (механизм скользящего окна). В противном случае скорость обмена данными была бы ужасающе медленной.

Грубо говоря, это тип разметки, которая добавляется в текстовые документы для определенного отображения текста. Например, в HTML используются теги. Так это выглядит в браузере, все знают.

Он использует протокол TCP и порт сервера 80 (для клиента порт генерируется операционной системой).

Расскажите друзьям о статье.

Начнем с темы уровней протоколов TCP/IP.

Сетевые протоколы обычно разрабатываются по уровням, где каждый уровень отвечает за собственную фазу коммуникаций и состоит из четырех уровней:
1. Канальный уровень: драйвер устройства и интерфейсная плата;
2. Сетевой уровень: IP, ICMP, IGMP;
3. Транспортный уровень: TCP,UDP;
4. Прикладной уровень: Telnet, FTP, e-mail и т.д.

Каждый уровень несет собственную функциональную нагрузку.

1.Канальный уровень.

Канальный уровень (link layer). Еще его называют уровнем сетевого интефейса. Обычно включает в себя драйвер устройства в операционной системе и соответствующую сетевую интерфейсную плату в компьютере. Вместе они обеспечивают аппаратную поддержку физического соединения с сетью (с кабелем или с другой используемой средой передачи).

2.Сетевой уровень.
3.Транспортный уровень.

Транспортный уровень (transport layer) отвечает за передачу потока данных между двумя компьютерами и обеспечивает работу прикладного уровня, который находится выше.
В семействе протоколов TCP/IP существует два транспортных протокола: TCP (Transmission Control Protocol) и UDP (User Datagram Protocol).
TCP осуществляет надежную передачу данных между двумя компьютерами. Он обеспечивает деление данных, передающихся от одного приложения к другому, на пакеты подходящего для сетевого уровня размера, подтверждение принятых пакетов, установку тайм-аутов, в течение которых должно прийти подтверждение на пакет, и так далее. Так как надежность передачи данных гарантируется на транспортном уровне, на прикладном уровне эти детали игнорируются.
UDP предоставляет более простой сервис для прикладного уровня. Он просто отсылает пакеты, которые называются датаграммами (datagram) от одного компьютера к другому. При этом нет никакой гарантии, что датаграмма дойдет до пункта назначения. За надежность передачи данных, при использовании датаграмм отвечает прикладной уровень. Для каждого транспортного протокола существуют различные приложения, которые их используют.

4.Прикладной уровень.

Прикладной уровень (application layer) определяет детали каждого конкретного приложения. Существует несколько распространенных приложений TCP/IP, которые присутствуют практически в каждой реализации:

Telnet – удаленный терминал;
FTP (File Transfer Protocol) – протокол передачи файлов;
SMTP (Simple Mail Transfer Protocol) – простой протокол передачи электронной почты;
SNMP (Simple Network Management Protocol) – простой протокол управления сетью.

tcp-ip

Маршрутизатор, по определению, имеет два или несколько интерфейсов сетевого уровня (если он объединяет две или более сетей). Любая система с несколькими интерфейсами называется многоинтерфейсной (multihomed). Компьютер, имеющий несколько интерфейсов, но не перенаправляющий пакеты с одного интерфейса на другой, не может называться маршрутизатором. Большинство реализаций TCP/IP позволяют компьютерам с несколькими интерфейсами функционировать в качестве маршрутизаторов. Однако компьютеры должны быть специально сконфигурированы, чтобы решать задачи маршрутизации. Таким образом, мы можем называть систему хостом, когда на нем работают такие приложения как FTP или Telnet, или маршрутизатором, когда он осуществляет передачу пакетов из одной сети в другую. В зависимости от того какие функции выполняются компьютером, мы будем использовать тот или иной термин.

Одна из основных задач объединения сетей заключается в том, чтобы скрыть все детали физического процесса передачи информации между приложениями, находящимися в разных сетях. Поэтому нет ничего удивительного в том, что в объединенных сетях, как, например, на рисунке 1.3, прикладные уровни не заботятся (и не должны заботиться) о том, что один компьютер находится в сети Ethernet, а другой в сети Token ring с маршрутизатором между ними. Даже если бы между сетями было 20 маршрутизаторов и различные типы физического соединения, приложения работали бы точно так же. Подобная концепция, при которой детали физического объединения сетей скрыты от приложений, определяет мощность и гибкость такой технологии объединения сетей.

Существует еще один метод объединения сетей – с помощью мостов (bridge). В этом случае сети объединяются на канальном уровне, тогда как маршрутизаторы объединяют сети на сетевом уровне.
Стоит отметить, что объединение TCP/IP сетей осуществляется в основном с помощью маршрутизаторов, а не с помощью мостов.

Перевод книги f”Richard_stevens__tcp_ip_illustrated”, краткое изложение.

Руководство по стеку протоколов TCP/IP для начинающих

Cтек протоколов TCP/IP широко распространен. Он используется в качестве основы для глобальной сети интернет. Разбираемся в основных понятиях и принципах работы стека.

Основы TCP/IP

Стек протоколов TCP/IP (Transmission Control Protocol/Internet Protocol, протокол управления передачей/протокол интернета) — сетевая модель, описывающая процесс передачи цифровых данных. Она названа по двум главным протоколам, по этой модели построена глобальная сеть — интернет. Сейчас это кажется невероятным, но в 1970-х информация не могла быть передана из одной сети в другую, с целью обеспечить такую возможность был разработан стек интернет-протоколов также известный как TCP/IP.

Разработкой этих протоколов занималось Министерство обороны США, поэтому иногда модель TCP/IP называют DoD (Department of Defence) модель. Если вы знакомы с моделью OSI, то вам будет проще понять построение модели TCP/IP, потому что обе модели имеют деление на уровни, внутри которых действуют определенные протоколы и выполняются собственные функции. Мы разделили статью на смысловые части, чтобы было проще понять, как устроена модель TCP/IP:


Уровневая модель TCP/IP

Три верхних уровня — прикладной, транспортный и сетевой — присутствуют как в RFC, так и у Таненбаума и других авторов. А вот стоит ли говорить только о канальном или о канальном и физическом уровнях — нет единого мнения. В RFC они объединены, поскольку выполняют одну функцию. В статье мы придерживаемся официального интернет-стандарта RFC и не выделяем физический уровень в отдельный. Далее мы рассмотрим четыре уровня модели.

Канальный уровень (link layer)

Предназначение канального уровня — дать описание тому, как происходит обмен информацией на уровне сетевых устройств, определить, как информация будет передаваться от одного устройства к другому. Информация здесь кодируется, делится на пакеты и отправляется по нужному каналу, т.е. среде передачи.

Этот уровень также вычисляет максимальное расстояние, на которое пакеты возможно передать, частоту сигнала, задержку ответа и т.д. Все это — физические свойства среды передачи информации. На канальном уровне самым распространенным протоколом является Ethernet, но мы рассмотрим его на примере в конце статьи.

Межсетевой уровень (internet layer)

Каждая индивидуальная сеть называется локальной, глобальная сеть интернет позволяет объединить все локальные сети. За объединение локальных сетей в глобальную отвечает сетевой уровень. Он регламентирует передачу информации по множеству локальных сетей, благодаря чему открывается возможность взаимодействия разных сетей.

Межсетевое взаимодействие — это основной принцип построения интернета. Локальные сети по всему миру объединены в глобальную, а передачу данных между этими сетями осуществляют магистральные и пограничные маршрутизаторы.

Маска подсети и IP-адреса


Маска подсети помогает маршрутизатору понять, как и куда передавать пакет. Подсетью может являться любая сеть со своими протоколами. Маршрутизатор передает пакет напрямую, если получатель находится в той же подсети, что и отправитель. Если же подсети получателя и отправителя различаются, пакет передается на второй маршрутизатор, со второго на третий и далее по цепочке, пока не достигнет получателя.

Протокол интернета — IP (Internet Protocol) используется маршрутизатором, чтобы определить, к какой подсети принадлежит получатель. Свой уникальный IP-адрес есть у каждого сетевого устройства, при этом в глобальной сети не может существовать два устройства с одинаковым IP. Он имеет два подвида, первым был принят IPv4 (IP version 4, версии 4) в 1983 году.

IPv4 предусматривает назначение каждому устройству 32-битного IP-адреса, что ограничивало максимально возможное число уникальных адресов 4 миллиардами (2 32 ). В более привычном для человека десятичном виде IPv4 выглядит как четыре блока (октета) чисел от 0 до 255, разделенных тремя точками. Первый октет IP-адреса означает его класс, классов всего 4: A, B, C, D.

IPv6 имеет вид восьми блоков по четыре шестнадцатеричных значения, а каждый блок разделяется двоеточием. IPv6 выглядит следующим образом:

Так как IPv6 адреса длинные, их разрешается сокращать по следующим правилам: ведущие нули допускается опускать, например в адресе выше :00FF: позволяется записывать как :FF:, группы нулей, идущие подряд тоже допустимо сокращать и заменять на двойное двоеточие, например, 2DAB:FFFF::01AA:00FF:DD72:2C4A. Допускается делать не больше одного подобного сокращения в адресе IPv6.

IP предназначен для определения адресата и доставки ему информации, он предоставляет услугу для вышестоящих уровней, но не гарантирует целостность доставляемой информации.

ICMP и IGMP


ICMP никогда не вызывается сетевыми приложениями пользователя, кроме случаев диагностики сети, к примеру, пинг (ping) или traceroute (tracert). ICMP не передает данные, это отличает его от транспортных TCP и UDP, расположенных на L3, которые переносят любые данные. ICMP работает только с IP четвертой версии, с IPv6 взаимодействует ICMPv6.

Сетевые устройства объединяются в группы при помощи IGMP, используемый хостами и роутерами в IPv4 сетях. IGMP организует multicast-передачу информации, что позволяет сетям направлять информацию только хостам, запросившим ее. Это удобно для онлайн-игр или потоковой передаче мультимедиа. IGMP используется только в IPv4 сетях, в сетях IPv6 используется MLD (Multicast Listener Discovery, протокол поиска групповых слушателей), инкапсулированный в ICMPv6.

Транспортный уровень (transport layer)

Постоянные резиденты транспортного уровня — протоколы TCP и UDP, они занимаются доставкой информации.

TCP (протокол управления передачей) — надежный, он обеспечивает передачу информации, проверяя дошла ли она, насколько полным является объем полученной информации и т.д. TCP дает возможность двум хостам производить обмен пакетами через установку соединения. Он предоставляет услугу для приложений, повторно запрашивает потерянную информацию, устраняет дублирующие пакеты, регулируя загруженность сети. TCP гарантирует получение и сборку информации у адресата в правильном порядке.

UDP (протокол пользовательских датаграмм) — ненадежный, он занимается передачей автономных датаграмм. UDP не гарантирует, что всех датаграммы дойдут до получателя. Датаграммы уже содержат всю необходимую информацию, чтобы дойти до получателя, но они все равно могут быть потеряны или доставлены в порядке отличном от порядка при отправлении.

UDP обычно не используется, если требуется надежная передача информации. Использовать UDP имеет смысл там, где потеря части информации не будет критичной для приложения, например, в видеоиграх или потоковой передаче видео. UDP необходим, когда делать повторный запрос сложно или неоправданно по каким-то причинам.

Протоколы L3 не интерпретируют информацию, полученную с верхнего или нижних уровней, они служат только как канал передачи, но есть исключения. RSVP (Resource Reservation Protocol, протокол резервирования сетевых ресурсов) может использоваться, например, роутерами или сетевыми экранами в целях анализа трафика и принятия решений о его передаче или отклонении в зависимости от содержимого.

Прикладной уровень (application layer)

В модели TCP/IP отсутствуют дополнительные промежуточные уровни (представления и сеансовый) в отличие от OSI. Функции форматирования и представления данных делегированы библиотекам и программным интерфейсам приложений (API) — своего рода базам знаний. Когда службы или приложения обращаются к библиотеке или API, те в ответ предоставляют набор действий, необходимых для выполнения задачи и полную инструкцию, каким образом эти действия нужно выполнять.

Зачем нужен порт и что означает термин сокет

IP присваивается каждому компьютеру межсетевым уровнем, но обмен данными происходит не между компьютерами, а между приложениями, установленными на них. Чтобы получить доступ к тому или иному сетевому приложению недостаточно только IP, для идентификации приложений применяют порты. Комбинация IP-адреса и порта называется сокетом или гнездом (socket). Поэтому обмен информацией происходит между сокетами. Нередко слово сокет употребляют как синоним для хоста или пользователя, также сокетом называют гнездо подключения процессора.

Из привилегий у приложений на прикладном уровне можно выделить наличие собственных протоколов для обмена данными, а также фиксированный номер порта для обращения к сети. Администрация адресного пространства интернет (IANA), занимающаяся выделением диапазонов IP-адресов, отвечает еще за назначение сетевым приложениям портов.


Процесс, кодирования данных на прикладном уровне, передача их на транспортном, а затем на межсетевом и, наконец, на канальном уровне называется инкапсуляцией данных. Обратная передача битов информации по иерархии, с канального на прикладной уровни, называют декапсуляцией. Оба процесса осуществляются на компьютерах получателя и отправителя данных попеременно, это позволяет долго не удерживать одну сторону канала занятой, оставляя время на передачу информации другому компьютеру.

Стек протоколов, снова канальный уровень

После ознакомления с уровневой структурой модели становится понятно, что информация не может передаваться между двумя компьютерами напрямую. Сначала кадры передаются на межсетевой уровень, где компьютеру отправителя и компьютеру получателя назначается уникальный IP. После чего, на транспортном уровне, информация передается в виде TCP-фреймов либо UDP-датаграмм.

На каждом этапе, подобно снежному кому, к уже имеющейся информации добавляется служебная информация, например, порт на прикладном уровне, необходимый для идентификации сетевого приложения. Добавление служебной информации к основной обеспечивают разные протоколы — сначала Ethernet, поверх него IP, еще выше TCP, над ним порт, означающий приложение с делегированным ему протоколом. Такая вложенность называется стеком, названным TCP/IP по двум главным протоколам модели.

Point-to-Point протоколы


Отдельно расскажем о Point-to-Point (от точки к точке, двухточечный) протоколе также известном как PPP. PPP уникален по своим функциям, он применяется для коммуникации между двумя маршрутизаторами без участия хоста или какой-либо сетевой структуры в промежутке. При необходимости, PPP обеспечивает аутентификацию, шифрование, а также сжатие данных. Он широко используется при построении физических сетей, например, кабельных телефонных, сотовых телефонных, сетей по кабелю последовательной передачи и транк-линий (когда один маршрутизатор подключают к другому для увеличения размера сети).

У PPP есть два подвида — PPPoE (PPP по Ethernet) и PPPoA (PPP через асинхронный способ передачи данных — ATM), интернет-провайдеры часто их используют для DSL соединений.

PPP и его старший аналог SLIP (протокол последовательной межсетевой связи) формально относятся к межсетевому уровню TCP/IP, но в силу особого принципа работы, иногда выделяются в отдельную категорию. Преимущество PPP в том, что для установки соединения не требуется сетевая инфраструктура, а необходимость маршрутизаторов отпадает. Эти факторы обуславливают специфику использования PPP протоколов.

Заключение

Стек TCP/IP регламентирует взаимодействие разных уровней. Ключевым понятием в здесь являются протоколы, формирующие стек, встраиваясь друг в друга с целью передать данные. Рассмотренная модель по сравнению с OSI имеет более простую архитектуру.

Сама модель остается неизменной, в то время как стандарты протоколов могут обновляться, что еще дальше упрощает работу с TCP/IP. Благодаря всем преимуществам стек TCP/IP получил широкое распространение и использовался сначала в качестве основы для создания глобальной сети, а после для описания работы интернета.

TCP/IP

Протокол TCP/IP – это целая сетевая модель, описывающая способ передачи данных в цифровом виде. На правилах, включенных в нее, базируется работа интернета и локальных сетей независимо от их назначения и структуры.

Что такое TCP/IP

Произошло наименование протокола от сокращения двух английских понятий – Transmission Control Protocol и Internet Protocol. Набор правил, входящий в него, позволяет обрабатывать как сквозную передачу данных, так и другие детали этого механизма. Сюда входит формирование пакетов, способ их отправки, получения, маршрутизации, распаковки для передачи программному обеспечению.

Что такое TCP/IP

Стек протоколов TCP/IP был создан в 1972 году на базе NCP (Network Control Protocol), в январе 1983 года он стал официальным стандартом для всего интернета. Техническая спецификация уровней взаимодействия описана в документе RFC 1122.

В составе стека есть и другие известные протоколы передачи данных – UDP, FTP, ICMP, IGMP, SMTP. Они представляют собой частные случаи применения технологии: например, у SMTP единственное предназначение заключается в отправке электронных писем.

Уровни модели TCP/IP

Протокол TCP/IP основан на OSI и так же, как предшественник, имеет несколько уровней, которые и составляют его архитектуру. Всего выделяют 4 уровня – канальный (интерфейсный), межсетевой, транспортный и прикладной.

Уровни модели TCP/IP

Канальный (сетевой интерфейс)

Аппаратный уровень обеспечивает взаимодействие сетевого оборудования Ethernet и Wi-Fi. Он соответствует физическому из предыдущего стандарта OSI. Здесь задача состоит в кодировании информации, ее делению на пакеты и отправке по нужному каналу. Также измеряются параметры сигнала вроде задержки ответа и расстояния между хостами.

Межсетевой (Internet Layer)

Интернет состоит из множества локальных сетей, объединенных между собой как раз за счет протокола связи TCP/IP. Межсетевой уровень регламентирует взаимодействие между отдельными подсетями. Маршрутизация осуществляется путем обращения к определенному IP-адресу с использованием маски.

Транспортный уровень (Transport Layer)

Следующий уровень отвечает за контроль доставки, чтобы не возникало дублей пакетов данных. В случае обнаружения потерь или ошибок информация запрашивается повторно. Такой подход дает возможность полностью автоматизировать процессы независимо от скорости и качества связи между отдельными участками интернета или внутри конкретной подсети.

Протокол TCP отличается большей достоверностью передачи данных по сравнению с тем же UDP, который подходит только для передачи потокового видео и игровой графики. Там некритичны потери части пакетов, чего нельзя сказать о копировании программных файлов и документов. На этом уровне данные не интерпретируются.

Прикладной уровень (Application Layer)

Здесь объединены 3 уровня модели OSI – сеансовый, представления и прикладной. На него ложатся задачи по поддержанию сеанса связи, преобразованию данных, взаимодействию с пользователем и сетью. На этом уровне применяются стандарты интерфейса API, позволяющего передавать команды на выполнение определенных задач.

Порты и сокеты – что это и зачем они нужны

Комбинация IP-адреса и порта называется сокетом и используется при идентификации компьютера. Если первый критерий уникален для каждого хоста, второй обычно фиксирован для определенного типа приложений. Так, получение электронной почты проходит через 110 порт, передача данных по протоколу FTP – по 21, открытие сайтов – по 80.

Преобразование IP-адресов в символьные адреса

Технология активно используется для назначения буквенно-цифровых названий веб-ресурсов. При вводе домена в адресной строке браузера сначала происходит обращение к специальному серверу DNS. Он всегда прослушивает порт 53 у всех компьютеров, которые подключены к интернету, и по запросу преобразует введенное название в стандартный IP-адрес.

После определения точного местонахождения файлов сайта включается обычная схема работы – от прикладного уровня с кодированием данных до обращения к физическому оборудованию на уровне сетевых интерфейсов. Процесс называется инкапсуляцией информации. На принимающей стороне происходит обратная процедура – декапсуляция.

Читайте также: