8 какие классы адресов используются в протоколе тср 1р

Обновлено: 04.07.2024

Стек протоколов TCP/IP как набор сетевых протоколов передачи данных, используемых в сетях, включая сеть Интернет, история его разработки, внутренняя структура и уровни: прикладной, транспортный, сетевой, канальный. Место протокола TCP/IP в ЭМВОС (OSI).

Рубрика Программирование, компьютеры и кибернетика
Вид контрольная работа
Язык русский
Дата добавления 31.03.2015
Размер файла 21,7 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Сетевые утилиты, протоколы. Виды IP-адресов

1. Какова структура протокола TCP/IP?

Стек протоколов TCP/IP - набор сетевых протоколов передачи данных, используемых в сетях, включая сеть Интернет. Название TCP/IP происходит из двух наиважнейших протоколов семейства - Transmission Control Protocol (TCP) и Internet Protocol (IP), которые были разработаны и описаны первыми в данном стандарте. Также изредка упоминается как модель DOD в связи с историческим происхождением от сети ARPANET из 1970 годов (под управлением DARPA, Министерства обороны США).

Стек протоколов TCP/IP включает в себя четыре уровня:

· прикладной уровень (application layer),

· транспортный уровень (transport layer),

· сетевой уровень (internet layer),

· канальный уровень (link layer).

Протоколы этих уровней полностью реализуют функциональные возможности модели OSI. На стеке протоколов TCP/IP построено всё взаимодействие пользователей в IP-сетях. Стек является независимым от физической среды передачи данных.

Уровни стека TCP/IP

Распределение протоколов по уровням модели TCP/IP

1. Прикладной

2. Транспортный

напр., TCP, UDP, SCTP, DCCP

(RIP, протоколы маршрутизации, подобные OSPF, что работают поверх IP, являются частью сетевого уровня)

3. Сетевой

(вспомогательные протоколы, вроде ICMP и IGMP, работают поверх IP, но тоже относятся к сетевому уровню; протокол ARP является самостоятельным вспомогательным протоколом, работающим поверх канального уровня)

Для TCP/IP это IP

(вспомогательные протоколы, вроде ICMP и IGMP, работают поверх IP, но тоже относятся к сетевому уровню; протокол ARP является самостоятельным вспомогательным протоколом, работающим поверх канального уровня)

4. Канальный

Ethernet, IEEE 802.11 Wireless Ethernet, SLIP, Token Ring, ATM и MPLS, физическая среда и принципы кодирования информации, T1, E1

На прикладном уровне (Application layer) работает большинство сетевых приложений.

В массе своей эти протоколы работают поверх TCP или UDP и привязаны к определённому порту, например:

FTP на TCP-порт 20 (для передачи данных) и 21 (для управляющих команд),

SSH на TCP-порт 22, запросы DNS на порт UDP (реже TCP) 53, обновление маршрутов по протоколу RIP на UDP-порт 520.

Эти порты определены Агентством по выделению имен и уникальных параметров протоколов (IANA).

Протоколы автоматической маршрутизации, логически представленные на этом уровне (поскольку работают поверх IP), на самом деле являются частью протоколов сетевого уровня; например OSPF (IP идентификатор 89).

UDP обычно используется в таких приложениях, как потоковое видео и компьютерные игры, где допускается потеря пакетов, а повторный запрос затруднён или не оправдан, либо в приложениях вида запрос-ответ (например, запросы к DNS), где создание соединения занимает больше ресурсов, чем повторная отправка.

И TCP, и UDP используют для определения протокола верхнего уровня число, называемое портом.

Сетевой уровень (Internet layer) изначально разработан для передачи данных из одной (под) сети в другую. Примерами такого протокола является X.25 и IPC в сети ARPANET.

С развитием концепции глобальной сети в уровень были внесены дополнительные возможности по передаче из любой сети в любую сеть, независимо от протоколов нижнего уровня, а также возможность запрашивать данные от удалённой стороны, например, в протоколе ICMP (используется для передачи диагностической информации IP-соединения) и IGMP (используется для управления multicast-потоками).

ICMP и IGMP расположены над IP и должны попасть на следующий - транспортный - уровень, но функционально являются протоколами сетевого уровня, и поэтому их невозможно вписать в модель OSI.

Пакеты сетевого протокола IP могут содержать код, указывающий, какой именно протокол следующего уровня нужно использовать, чтобы извлечь данные из пакета. Это число - уникальный IP-номер протокола. ICMP и IGMP имеют номера, соответственно, 1 и 2.

К этому уровню относятся: DHCP[1], DVMRP, ICMP, IGMP, MARS, PIM, RIP, RIP2, RSVP

Канальный уровень (Link layer) описывает, каким образом передаются пакеты данных через физический уровень, включая кодирование (то есть специальные последовательности бит, определяющих начало и конец пакета данных). Ethernet, например, в полях заголовка пакета содержит указание того, какой машине или машинам в сети предназначен этот пакет.

Примеры протоколов канального уровня - Ethernet, IEEE 802.11 Wireless Ethernet, SLIP, Token Ring, ATM и MPLS.

PPP не совсем вписывается в такое определение, поэтому обычно описывается в виде пары протоколов HDLC/SDLC.

MPLS занимает промежуточное положение между канальным и сетевым уровнем и, строго говоря, его нельзя отнести ни к одному из них.

Канальный уровень иногда разделяют на 2 подуровня - LLC и MAC.

Кроме того, канальный уровень описывает среду передачи данных (будь то коаксиальный кабель, витая пара, оптическое волокно или радиоканал), физические характеристики такой среды и принцип передачи данных (разделение каналов, модуляцию, амплитуду сигналов, частоту сигналов, способ синхронизации передачи, время ожидания ответа и максимальное расстояние).

стек протокол интернет сетевой

2. Каково место протокола TCP/IP в ЭМВОС (OSI)?

Эталонная модель OSI

Международная организация по стандартизации (ISO, International Organization for Standardization) разработала эталонную модель взаимодействия открытых систем (OSI, Open Systems Interconnection) в 1978/1979 годах для упрощения открытого взаимодействия компьютерных систем. Открытым называется взаимодействие, которое может поддерживаться в неоднородных средах, содержащих системы разных поставщиков. Модель OSI устанавливает глобальный стандарт, определяющий состав функциональных уровней при открытом взаимодействии между компьютерами.

Следует заметить, что модель настолько успешно справилась со своими исходными целями, что в настоящее время ее достоинства уже практически не обсуждаются.

Существовавший ранее закрытый, интегрированный подход уже не применяется на практике, в наше время открытость коммуникаций является обязательной. Как ни странно, очень немногие продукты полностью соответствуют стандарту OSI.

Вместо этого базовая многоуровневая структура часто адаптируется к новым стандартам. Тем не менее, эталонная модель OSI остается ценным средством для демонстрации принципов работы сети.

Эталонная модель TCP/IP

В отличие от эталонной модели OSI, модель ТСР/IP в большей степени ориентируется на обеспечение сетевых взаимодействий, нежели на жесткое разделение функциональных уровней. Для этой цели она признает важность иерархической структуры функций, но предоставляет проектировщикам протоколов достаточную гибкость в реализации. Соответственно, эталонная модель OSI гораздо лучше подходит для объяснения механики межкомпьютерных взаимодействий, но протокол TCP/IP стал основным межсетевым протоколом.

3. Что такое физический адрес?

Физический адрес - это адрес, по которому производится реальное обращение к памяти. Обычно программисты не имеют напрямую дело с физическими адресами. Вместо этого они работают с виртуальными адресами (в терминологии фирмы Intel - с логическими адресами), которые затем преобразуются процессором в физические. Процесс преобразования может включать несколько стадий. Например, в реальном режиме IA-32 стадия всего одна - преобразование логического адреса, состоящего из селектора сегмента и смещения, в линейный, численно совпадающий с физическим. В защищённом режиме логический адрес сначала преобразуется в линейный, а уже последний преобразуется в физический (частным случаем - когда страничный механизм отсутствует или неактивен - является совпадение линейного и физического адресов). В 64-разрядном режиме преобразование выполняется в одну стадию. Здесь линейный адрес совпадает с логическим адресом, поскольку механизм сегментации отключен, и преобразование производится лишь с помощью страничного механизма из линейного в физический адрес.

Разрядность физического адреса зависит от модели процессора. Микропроцессоры 8086 и 80186 использовали 20-разрядный физический адрес, 80286 - 24-разрядный, 80386 и ряд последующих 32-разрядных процессоров - 32-разрядный. Начиная с микропроцессора Pentium Pro, появилась возможность использования расширенных 36-разрядных физических адресов - технология PAE. С выпуском 64-разрядных микропроцессоров (технологии AMD64 и Intel EM64T) теоретическая разрядность физического адреса возросла до 64 бит, однако на практике используются более узкие физические адреса, но не меньше, чем 36 бит.

4. Что такое IP - адрес?

IP-адрес (айпи-адрес, сокращение от англ. Internet Protocol Address) - это уникальный сетевой адрес узла в компьютерной сети, построенной по протоколу IP. В сети Интернет требуется глобальная уникальность адреса; в случае работы в локальной сети требуется уникальность адреса в пределах сети. В версии протокола IPv4 IP-адрес имеет длину 4 байта, в IPv6 - 16 байт.

Форматы адреса

В 4-й версии IP-адрес представляет собой 32-битовое число. Удобной формой записи IP-адреса (IPv4) является запись в виде четырёх десятичных чисел значением от 0 до 255, разделённых точками, например, 192.0.2.60

IP-адрес состоит из двух частей: номера сети и номера узла. В случае изолированной сети её адрес может быть выбран администратором из специально зарезервированных для таких сетей блоков адресов (10.0.0.0/8, 172.16.0.0/12 или 192.168.0.0/16 в IPv4, fc00:/7 в IPv6). Если же сеть должна работать как составная часть Интернета, то адрес сети выдаётся провайдером либо региональным интернет-регистратором (Regional Internet Registry, RIR). Согласно данным на сайте IANA, существует пять RIR: ARIN, обслуживающий Северную Америку, а также Багамы, Пуэрто-Рико и Ямайку; APNIC, обслуживающий страны Южной, Восточной и Юго-Восточной Азии, а также Австралии и Океании; AfriNIC, обслуживающий страны Африки; LACNIC, обслуживающий страны Южной Америки и бассейна Карибского моря; и RIPE NCC, обслуживающий Европу, Центральную Азию, Ближний Восток. Региональные регистраторы получают номера автономных систем и большие блоки адресов у IANA, а затем выдают номера автономных систем и блоки адресов меньшего размера локальным интернет-регистраторам (Local Internet Registries, LIR), обычно являющимся крупными провайдерами.

Номер узла в протоколе IP назначается независимо от локального адреса узла. Маршрутизатор по определению входит сразу в несколько сетей. Поэтому каждый порт маршрутизатора имеет собственный IP-адрес. Конечный узел также может входить в несколько IP-сетей. В этом случае компьютер должен иметь несколько IP-адресов, по числу сетевых связей. Таким образом, IP-адрес характеризует не отдельный компьютер или маршрутизатор, а одно сетевое соединение.

5. Что делает DNS в сети?

DNS (англ. Domain Name System - система доменных имён) - компьютерная распределённая система для получения информации о доменах. Чаще всего используется для получения IP-адреса по имени хоста (компьютера или устройства), получения информации о маршрутизации почты, обслуживающих узлах для протоколов в домене (SRV-запись).

Распределённая база данных DNS поддерживается с помощью иерархии DNS-серверов, взаимодействующих по определённому протоколу.

DNS обладает следующими характеристиками:

Распределённость администрирования. Ответственность за разные части иерархической структуры несут разные люди или организации.

Распределённость хранения информации. Каждый узел сети в обязательном порядке должен хранить только те данные, которые входят в его зону ответственности, и (возможно) адреса корневых DNS-серверов.

Кеширование информации. Узел может хранить некоторое количество данных не из своей зоны ответственности для уменьшения нагрузки на сеть.

Иерархическая структура, в которой все узлы объединены в дерево, и каждый узел может или самостоятельно определять работу нижестоящих узлов, или делегировать (передавать) их другим узлам.

Резервирование. За хранение и обслуживание своих узлов (зон) отвечают (обычно) несколько серверов, разделённые как физически, так и логически, что обеспечивает сохранность данных и продолжение работы даже в случае сбоя одного из узлов.

DNS была разработана Полом Мокапетрисом в 1983 году; оригинальное описание механизмов работы содержится в RFC 882 и RFC 883. В 1987 публикация RFC 1034 и RFC 1035 изменила спецификацию DNS и отменила RFC 882, RFC 883 и RFC 973 как устаревшие.

3. Семенов Ю.А. Протоколы Internet. - 2-е изд., стереотип. - М.: Горячая линия - Телеком, 2005. - 1100 с.

Подобные документы

Модели и протоколы передачи данных. Эталонная модель OSI. Стандартизация в области телекоммуникаций. Стеки протоколов и стандартизация локальных сетей. Понятие открытой системы. Internet и стек протоколов TCP/IP. Взаимодействие открытых систем.

дипломная работа [98,9 K], добавлен 23.06.2012

Характеристика транспортного и сетевого протокола TCP/IP. Уровни его стека (физический, канальный, сетевой, транспортный, прикладной). Распределение протоколов по ним. Скорость загрузки Web-страницы, факторы, влияющие на нее и возможности ее ускорения.

контрольная работа [15,9 K], добавлен 06.06.2011

Просмотр сведений о сетевых подключениях компьютера с помощью ОС Windows. Установление параметров сетевых протоколов (команда ipconfig), отчет об использовании. Разрешение имен NetBios. Проверка IP-адресов, трассировка маршрутов, команды сети NET.

лабораторная работа [1,6 M], добавлен 11.09.2013

Предназначение стек протоколов TCP/IP для соединения отдельных подсетей, построенных по разным технологиям канального и физического уровней в единую составную сеть. Современные стандарты IP протоколов. Использование стандартных классов сетей маски.

презентация [244,8 K], добавлен 10.11.2016

Понятие, особенности и уровни промышленных сетей. Сравнение протоколов передачи данных HART, Industrial Ethernet, Foundation Filedbus, CAN, Modbus, их достоинства и недостатки. Физический и канальный уровни сети Profibus. Распределение функций управления.

Руководство по стеку протоколов TCP/IP для начинающих

Cтек протоколов TCP/IP широко распространен. Он используется в качестве основы для глобальной сети интернет. Разбираемся в основных понятиях и принципах работы стека.

Основы TCP/IP

Стек протоколов TCP/IP (Transmission Control Protocol/Internet Protocol, протокол управления передачей/протокол интернета) — сетевая модель, описывающая процесс передачи цифровых данных. Она названа по двум главным протоколам, по этой модели построена глобальная сеть — интернет. Сейчас это кажется невероятным, но в 1970-х информация не могла быть передана из одной сети в другую, с целью обеспечить такую возможность был разработан стек интернет-протоколов также известный как TCP/IP.

Разработкой этих протоколов занималось Министерство обороны США, поэтому иногда модель TCP/IP называют DoD (Department of Defence) модель. Если вы знакомы с моделью OSI, то вам будет проще понять построение модели TCP/IP, потому что обе модели имеют деление на уровни, внутри которых действуют определенные протоколы и выполняются собственные функции. Мы разделили статью на смысловые части, чтобы было проще понять, как устроена модель TCP/IP:


Уровневая модель TCP/IP

Три верхних уровня — прикладной, транспортный и сетевой — присутствуют как в RFC, так и у Таненбаума и других авторов. А вот стоит ли говорить только о канальном или о канальном и физическом уровнях — нет единого мнения. В RFC они объединены, поскольку выполняют одну функцию. В статье мы придерживаемся официального интернет-стандарта RFC и не выделяем физический уровень в отдельный. Далее мы рассмотрим четыре уровня модели.

Канальный уровень (link layer)

Предназначение канального уровня — дать описание тому, как происходит обмен информацией на уровне сетевых устройств, определить, как информация будет передаваться от одного устройства к другому. Информация здесь кодируется, делится на пакеты и отправляется по нужному каналу, т.е. среде передачи.

Этот уровень также вычисляет максимальное расстояние, на которое пакеты возможно передать, частоту сигнала, задержку ответа и т.д. Все это — физические свойства среды передачи информации. На канальном уровне самым распространенным протоколом является Ethernet, но мы рассмотрим его на примере в конце статьи.

Межсетевой уровень (internet layer)

Каждая индивидуальная сеть называется локальной, глобальная сеть интернет позволяет объединить все локальные сети. За объединение локальных сетей в глобальную отвечает сетевой уровень. Он регламентирует передачу информации по множеству локальных сетей, благодаря чему открывается возможность взаимодействия разных сетей.

Межсетевое взаимодействие — это основной принцип построения интернета. Локальные сети по всему миру объединены в глобальную, а передачу данных между этими сетями осуществляют магистральные и пограничные маршрутизаторы.

Маска подсети и IP-адреса


Маска подсети помогает маршрутизатору понять, как и куда передавать пакет. Подсетью может являться любая сеть со своими протоколами. Маршрутизатор передает пакет напрямую, если получатель находится в той же подсети, что и отправитель. Если же подсети получателя и отправителя различаются, пакет передается на второй маршрутизатор, со второго на третий и далее по цепочке, пока не достигнет получателя.

Протокол интернета — IP (Internet Protocol) используется маршрутизатором, чтобы определить, к какой подсети принадлежит получатель. Свой уникальный IP-адрес есть у каждого сетевого устройства, при этом в глобальной сети не может существовать два устройства с одинаковым IP. Он имеет два подвида, первым был принят IPv4 (IP version 4, версии 4) в 1983 году.

IPv4 предусматривает назначение каждому устройству 32-битного IP-адреса, что ограничивало максимально возможное число уникальных адресов 4 миллиардами (2 32 ). В более привычном для человека десятичном виде IPv4 выглядит как четыре блока (октета) чисел от 0 до 255, разделенных тремя точками. Первый октет IP-адреса означает его класс, классов всего 4: A, B, C, D.

IPv6 имеет вид восьми блоков по четыре шестнадцатеричных значения, а каждый блок разделяется двоеточием. IPv6 выглядит следующим образом:

Так как IPv6 адреса длинные, их разрешается сокращать по следующим правилам: ведущие нули допускается опускать, например в адресе выше :00FF: позволяется записывать как :FF:, группы нулей, идущие подряд тоже допустимо сокращать и заменять на двойное двоеточие, например, 2DAB:FFFF::01AA:00FF:DD72:2C4A. Допускается делать не больше одного подобного сокращения в адресе IPv6.

IP предназначен для определения адресата и доставки ему информации, он предоставляет услугу для вышестоящих уровней, но не гарантирует целостность доставляемой информации.

ICMP и IGMP


ICMP никогда не вызывается сетевыми приложениями пользователя, кроме случаев диагностики сети, к примеру, пинг (ping) или traceroute (tracert). ICMP не передает данные, это отличает его от транспортных TCP и UDP, расположенных на L3, которые переносят любые данные. ICMP работает только с IP четвертой версии, с IPv6 взаимодействует ICMPv6.

Сетевые устройства объединяются в группы при помощи IGMP, используемый хостами и роутерами в IPv4 сетях. IGMP организует multicast-передачу информации, что позволяет сетям направлять информацию только хостам, запросившим ее. Это удобно для онлайн-игр или потоковой передаче мультимедиа. IGMP используется только в IPv4 сетях, в сетях IPv6 используется MLD (Multicast Listener Discovery, протокол поиска групповых слушателей), инкапсулированный в ICMPv6.

Транспортный уровень (transport layer)

Постоянные резиденты транспортного уровня — протоколы TCP и UDP, они занимаются доставкой информации.

TCP (протокол управления передачей) — надежный, он обеспечивает передачу информации, проверяя дошла ли она, насколько полным является объем полученной информации и т.д. TCP дает возможность двум хостам производить обмен пакетами через установку соединения. Он предоставляет услугу для приложений, повторно запрашивает потерянную информацию, устраняет дублирующие пакеты, регулируя загруженность сети. TCP гарантирует получение и сборку информации у адресата в правильном порядке.

UDP (протокол пользовательских датаграмм) — ненадежный, он занимается передачей автономных датаграмм. UDP не гарантирует, что всех датаграммы дойдут до получателя. Датаграммы уже содержат всю необходимую информацию, чтобы дойти до получателя, но они все равно могут быть потеряны или доставлены в порядке отличном от порядка при отправлении.

UDP обычно не используется, если требуется надежная передача информации. Использовать UDP имеет смысл там, где потеря части информации не будет критичной для приложения, например, в видеоиграх или потоковой передаче видео. UDP необходим, когда делать повторный запрос сложно или неоправданно по каким-то причинам.

Протоколы L3 не интерпретируют информацию, полученную с верхнего или нижних уровней, они служат только как канал передачи, но есть исключения. RSVP (Resource Reservation Protocol, протокол резервирования сетевых ресурсов) может использоваться, например, роутерами или сетевыми экранами в целях анализа трафика и принятия решений о его передаче или отклонении в зависимости от содержимого.

Прикладной уровень (application layer)

В модели TCP/IP отсутствуют дополнительные промежуточные уровни (представления и сеансовый) в отличие от OSI. Функции форматирования и представления данных делегированы библиотекам и программным интерфейсам приложений (API) — своего рода базам знаний. Когда службы или приложения обращаются к библиотеке или API, те в ответ предоставляют набор действий, необходимых для выполнения задачи и полную инструкцию, каким образом эти действия нужно выполнять.

Зачем нужен порт и что означает термин сокет

IP присваивается каждому компьютеру межсетевым уровнем, но обмен данными происходит не между компьютерами, а между приложениями, установленными на них. Чтобы получить доступ к тому или иному сетевому приложению недостаточно только IP, для идентификации приложений применяют порты. Комбинация IP-адреса и порта называется сокетом или гнездом (socket). Поэтому обмен информацией происходит между сокетами. Нередко слово сокет употребляют как синоним для хоста или пользователя, также сокетом называют гнездо подключения процессора.

Из привилегий у приложений на прикладном уровне можно выделить наличие собственных протоколов для обмена данными, а также фиксированный номер порта для обращения к сети. Администрация адресного пространства интернет (IANA), занимающаяся выделением диапазонов IP-адресов, отвечает еще за назначение сетевым приложениям портов.


Процесс, кодирования данных на прикладном уровне, передача их на транспортном, а затем на межсетевом и, наконец, на канальном уровне называется инкапсуляцией данных. Обратная передача битов информации по иерархии, с канального на прикладной уровни, называют декапсуляцией. Оба процесса осуществляются на компьютерах получателя и отправителя данных попеременно, это позволяет долго не удерживать одну сторону канала занятой, оставляя время на передачу информации другому компьютеру.

Стек протоколов, снова канальный уровень

После ознакомления с уровневой структурой модели становится понятно, что информация не может передаваться между двумя компьютерами напрямую. Сначала кадры передаются на межсетевой уровень, где компьютеру отправителя и компьютеру получателя назначается уникальный IP. После чего, на транспортном уровне, информация передается в виде TCP-фреймов либо UDP-датаграмм.

На каждом этапе, подобно снежному кому, к уже имеющейся информации добавляется служебная информация, например, порт на прикладном уровне, необходимый для идентификации сетевого приложения. Добавление служебной информации к основной обеспечивают разные протоколы — сначала Ethernet, поверх него IP, еще выше TCP, над ним порт, означающий приложение с делегированным ему протоколом. Такая вложенность называется стеком, названным TCP/IP по двум главным протоколам модели.

Point-to-Point протоколы


Отдельно расскажем о Point-to-Point (от точки к точке, двухточечный) протоколе также известном как PPP. PPP уникален по своим функциям, он применяется для коммуникации между двумя маршрутизаторами без участия хоста или какой-либо сетевой структуры в промежутке. При необходимости, PPP обеспечивает аутентификацию, шифрование, а также сжатие данных. Он широко используется при построении физических сетей, например, кабельных телефонных, сотовых телефонных, сетей по кабелю последовательной передачи и транк-линий (когда один маршрутизатор подключают к другому для увеличения размера сети).

У PPP есть два подвида — PPPoE (PPP по Ethernet) и PPPoA (PPP через асинхронный способ передачи данных — ATM), интернет-провайдеры часто их используют для DSL соединений.

PPP и его старший аналог SLIP (протокол последовательной межсетевой связи) формально относятся к межсетевому уровню TCP/IP, но в силу особого принципа работы, иногда выделяются в отдельную категорию. Преимущество PPP в том, что для установки соединения не требуется сетевая инфраструктура, а необходимость маршрутизаторов отпадает. Эти факторы обуславливают специфику использования PPP протоколов.

Заключение

Стек TCP/IP регламентирует взаимодействие разных уровней. Ключевым понятием в здесь являются протоколы, формирующие стек, встраиваясь друг в друга с целью передать данные. Рассмотренная модель по сравнению с OSI имеет более простую архитектуру.

Сама модель остается неизменной, в то время как стандарты протоколов могут обновляться, что еще дальше упрощает работу с TCP/IP. Благодаря всем преимуществам стек TCP/IP получил широкое распространение и использовался сначала в качестве основы для создания глобальной сети, а после для описания работы интернета.

-сетевые, или IP-адреса, используемые для однозначной идентификации узлов в пределах всей составной сети:

-доменные имена – символьные идентификаторы узлов, к которым часто обращаются пользователи.

В общем случае сетевой интерфейс может иметь одновременно один или не­сколько локальных адресов и один или несколько сетевых адресов, а также одно или несколько доменных имен.

Итак, аппаратный (локальный) адрес идентифицирует узел в пределах подсети. Если подсеть использует одну из базовых технологий LAN – Ethernet, FDDI, Token Ring, – то для доставки данных любому узлу такой подсети достаточно указать MAC-адрес. Таким образом, в этом случае аппаратным адресом является MAC-адрес.

В составную сеть TCP/IP могут входить подсети, построенные на основе более сложных технологий, к примеру, технологии IPX/SPX. Эта сеть сама может быть разделена на подсети, и, так же как IP-сеть, она идентифицирует свои узлы аппаратными и сетевыми IPX-адресами. Но поскольку для составной сети TCP/IP составная сеть IPX/SPX является обычной подсетью, в качестве аппаратных адресов узлов этой подсети выступают те адреса, которые однозначно оп­ределяют узлы в данной подсети, а такими адресами являются IPX-адреса. Ана­логично, если в составную сеть включена сеть Х.25, то локальными адресами для протокола IP соответственно будут адреса Х.25.

IP-адреса представляют собой основной тип адресов, на основании которых сетевой уровень передает пакеты между сетями. Эти адреса состоят из 4 байт, на­пример 109.26.17.100. IP-адрес назначается администратором при конфигуриро­вании компьютеров и маршрутизаторов. IP-адрес состоит из двух частей: номера сети и номера узла. Номер сети может быть выбран администратором произ­вольно либо назначен по рекомендации специального подразделения Интернета
(Internet Network Information Center, InterNIС), если сеть должна работать как
составная часть Интернета. Обычно поставщики услуг Интернета получают диапазоны адресов у подразделений InterNIC, а затем распределяют их между свои­ми абонентами. Номер узла в протоколе IP назначается независимо от локально­го адреса узла. Маршрутизатор по определению входит сразу в несколько сетей, поэтому каждый порт маршрутизатора имеет собственный IP-адрес.

Конечный узел также может входить в несколько IP-сетей. В этом случае компьютер дол­жен иметь несколько IP-адресов, по числу сетевых связей. Таким образом, IP-адрес характеризует не отдельный компьютер или маршрутизатор, а одно сетевое соединение.

Символьные имена в IP-сетях называются доменными и строятся по иерархиче­скому признаку. Составляющие полного символьного имени в IP-сетях разделяются точкой и перечисляются в следующем порядке: сначала простое имя хоста, затем имя группы узлов (например, имя организации), затем имя более крупной группы (поддомена) и так до имени домена самого высокого уровня (например, домена, объединяющего организации по географическому принципу: RU — Россия, UK – Великобритания, SU – США). Поэтому доменные имена называют также DNS-именами.

9.2Формы записи IP-адреса

IP-адрес имеет длину 4 байта (32 бита) и состоит из двух логических частей – номера сети и номера узла в сети.

Наиболее употребляемой формой представления IP-адреса является запись в виде четырех чисел, представляющих значения каждого байта в десятичной фор­ме и разделенных точками, например:

Этот же адрес может быть представлен в двоичном формате:

10000000 00001010 00000010 00011110.

А также в шестнадцатеричном формате:

Заметим, что запись адреса не предусматривает специального разграничительного знака между номером сети и номером узла. Каким образом маршрутизаторы, на которые поступают пакеты, выделяют из адреса назначения номер сети, чтобы по нему определить дальнейший маршрут? Какая часть из 32 бит, отведенных под IP-адрес, относится к номеру сети, а какая — к номеру узла? Можно предло­жить несколько вариантов решений этой проблемы.

Простейший вариант состоит
в том, что все 32-битовое поле адреса заранее делится на две части не обязатель­но равной, но фиксированной длины, в одной из которых всегда будет разме­щаться номер сети, а в другой – номер узла. Решение очень простое, но хорошеели? Поскольку поле, которое отводится для хранения номера узла, имеет фиксированную длину, все сети будут иметь одинаковое максимальное число узлов.
Если, например, под номер сети отвести один первый байт, то всё адресное про­странство распадется на сравнительно небольшое (2 8 ) число сетей огромного размера (2 24 узлов). Если границу передвинуть дальше вправо, то сетей станет больше, но все равно все они будут одинакового размера. Очевидно, что такой жесткий подход не позволяет дифференцированно подходить к потребностям отдельных предприятий и организаций. Именно поэтому такой способ структуризации адреса и не нашел применения.

Второй подход основан на использовании маски, которая позволяет максимально гибко устанавливать границу между номером сети и номером узла. В данном случае маска – это число, которое используется в паре с IP-адресом; двоичная запись маски содержит последовательность единиц в тех разрядах, которые должны в IP-адресе интерпретироваться как номер сети. Поскольку номер сети является цельной частью адреса, единицы в маске также должны представлять непрерывную последовательность. Граница между последовательностью единиц и последовательностью нулей в маске соответствует границе между номером сети и номером узла в IP-адресе. При таком подходе адресное пространство можно представить как совокупность множества сетей разного размера.

Вводится несколько классов сетей, и для каждого класса определены свои размеры.

Принадлежность IP-адреса к классу определяется значениями первых битов ад­реса. На рисунке. 20 показана структура IP-адресов разных классов.


Рисунок 20-. Структура IP-адресов

Если адрес начинается с 0, то этот адрес относится к классу A, в котором под номер сети отводится один байт, а остальные три байта интерпретируются как номер узла в сети. Сети, имеющие номера в диапазоне от 1 (00000001) до 126 (01111110), называются сетями класса А. (Номер 0 не используется, а номер 127 зарезервирован для специальных целей, о чем будет сказано ниже.) Сетей клас­са А немного, зато количество узлов в них может достигать 2 24 , то есть 16777216 узлов.

Если первые два бита адреса равны 10, то адрес относится к классу В. В адресах: класса В под номер сети и под номер узла отводится по два байта. Сети, имеющие номера в диапазоне от 128.0 (1000000000000000) до 191.255 (1011111111111111), называются сетями класса В. Таким образом, сетей класса В больше, чем сетей класса А, но размеры ихменьше, максимальное количество узлов в них составляет 2 16 (65536).

Если адрес начинается с последовательности битов 110, то это адрес класса С. В этом случае под номер сети отводился 24 бита, а под номер узла – 8 бит. Сети класса C наиболее распространены, но число узлов в них ограничено значением 2 8 (256) узлов.

Еще два класса адресов D и Е не связаны непосредственно с сетями.

Если адрес начинается с последовательности 1110, то он является адресом класса D и обозначает особый, групповой адрес (multicast). Групповой адрес идентифицирует группу узлов (сетевых интерфейсов), которые в общем случае могут принадлежать разным сетям. Интерфейс, входящий в группу, получает наряду с обычным индивидуальным IP-адресом еще один групповой адрес. Если при от­правке пакета в качестве адреса назначения указан адрес класса D, то такой па­кет должен быть доставлен всем узлам, которые входят в группу.

Если адрес начинается с последовательности 11110, то это значит, что данный адрес относится к классу E. Адреса этого класса зарезервированы для будущих применений.

В табл. 1. приведены диапазоны номеров сетей и максимальное число узлов, соответствующих каждому классу сетей.

Т а б л и ц а 1-. Характеристики адресов разного класса

Класс Первые биты Наименьший номер сети Наибольший номер сети Максимальное число узлов в сети
А 1.0.0.0 126.0.0.0 2 24
В 128.0.0.0 191.255.0.0 2 16
С 192.0.1.0 223.255.255.0 2 8
D 224.0.0.0 239.255.255.255 Multicast
Е 240.0.0.0 247.255.255.255 Зарезервирован

Большие сети получают адреса класса A, средние – класса B, а небольшие – класса С:

Специальные адреса, состоящие из последовательностей нулей, могут быть ис­пользованы только в качестве адреса отправителя, а адреса, состоящие из после­довательностей единиц, — только в качестве адреса получателя.

Стек протоколов TCP/IP как набор сетевых протоколов передачи данных, используемых в сетях, включая сеть Интернет, история его разработки, внутренняя структура и уровни: прикладной, транспортный, сетевой, канальный. Место протокола TCP/IP в ЭМВОС (OSI).

Рубрика Программирование, компьютеры и кибернетика
Вид контрольная работа
Язык русский
Дата добавления 31.03.2015
Размер файла 21,7 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Сетевые утилиты, протоколы. Виды IP-адресов

1. Какова структура протокола TCP/IP?

Стек протоколов TCP/IP - набор сетевых протоколов передачи данных, используемых в сетях, включая сеть Интернет. Название TCP/IP происходит из двух наиважнейших протоколов семейства - Transmission Control Protocol (TCP) и Internet Protocol (IP), которые были разработаны и описаны первыми в данном стандарте. Также изредка упоминается как модель DOD в связи с историческим происхождением от сети ARPANET из 1970 годов (под управлением DARPA, Министерства обороны США).

Стек протоколов TCP/IP включает в себя четыре уровня:

· прикладной уровень (application layer),

· транспортный уровень (transport layer),

· сетевой уровень (internet layer),

· канальный уровень (link layer).

Протоколы этих уровней полностью реализуют функциональные возможности модели OSI. На стеке протоколов TCP/IP построено всё взаимодействие пользователей в IP-сетях. Стек является независимым от физической среды передачи данных.

Уровни стека TCP/IP

Распределение протоколов по уровням модели TCP/IP

1. Прикладной

2. Транспортный

напр., TCP, UDP, SCTP, DCCP

(RIP, протоколы маршрутизации, подобные OSPF, что работают поверх IP, являются частью сетевого уровня)

3. Сетевой

(вспомогательные протоколы, вроде ICMP и IGMP, работают поверх IP, но тоже относятся к сетевому уровню; протокол ARP является самостоятельным вспомогательным протоколом, работающим поверх канального уровня)

Для TCP/IP это IP

(вспомогательные протоколы, вроде ICMP и IGMP, работают поверх IP, но тоже относятся к сетевому уровню; протокол ARP является самостоятельным вспомогательным протоколом, работающим поверх канального уровня)

4. Канальный

Ethernet, IEEE 802.11 Wireless Ethernet, SLIP, Token Ring, ATM и MPLS, физическая среда и принципы кодирования информации, T1, E1

На прикладном уровне (Application layer) работает большинство сетевых приложений.

В массе своей эти протоколы работают поверх TCP или UDP и привязаны к определённому порту, например:

FTP на TCP-порт 20 (для передачи данных) и 21 (для управляющих команд),

SSH на TCP-порт 22, запросы DNS на порт UDP (реже TCP) 53, обновление маршрутов по протоколу RIP на UDP-порт 520.

Эти порты определены Агентством по выделению имен и уникальных параметров протоколов (IANA).

Протоколы автоматической маршрутизации, логически представленные на этом уровне (поскольку работают поверх IP), на самом деле являются частью протоколов сетевого уровня; например OSPF (IP идентификатор 89).

UDP обычно используется в таких приложениях, как потоковое видео и компьютерные игры, где допускается потеря пакетов, а повторный запрос затруднён или не оправдан, либо в приложениях вида запрос-ответ (например, запросы к DNS), где создание соединения занимает больше ресурсов, чем повторная отправка.

И TCP, и UDP используют для определения протокола верхнего уровня число, называемое портом.

Сетевой уровень (Internet layer) изначально разработан для передачи данных из одной (под) сети в другую. Примерами такого протокола является X.25 и IPC в сети ARPANET.

С развитием концепции глобальной сети в уровень были внесены дополнительные возможности по передаче из любой сети в любую сеть, независимо от протоколов нижнего уровня, а также возможность запрашивать данные от удалённой стороны, например, в протоколе ICMP (используется для передачи диагностической информации IP-соединения) и IGMP (используется для управления multicast-потоками).

ICMP и IGMP расположены над IP и должны попасть на следующий - транспортный - уровень, но функционально являются протоколами сетевого уровня, и поэтому их невозможно вписать в модель OSI.

Пакеты сетевого протокола IP могут содержать код, указывающий, какой именно протокол следующего уровня нужно использовать, чтобы извлечь данные из пакета. Это число - уникальный IP-номер протокола. ICMP и IGMP имеют номера, соответственно, 1 и 2.

К этому уровню относятся: DHCP[1], DVMRP, ICMP, IGMP, MARS, PIM, RIP, RIP2, RSVP

Канальный уровень (Link layer) описывает, каким образом передаются пакеты данных через физический уровень, включая кодирование (то есть специальные последовательности бит, определяющих начало и конец пакета данных). Ethernet, например, в полях заголовка пакета содержит указание того, какой машине или машинам в сети предназначен этот пакет.

Примеры протоколов канального уровня - Ethernet, IEEE 802.11 Wireless Ethernet, SLIP, Token Ring, ATM и MPLS.

PPP не совсем вписывается в такое определение, поэтому обычно описывается в виде пары протоколов HDLC/SDLC.

MPLS занимает промежуточное положение между канальным и сетевым уровнем и, строго говоря, его нельзя отнести ни к одному из них.

Канальный уровень иногда разделяют на 2 подуровня - LLC и MAC.

Кроме того, канальный уровень описывает среду передачи данных (будь то коаксиальный кабель, витая пара, оптическое волокно или радиоканал), физические характеристики такой среды и принцип передачи данных (разделение каналов, модуляцию, амплитуду сигналов, частоту сигналов, способ синхронизации передачи, время ожидания ответа и максимальное расстояние).

стек протокол интернет сетевой

2. Каково место протокола TCP/IP в ЭМВОС (OSI)?

Эталонная модель OSI

Международная организация по стандартизации (ISO, International Organization for Standardization) разработала эталонную модель взаимодействия открытых систем (OSI, Open Systems Interconnection) в 1978/1979 годах для упрощения открытого взаимодействия компьютерных систем. Открытым называется взаимодействие, которое может поддерживаться в неоднородных средах, содержащих системы разных поставщиков. Модель OSI устанавливает глобальный стандарт, определяющий состав функциональных уровней при открытом взаимодействии между компьютерами.

Следует заметить, что модель настолько успешно справилась со своими исходными целями, что в настоящее время ее достоинства уже практически не обсуждаются.

Существовавший ранее закрытый, интегрированный подход уже не применяется на практике, в наше время открытость коммуникаций является обязательной. Как ни странно, очень немногие продукты полностью соответствуют стандарту OSI.

Вместо этого базовая многоуровневая структура часто адаптируется к новым стандартам. Тем не менее, эталонная модель OSI остается ценным средством для демонстрации принципов работы сети.

Эталонная модель TCP/IP

В отличие от эталонной модели OSI, модель ТСР/IP в большей степени ориентируется на обеспечение сетевых взаимодействий, нежели на жесткое разделение функциональных уровней. Для этой цели она признает важность иерархической структуры функций, но предоставляет проектировщикам протоколов достаточную гибкость в реализации. Соответственно, эталонная модель OSI гораздо лучше подходит для объяснения механики межкомпьютерных взаимодействий, но протокол TCP/IP стал основным межсетевым протоколом.

3. Что такое физический адрес?

Физический адрес - это адрес, по которому производится реальное обращение к памяти. Обычно программисты не имеют напрямую дело с физическими адресами. Вместо этого они работают с виртуальными адресами (в терминологии фирмы Intel - с логическими адресами), которые затем преобразуются процессором в физические. Процесс преобразования может включать несколько стадий. Например, в реальном режиме IA-32 стадия всего одна - преобразование логического адреса, состоящего из селектора сегмента и смещения, в линейный, численно совпадающий с физическим. В защищённом режиме логический адрес сначала преобразуется в линейный, а уже последний преобразуется в физический (частным случаем - когда страничный механизм отсутствует или неактивен - является совпадение линейного и физического адресов). В 64-разрядном режиме преобразование выполняется в одну стадию. Здесь линейный адрес совпадает с логическим адресом, поскольку механизм сегментации отключен, и преобразование производится лишь с помощью страничного механизма из линейного в физический адрес.

Разрядность физического адреса зависит от модели процессора. Микропроцессоры 8086 и 80186 использовали 20-разрядный физический адрес, 80286 - 24-разрядный, 80386 и ряд последующих 32-разрядных процессоров - 32-разрядный. Начиная с микропроцессора Pentium Pro, появилась возможность использования расширенных 36-разрядных физических адресов - технология PAE. С выпуском 64-разрядных микропроцессоров (технологии AMD64 и Intel EM64T) теоретическая разрядность физического адреса возросла до 64 бит, однако на практике используются более узкие физические адреса, но не меньше, чем 36 бит.

4. Что такое IP - адрес?

IP-адрес (айпи-адрес, сокращение от англ. Internet Protocol Address) - это уникальный сетевой адрес узла в компьютерной сети, построенной по протоколу IP. В сети Интернет требуется глобальная уникальность адреса; в случае работы в локальной сети требуется уникальность адреса в пределах сети. В версии протокола IPv4 IP-адрес имеет длину 4 байта, в IPv6 - 16 байт.

Форматы адреса

В 4-й версии IP-адрес представляет собой 32-битовое число. Удобной формой записи IP-адреса (IPv4) является запись в виде четырёх десятичных чисел значением от 0 до 255, разделённых точками, например, 192.0.2.60

IP-адрес состоит из двух частей: номера сети и номера узла. В случае изолированной сети её адрес может быть выбран администратором из специально зарезервированных для таких сетей блоков адресов (10.0.0.0/8, 172.16.0.0/12 или 192.168.0.0/16 в IPv4, fc00:/7 в IPv6). Если же сеть должна работать как составная часть Интернета, то адрес сети выдаётся провайдером либо региональным интернет-регистратором (Regional Internet Registry, RIR). Согласно данным на сайте IANA, существует пять RIR: ARIN, обслуживающий Северную Америку, а также Багамы, Пуэрто-Рико и Ямайку; APNIC, обслуживающий страны Южной, Восточной и Юго-Восточной Азии, а также Австралии и Океании; AfriNIC, обслуживающий страны Африки; LACNIC, обслуживающий страны Южной Америки и бассейна Карибского моря; и RIPE NCC, обслуживающий Европу, Центральную Азию, Ближний Восток. Региональные регистраторы получают номера автономных систем и большие блоки адресов у IANA, а затем выдают номера автономных систем и блоки адресов меньшего размера локальным интернет-регистраторам (Local Internet Registries, LIR), обычно являющимся крупными провайдерами.

Номер узла в протоколе IP назначается независимо от локального адреса узла. Маршрутизатор по определению входит сразу в несколько сетей. Поэтому каждый порт маршрутизатора имеет собственный IP-адрес. Конечный узел также может входить в несколько IP-сетей. В этом случае компьютер должен иметь несколько IP-адресов, по числу сетевых связей. Таким образом, IP-адрес характеризует не отдельный компьютер или маршрутизатор, а одно сетевое соединение.

5. Что делает DNS в сети?

DNS (англ. Domain Name System - система доменных имён) - компьютерная распределённая система для получения информации о доменах. Чаще всего используется для получения IP-адреса по имени хоста (компьютера или устройства), получения информации о маршрутизации почты, обслуживающих узлах для протоколов в домене (SRV-запись).

Распределённая база данных DNS поддерживается с помощью иерархии DNS-серверов, взаимодействующих по определённому протоколу.

DNS обладает следующими характеристиками:

Распределённость администрирования. Ответственность за разные части иерархической структуры несут разные люди или организации.

Распределённость хранения информации. Каждый узел сети в обязательном порядке должен хранить только те данные, которые входят в его зону ответственности, и (возможно) адреса корневых DNS-серверов.

Кеширование информации. Узел может хранить некоторое количество данных не из своей зоны ответственности для уменьшения нагрузки на сеть.

Иерархическая структура, в которой все узлы объединены в дерево, и каждый узел может или самостоятельно определять работу нижестоящих узлов, или делегировать (передавать) их другим узлам.

Резервирование. За хранение и обслуживание своих узлов (зон) отвечают (обычно) несколько серверов, разделённые как физически, так и логически, что обеспечивает сохранность данных и продолжение работы даже в случае сбоя одного из узлов.

DNS была разработана Полом Мокапетрисом в 1983 году; оригинальное описание механизмов работы содержится в RFC 882 и RFC 883. В 1987 публикация RFC 1034 и RFC 1035 изменила спецификацию DNS и отменила RFC 882, RFC 883 и RFC 973 как устаревшие.

3. Семенов Ю.А. Протоколы Internet. - 2-е изд., стереотип. - М.: Горячая линия - Телеком, 2005. - 1100 с.

Подобные документы

Модели и протоколы передачи данных. Эталонная модель OSI. Стандартизация в области телекоммуникаций. Стеки протоколов и стандартизация локальных сетей. Понятие открытой системы. Internet и стек протоколов TCP/IP. Взаимодействие открытых систем.

дипломная работа [98,9 K], добавлен 23.06.2012

Характеристика транспортного и сетевого протокола TCP/IP. Уровни его стека (физический, канальный, сетевой, транспортный, прикладной). Распределение протоколов по ним. Скорость загрузки Web-страницы, факторы, влияющие на нее и возможности ее ускорения.

контрольная работа [15,9 K], добавлен 06.06.2011

Просмотр сведений о сетевых подключениях компьютера с помощью ОС Windows. Установление параметров сетевых протоколов (команда ipconfig), отчет об использовании. Разрешение имен NetBios. Проверка IP-адресов, трассировка маршрутов, команды сети NET.

лабораторная работа [1,6 M], добавлен 11.09.2013

Предназначение стек протоколов TCP/IP для соединения отдельных подсетей, построенных по разным технологиям канального и физического уровней в единую составную сеть. Современные стандарты IP протоколов. Использование стандартных классов сетей маски.

презентация [244,8 K], добавлен 10.11.2016

Понятие, особенности и уровни промышленных сетей. Сравнение протоколов передачи данных HART, Industrial Ethernet, Foundation Filedbus, CAN, Modbus, их достоинства и недостатки. Физический и канальный уровни сети Profibus. Распределение функций управления.

TCP/IP

Протокол TCP/IP – это целая сетевая модель, описывающая способ передачи данных в цифровом виде. На правилах, включенных в нее, базируется работа интернета и локальных сетей независимо от их назначения и структуры.

Что такое TCP/IP

Произошло наименование протокола от сокращения двух английских понятий – Transmission Control Protocol и Internet Protocol. Набор правил, входящий в него, позволяет обрабатывать как сквозную передачу данных, так и другие детали этого механизма. Сюда входит формирование пакетов, способ их отправки, получения, маршрутизации, распаковки для передачи программному обеспечению.

Что такое TCP/IP

Стек протоколов TCP/IP был создан в 1972 году на базе NCP (Network Control Protocol), в январе 1983 года он стал официальным стандартом для всего интернета. Техническая спецификация уровней взаимодействия описана в документе RFC 1122.

В составе стека есть и другие известные протоколы передачи данных – UDP, FTP, ICMP, IGMP, SMTP. Они представляют собой частные случаи применения технологии: например, у SMTP единственное предназначение заключается в отправке электронных писем.

Уровни модели TCP/IP

Протокол TCP/IP основан на OSI и так же, как предшественник, имеет несколько уровней, которые и составляют его архитектуру. Всего выделяют 4 уровня – канальный (интерфейсный), межсетевой, транспортный и прикладной.

Уровни модели TCP/IP

Канальный (сетевой интерфейс)

Аппаратный уровень обеспечивает взаимодействие сетевого оборудования Ethernet и Wi-Fi. Он соответствует физическому из предыдущего стандарта OSI. Здесь задача состоит в кодировании информации, ее делению на пакеты и отправке по нужному каналу. Также измеряются параметры сигнала вроде задержки ответа и расстояния между хостами.

Межсетевой (Internet Layer)

Интернет состоит из множества локальных сетей, объединенных между собой как раз за счет протокола связи TCP/IP. Межсетевой уровень регламентирует взаимодействие между отдельными подсетями. Маршрутизация осуществляется путем обращения к определенному IP-адресу с использованием маски.

Транспортный уровень (Transport Layer)

Следующий уровень отвечает за контроль доставки, чтобы не возникало дублей пакетов данных. В случае обнаружения потерь или ошибок информация запрашивается повторно. Такой подход дает возможность полностью автоматизировать процессы независимо от скорости и качества связи между отдельными участками интернета или внутри конкретной подсети.

Протокол TCP отличается большей достоверностью передачи данных по сравнению с тем же UDP, который подходит только для передачи потокового видео и игровой графики. Там некритичны потери части пакетов, чего нельзя сказать о копировании программных файлов и документов. На этом уровне данные не интерпретируются.

Прикладной уровень (Application Layer)

Здесь объединены 3 уровня модели OSI – сеансовый, представления и прикладной. На него ложатся задачи по поддержанию сеанса связи, преобразованию данных, взаимодействию с пользователем и сетью. На этом уровне применяются стандарты интерфейса API, позволяющего передавать команды на выполнение определенных задач.

Порты и сокеты – что это и зачем они нужны

Комбинация IP-адреса и порта называется сокетом и используется при идентификации компьютера. Если первый критерий уникален для каждого хоста, второй обычно фиксирован для определенного типа приложений. Так, получение электронной почты проходит через 110 порт, передача данных по протоколу FTP – по 21, открытие сайтов – по 80.

Преобразование IP-адресов в символьные адреса

Технология активно используется для назначения буквенно-цифровых названий веб-ресурсов. При вводе домена в адресной строке браузера сначала происходит обращение к специальному серверу DNS. Он всегда прослушивает порт 53 у всех компьютеров, которые подключены к интернету, и по запросу преобразует введенное название в стандартный IP-адрес.

После определения точного местонахождения файлов сайта включается обычная схема работы – от прикладного уровня с кодированием данных до обращения к физическому оборудованию на уровне сетевых интерфейсов. Процесс называется инкапсуляцией информации. На принимающей стороне происходит обратная процедура – декапсуляция.

Читайте также: