В каких сетях изоляция основной способ обеспечения безопасности

Обновлено: 30.06.2024

При прямых прикосновениях необходимо применять следующие технические способы и средства:

- защитные ограждения (временные или стационарные);

- безопасное расположение токоведущих частей;

- изоляция токоведущих частей;

Рекомендуемые файлы

- предупредительная сигнализация, блокировка, маркировка, знаки безопасности и плакаты.

При косвенных прикосновениях применяют:

- изоляцию нетоковедущих частей;

- электрическое разделение сети;

- контроль сопротивления изоляции;

- компенсацию токов замыкания на землю;

- средства индивидуальной защиты;

- систему защитных проводников.

3.8.2 Защитные оболочки и ограждения. Безопасное расположение токоведущих частей

Для защиты от случайного прикосновения к неизолированным токоведущим частям или приближения к ним на опасное расстояние они располагаются на недоступной высоте или в недоступном месте. Если эти части доступны для человека, они закрываются временными или стационарными, сплошными или сетчатыми ограждениями, обеспечивающими частичную защиту от прикосновения. Токоведущие части могут заключаться в оболочки (корпуса). При этой защите должны быть соблюдены все установленные правилами изоляционные расстояния между человеком, ограждением или оболочкой и токоведущими частями.

3.8.3 Изоляция токоведущих и нетоковедущих частей и рабочего места

Различают следующие виды изоляции токоведущих частей: рабочая, дополнительная, усиленная, двойная.

Рабочая изоляция обеспечивает нормальную работу и защиту электроустановок от поражения электрическим током

Дополнительная изоляция предусмотрена наряду с рабочей для защиты от поражения электрическим током в случае повреждения рабочей изоляции.

Двойной называется изоляция, состоящая из рабочей и дополнительной. Материалы, используемые для рабочей и двойной изоляции имеют различные свойства, что делает маловероятным одновременное их повреждение.

Усиленная изоляция – это улучшенная рабочая изоляция, обеспечивающая такую же степень защиты, как двойная, но конструктивно выполненная так, что каждую из составляющих изоляции испытать нельзя.

Изоляция рабочего места предусматривает изоляцию пола, настила, площадки, металлических деталей в области рабочего места, потенциал которых отличается от потенциалов токоведущих частей, и прикосновение к которым является предусмотренным или возможным.

Изоляция нетоковедущих частей осуществляется путем покрытия частей изоляционными материалами (лаками, красками).

3.8.4 Малое напряжение

Малое напряжение применяется для питания ручного электроинструмента, ручных светильников в помещениях особой и повышенной опасности и т.д. Малым называется номинальное напряжение не более 50 В переменного тока и не более 110 В постоянного тока.

3.8.5 Сигнализация, блокировка, знаки безопасности

Сигнализация (звуковая, световая) применяется в дополнение к другим средствам и способам защиты. Она предупреждает о наличии напряжения на электроустановке. Имеются устройства, сигнализирующие об опасности недопустимого приближения к токоведущим частям под напряжением.

Блокировка (механическая и электрическая) исключает доступ к токоведущим частям, пока с них не снято напряжение, либо обеспечивается автоматическое снятие напряжения при появлении возможности прикосновения или опасного приближения к токоведущим частям.

Маркировка – это надписи, буквенно-цифровые и цветовые обозначения элементов, устройств, проводов (например, нулевой защитный проводник должен иметь голубую расцветку), введенные для их легкого распознавания.

3.8.6 Контроль изоляции

Контроль изоляции может быть периодическим, непрерывным и приемосдаточным. Поддержание сопротивления изоляции на высоком уровне уменьшает вероятность замыканий на землю, на корпус и поражение людей электрическим током.

В сети с изолированной нейтралью непрерывный контроль обязателен. Для этого используют метод трех вольтметров (рисунок 3.9).

Недостаток этого способа заключается в том, что при одновременном ухудшении состояния изоляции всех фаз в одинаковое количество раз этот метод не пригоден.

Периодическая проверка производится путем измерения сопротивления изоляции мегаомметром. Измеряется сопротивление изоляции каждой фазы относительно земли. В электроустановках напряжением до 1000 В оно должно быть не ниже 0,5 МОм. Более подробно материал разбирается на лабораторных занятиях.

а) при неисправном состоянии изоляции показания всех вольтметров одинаковы и равны фазному напряжению: В;

б) при замыкании одной из фаз на землю, например , ; В, т.е. показания всех вольтметров изменились.

3.8.7 Защитное заземление

Защитное заземление – это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением (рисунок 3.10).

Защитное заземление эффективно в сетях напряжением до 1000 В с изолированной нейтралью (полюсом). Принцип действия защитного заземления заключается в том, что человек, касающийся корпуса оборудования, находящегося под напряжением за счет короткого замыкания фазы на корпус, оказывается включенным параллельно заземлителю с сопротивлением защитного

Рисунок 3.10

заземления , имеющим значительно меньшее сопротивление, чем тело человека . В результате большая часть тока замыкания на землю пойдет через заземлитель (рисунок 3.10,а).

При отсутствии заземлителя весь ток пойдет через тело человека, что может привести к его поражению (рисунок 3.10,б). Для уменьшения напряжения на заземлителе, сопротивление защитного заземления нормируется. В электроустановках напряжением до 1000 В оно должно быть не более 4 Ом. Значение зависит также от мощности источника питания, удельного сопротивления грунта и эксплуатируемого оборудования. Для заземления используют искусственные и естественные заземлители. Естественные заземлители – это находящиеся в соприкосновении с землей электропроводящие металлические конструкции и коммуникации зданий и сооружений, за исключением взрыво- и пожаро-опасных (нефтепроводы и др.) Использование протяженных и разветвленных заземлителей позволяет снизить и выравнять потенциалы. Искусственные заземлители представляют собой совокупность собственно заземлителей и заземляющих проводников, называемыми заземляющим устройством.

Схема заземляющего устройства показана на рисунке 3.11.

2 – заземляющий проводник

3 – магистральная шина

4 – соединительная полоса

5 – одиночные заземлители

n – количество одиночных

заземлителей (для получе-

Расчет заземляющего устройства приведен в [16]. Требования к заземляющему устройству и его элементам, классификация и области применения заземляющего устройства подробно рассматриваются на лабораторных занятиях.

В электроустановках напряжением до 1 кВ при использовании трех проводных сетей с заземленной нейтралью защитное заземление не обеспечивает защиты людей от поражения электрическим током (рисунок 3.12).

В этом случае при к.з. фазы на корпус ток может оказаться недостаточным для срабатывания защиты (например, предохранителя) и человек, прикоснувшись к поврежденному корпусу, окажется под напряжением. Оно будет тем больше, чем больше . Следовательно, величину необходимо уменьшать, что потребует громоздкого и дорогого заземляющего устройства. Поэтому в четырех проводных сетях с глухозаземленной нейтралью и нулевым проводом применяют зануление.

3.8.9 Средства индивидуальной защиты (СИЗ)

СИЗ относятся к средствам защиты, используемых в электроустановках, служащих для защиты людей от поражения электрическим током, электрической дуги и электромагнитного поля. Изолирующие средства делятся на основные и дополнительные.

К основным в электроустановках напряжением свыше 1000 В относятся: электроизмерительные клещи, указатели напряжения для фазировки, изолирующие устройства и приспособления для работ на воздушных линиях с непосредственным прикосновением к токоведущим частям.

К дополнительным в электроустановках напряжением свыше 1000 В относятся: диэлектрические перчатки, боты, ковры; индивидуальные экранирующие комплекты; изолирующие подставки и накладки; переносные заземления; оградительные устройства; плакаты и знаки безопасности.

К основным в электроустановках напряжением до 1000 В относятся: изолирующие штанги; изолирующие и электроизмерительные клещи; указатели напряжения; диэлектрические перчатки; слесарно-монтажный инструмент с изолирующими рукоятками.

К дополнительным в электроустановках напряжением до 1000 В относятся: диэлектрические галоши и ковры; переносные заземления; изолирующие подставки и накладки; плакаты и знаки безопасности; оградительные устройства.

Средства защиты, кроме плакатов и знаков безопасности, диэлектрических ковров, изолирующих подставок, переносных заземлений и ограждений подвергаются эксплуатационным испытаниям: перчатки – 2 раза в год, галоши – 1 раз в год, боты – 1 раз в 3 года, указатели напряжения и инструмент с изолирующими рукоятками – 1 раз в год.

3.8.10 Выравнивание потенциалов. Напряжение шага. Напряжение прикосновения. Потенциалы растекания тока в земле

При пробое изоляции на корпус, присоединенный к заземлителю, обрыве и падении провода на землю потенциалы точек земной поверхности (токопроводящего поля) распределяются по гиперболическому закону согласно рисунка 3.14.

Можно показать, что ,

где – ток замыкания на землю, А;

– удельное сопротивление грунта, ;

x – расстояние от заземлителя до ближайшей ноги человека, м.

Наибольший потенциал, равный потенциалу заземлителя имеет точка земли, расположенная над заземлителем или в месте замыкания провода на землю. При удалении от нее в любую сторону потенциалы поверхности земли снижаются. Можно считать, что на расстоянии более 20 м от заземлителя зона растекания заканчивается ( ). Человек, находящийся в зоне растекания, может попасть под напряжение шага . Напряжение шага – это разность потенциалов между двумя точками земли, находящимися одна от другой на расстоянии шага ( м), на которых одновременно стоит человек.

Из рисунка 3.14, а видно, что:

1) чем дальше стоит от заземлителя, или упавшего провода человек, тем меньше напряжение шага;

2) чем больше ширина шага, тем больше напряжение шага (если человек упадет, увеличится);

3) чем больше потенциал заземлителя, тем больше напряжение шага.

Человек, стоящий на земле (рисунок 3.14, б) и касающийся находящегося под напряжением заземленного корпуса оборудования, подвергается действию напряжения прикосновения. Напряжение прикосновения – это разность потенциалов между ногой и рукой человека (между двумя точками электрической цепи, которых одновременно касается человек).

Из рисунка 3.14, б видно, что потенциал руки человека во всех случаях касания к корпусам 1, 2, 3 равны потенциалу заземлителя, поэтому с удалением от заземлителя напряжение прикосновения увеличивается: Наибольшей опасности человек подвергается в зоне нулевого потенциала. Это явление называется выносом потенциала и заключается в том, что заземленное оборудование расположено слишком далеко от заземлителя.

В качестве коллективного средства защиты от напряжения шага и напряжения прикосновения применяется выравнивание потенциала (рисунок 3.15). Заземляющее устройство выполняется не одиночным заземлителем, а совокупностью горизонтальных и вертикальных металлических электродов, рассредоточенных по всей площади (или контуру) пола рабочей зоны.

Потенциалы внутри контура выравниваются, а за пределами контура – возможны опасные значения и , поэтому желательно заземляемое оборудование расположить внутри контура. Выравнивание потенциалов применяется как дополнительное средство защиты к защитному заземлению и занулению.

3.8.11 Организационно-технические мероприятия, обеспечивающие безопасность работ в электроустановках

Кроме указанных технических способов и средств защиты применяются организационные и технические мероприятия. Организационными мероприятиями, обеспечивающими безопасность в электроустановках, являются: оформление работ нарядом-допуском, распоряжением или перечнем работ в порядке текущей эксплуатации; допуск к работе; надзор во время работы; оформление перерывов в работе, окончания работы, переводов на другое рабочее место.

Техническими мероприятиями, обеспечивающими безопасность работ в электроустановках, являются: производство необходимых отключений и переключений; проверка отсутствия снятого напряжения; вывешивание плакатов; наложение переносного заземления; ограждения места работы и т.д.

Электробезопасность электромонтера по обслуживанию трансформаторных подстанций и распределительных пунктов

К работам на трансформаторных подстанциях и в распределительных пунктах предъявляются повышенные требования в безопасности труда. Еще до назначения на самостоятельную работу электромонтеру необходимо пройти обучение безопасным методам труда, вводный инструктаж по безопасности труда, первичный инструктаж на рабочем месте, первичную проверку знаний ПТБ, ПТЭ, правил пожарной безопасности и инструкций в объеме необходимом для данной профессии, дублирование в течении нескольких смен под руководством опытного наставника .

Карты риска для выполнения работ в электроустановках

Электроустановка – это объект повышенной опасности. В процессе эксплуатации электроустановок возможно воздействие различных негативных факторов на человека. Поэтому на каждом энергетическом предприятии должна обеспечиваться максимальная безопасность работников, которые осуществляют обслуживание электроустановок. Одной из мер повышения безопасности при выполнении работ в электроустановках является внедрение карт риска. Рассмотрим, что собой представляют карты риска для выполнения работ в электроустановках .

Заземление и зануление оборудования

Для обеспечения безопасности людей в сетях до 1000 В глухим заземлением нейтрали применяется зануление. В этих сетях заземление корпусов оборудования без металлической связи с нейтралью трансформатора или генератора запрещается. В цепи нулевых проводов, используемых для зануления, не должно быть предохранителей и разъединяющих аппаратов. Все зануляемое оборудование присоединяется к магистрали зануления параллельно. Последовательное зануление запрещается. Присоединение зануляющих проводников к оборудованию выполняется .

Технические мероприятия, обеспечивающие безопасность работ в электроустановках

При производстве работ в электроустановках выполняются технические и организационные мероприятия (меры) предосторожности для того, чтобы исключить случайную подачу напряжения к месту работы и случайное приближение или прикосновение к токоведущим частям, оставшимся под напряжением. Технические мероприятия, обеспечивающие безопасность работ в электроустановках, выполняют в следующем порядке: отключают напряжение и принимают меры, исключающие его ошибочную подачу к месту работы .

Подготовка и обучение электротехнического персонала для предупреждения электротравматизма

Для того чтобы электроустановки предприятий не стали источниками электротравм, надо, чтобы их эксплуатация находилась в руках квалифицированных работников, в руках специально подготовленного электротехнического персонала предприятия (персонала энергослужбы и электротехнического персонала отдельных его подразделений). Законом установлено, что эксплуатация электроустановок предприятия любого напряжения относится к работам, проводимым в условиях повышенной опасности. Поэтому и к установкам, и к персоналу .

Расчет заземляющего устройства

Расчет заземляющих устройств сводится к определению переходного сопротивления растекания тока замыкания на землю с заземлителей, зависящего от удельного сопротивления слоев грунта ρ . Сопротивление слоев грунта зависит от их состава, влажности, уровня грунтовых вод и температуры. Наиболее точно ρ можно определить непосредственным промером на месте одним из существующих методов. Рекомендуемые при предварительных расчетах значения для различных грунтов и повышающие коэффициенты .

Как правильно делать искусственное дыхание и наружный массаж сердца

Назначение искусственного дыхания, как и нормального естественного дыхания, — обеспечить газообмен в организме, т. е насыщение крови пострадавшего кислородом и удаление из крови углекислого газа. Кроме того, искусственное дыхание, воздействуя рефлекторно на дыхательный центр головного мозга, способствует тем самым восстановлению самостоятельного дыхания пострадавшего. Газообмен происходит в легких воздух, поступающий в них, заполняет множество легочных пузырьков, так называемых альвеол .

Классификация помещений с точки зрения электробезопасности

Меры по обеспечению электробезопасности зависят от назначения помещения, в котором расположена электроустановка, и от характера помещения. По назначению различают специализированные помещения с электроустановками и помещения другого назначения (производственные, бытовые, служебные, торговые и т. п.). Помещения с электроустановками - это такие помещения или отгороженные части помещения, в которых установлено эксплуатируемое электрооборудование .

Техника безопасности при обслуживании электрооборудования станков

Современные станки, как правило, имеют индивидуальный электропривод. В большинстве случаев электродвигатели, реле и другие электрические аппараты размещены или на самом станке, или в отдельно стоящем шкафу. Станки имеют двигатели, путевые выключатели, размещенные внутри станка. Работу по наладке, эксплуатации и ремонту электрооборудования станков разделяют на четыре категории: работы при полном снятии напряжения .

I. КОНТРОЛЬ ИЗОЛЯЦИИ ЭЛЕКТРИЧЕСКИХ СЕТЕЙ ДО 1 KB
1. ИЗОЛЯЦИЯ И ЕЕ РОЛЬ В ОБЕСПЕЧЕНИИ ЭЛЕКТРОБЕЗОПАСНОСТИ
В процессе эксплуатации электротехнических установок изоляция оборудования стареет, в результате чего изменяются наиболее важные ее свойства. Основными причинами, вызывающими старение изоляции, являются: нагревание рабочими и пусковыми токами, токами короткого замыкания (КЗ), теплотой от посторонних источников, от солнечного излучения и т.д.;
динамические усилия, которым подвергается изоляция в результате электромагнитного взаимодействия между проводниками с током;
коммутационные и атмосферные перенапряжения.
Под коммутационным перенапряжением понимается фазное или междуфазное перенапряжение, вызванное определенной коммутацией или повреждением. Такие напряжения имеют малую длительность и обычно быстро затухают.
Атмосферным перенапряжением считается фазное или междуфазное перенапряжение в данной точке сети, вызванное грозовым разрядом.
Перенапряжения обычно возникают при включении линии, возникновении и отключении КЗ, коммутации емкостных токов, малых или умеренных индуктивных токов, сбросах нагрузки, грозовых разрядах.
Большое влияние на срок службы изоляции оказывают также различные механические повреждения, возникающие, например, из-за изгибов проводов и кабелей радиусом меньше допустимых, чрезмерных растягивающих усилий при прокладке проводов и кабелей, вибрации и т.д.
На предприятиях, расположенных в приморских зонах, значительное влияние имеет влажный, морской воздух, насыщенный морскими солями и их соединениями, что приводит к резкому ускорению процессов коррозии и понижению сопротивления изоляции. Существенное влияние на состояние изоляции оказывает загрязненность среды пылью.
В жарких помещениях чрезмерная сухость неблагоприятно сказывается на поведении изоляционных конструкций и вызывает деформацию деталей, изготовленных из органических материалов.
В сырых помещениях даже при относительной влажности 40 % начинается конденсация влаги на поверхности изоляционного материала и постепенное увлажнение изоляции в результате проникновения влаги через неплотности лаковых покровов и т.п. Интенсивность этих процессов резко возрастает при повышении влажности до 80 %.
Особенно губительно сказывается на состоянии изоляции воздействие химических уносов в наружных установках и агрессивной (химически активной) среды внутренних установок производственных помещений в химической, нефтехимической и ряде других отраслей промышленности.
Состояние изоляции в значительной мере определяет степень безопасности эксплуатации электроустановок. Поражение человека электрическим током обусловливается попаданием его под разность потенциалов, а также значением протекающего через тело человека тока. Одним из основных средств, препятствующих возникновению этих опасных ситуаций, является надежная электрическая изоляция элементов, находящихся под напряжением. Сопротивление изоляции в сетях с изолированной нейтралью определяет ток замыкания на землю, а значит, и ток через человека. В сетях с заземленной нейтралью при плохом состоянии изоляции часто происходят ее повреждения, приводящие к замыканиям на землю (корпус) и КЗ. При замыкании на корпус возникает опасность поражения людей электрическим током вследствие их контакта с нетоковедущими частями, оказавшимися под напряжением.
В соответствии с ГОСТ 12.1.009-76 электрическая изоляция подразделяется на следующие виды:
рабочая изоляция — электрическая изоляция токоведущих частей электроустановки, обеспечивающая ее нормальную работу и защиту от поражения электрическим током;
дополнительная изоляция — электрическая изоляция, предусмотренная дополнительно к рабочей изоляции для защиты от поражения электрическим током в случае повреждения рабочей изоляции;
двойная изоляция — электрическая изоляция, состоящая из рабочей и дополнительной изоляции;
усиленная изоляция — улучшенная рабочая изоляция, обеспечивающая такую же степень защиты от поражения электрическим током, как и двойная изоляция.
Регулярное наблюдение за состоянием изоляции электрических сетей и своевременное обнаружение ее дефектов являются одними из основных мер, позволяющих предотвратить поражение электрическим током и поддерживать бесперебойное электропитание оборудования.

Электробезопасность. Способы защиты от электрического тока

Сегодня представить свою жизнь без электричества сложно, но для того чтобы использовать все блага электрического тока во время установки электрощитков, трансформаторов и других электроустановок, необходимо придерживаться основ электробезопасности и знать способы защиты от напряжения.

Способы защиты: общая характеристика

Сегодня существует несколько способов защиты от электротока, и зависят они от электрической установки.

Так, можно выделить такие меры защиты:

  • заземление;
  • зануление;
  • отключение;
  • разделение сетей;
  • изоляция;
  • выравнивание;
  • использование небольшого напряжения.

Использовать эти виды защиты можно как по отдельности, так и в комбинации друг с другом. К примеру, в электрических установках с напряжением в 1000 В заземление можно комбинировать с изоляцией или с защитным отключением. Если в трансформаторе или другой установке используется напряжение до 1000 В и выше 1000 В, тогда рекомендовано применить изоляцию обмоток между этими двумя типами напряжения. Для этого можно использовать специальные переходники, позволяющие контролировать перепады. Установить переходники можно на каждую фазу, отвечающую за подачу более низкого напряжения.

Если электрическая установка имеет 1000 В и используется глухозаземленная нейтраль, тогда можно применить такие методы защиты как зануление или отключение. Защитное отключение можно использовать как основной метод защиты, так и вспомогательный.

Характеристика защитного заземления

Электрическое оборудование имеет часть, через которую проходит ток, и часть, где ток отсутствует. Заземляется именно та часть, где нет тока. Для этого используются специальные детали и проводники. Как правило, они изготовляются из железа или низкоуглеродистого материала. Выделяют несколько видов заземления. Так, можно использовать специальные электроды, имеющие вид штырей. Они вставляются в землю. Запрещено для обеспечения заземления использовать алюминиевые детали. Важно периодически производить проверку электрического оборудования и состояние заземления.

Особенности зануления

Для того чтобы обеспечить защиту в виде зануления, необходимо использовать глухое заземление точки напряжения трансформатора, имеющего три фазы. Также обязательно должен быть вывод тока, имеющего одну фазу и нулевой провод. Благодаря этой системе можно понизить напряжение, идущее по корпусу установки. Соответственно, таким способом будет понижено напряжение и на нулевом проводе, так как он соединен с корпусом.

Характеристика защитного отключения

Принцип работы защитного отключения простой. Оно состоит из чувствительных элементов, проявляющих реакцию на колебания и изменения напряжения. Так, при повышенном напряжении происходит отключение именно того участка сети, где произошел сбой. Если возникнет какая-то опасность и ток перейдет на корпус, сработает защитное отключение.

Особенности разделения сетей

Для того чтобы обеспечить электрическое разделение сетей, необходимо использовать разделительный трансформатор. Это специальное сооружение, имеющее напряжение 380 В. Электросеть питает приемник, трансформаторный разделитель нейтрализует сеть, имеющую изолированную точку, нейтраль именно от участка сети, питающего электрический приемник. При этом участок электросети и сам электрический приемник не связаны с землей, а воздействие производится через специальные магнитные поля.

Малое напряжение и выравнивание потенциалов

Небольшое напряжение – это поступление тока в малом количестве. Для выравнивания потенциалов применяется заземление, помогающее защитить корпус электроустановки от напряжения. Производится данного рода заземление либо по всему периметру установки, то есть вокруг, либо используется зануление самого оборудования.

Под электробезопасностью понимается система организационных и технических мероприятий и средств, обеспечивающих защиту людей от вредного и опасного воздействия электрического тока, электрической дуги, электромагнитного поля и статического электричества.

Что такое электротравма и электротравматизм?

Электротравмой называется травма, вызванная воздействием электрического тока или электрической дуги. Явление, характеризующееся совокупностью электротравм, называется электротравматизмом.

Что понимается под очагом электротравм или очагом электротравматизма?

Под очагом электротравм или очагом электротравматизма понимается та или иная временная или постоянная ситуация при эксплуатации электроустановок, когда имеют место аналогичные, похожие случаи электропоражений.

Каково основное отличие электротравматизма от других видов производственных и бытовых травм?

Число травм, вызванных электрическим током, сравнительно невелико и составляет до 3% общего количества несчастных случаев.

Иная картина раскрывается при рассмотрении только смертельных несчастных случаев. Если в среднем по народному хозяйству около 13% смертельных несчастных случаев падает на поражение электрическим током, то в отдельных отраслях наблюдается увеличение до 30-40%.

Значительная часть пострадавших переходит на инвалидность. Есть данные и об отдаленных последствиях электротравматизма, выражающиеся в изменении нервнопсихической сферы, предрасположенности к отдельным видам заболевания и т. д.

В чем заключается основная опасность поражения электрическим током?

Для обнаружения на расстоянии электрического тока у человека нет специальных органов чувств. Невозможно без специальных приборов почувствовать, находится ли данная часть установки под напряжением до тех пор, пока электрическая энергия не превратится в энергию другого вида (например, в световую — искрение) или пока человек сам не попадет под напряжение.

Электрический ток не имеет запаха, цвета и действует бесшумно. Неспособность организма человека обнаруживать его до начала действия приводит к тому, что работающие часто не осознают реально имеющейся опасности и не принимают своевременно необходимых защитных мер. Опасность поражения электрическим током усугубляется еще и тем, что пострадавший не может оказать себе помощь. При неумелом оказании помощи может пострадать и тот, кто пытается помочь.

Каковы причины электротравматизма?

К техническим причинам относятся: несоответствие электроустановок, средств защиты и приспособлений требованиям безопасности и условиям применения, связанное с дефектами конструкторской документации, изготовления, монтажа и ремонта; неисправности установок, средств защиты и приспособлений, возникшие в процессе эксплуатации.

К организационно-техническим причинам следует относить несоблюдение технических мероприятий безопасности, которые должны осуществлять потребители на стадии эксплуатации (обслуживания). К организационно-техническим причинам относятся, кроме того, несвоевременная замена исправного или устаревшего оборудования и использование установок, не принятых в эксплуатацию в предусмотренном порядке (в том числе самодельных).

К организационным причинам электротравм следует относить невыполнение или неправильное выполнение организационных мероприятий безопасности. Организационной причиной электротравм является также несоответствие работы заданию.

К организационно-социальным причинам электротравм относятся:

  • работа в сверхурочное время (в том числе работа по ликвидации последствий аварий);
  • несоответствие работы специальности; нарушение трудовой дисциплины;
  • допуск к работе в электроустановках лиц моложе 18 лет;
  • привлечение к работе лиц, не оформленных приказом о приеме на работу в организацию;
  • допуск к работе лиц, имеющих медицинские противопоказания.

Какие факторы повышают вероятность возникновения электротравм на промышленных предприятиях?

Вероятность электротравм на производстве в большей степени обусловлена следующими факторами:

  • протяженностью и разветвленностью электрических сетей;
  • необходимостью постоянного контакта с нетоковедущими частями электроустановок и их связью с технологическим оборудованием;
  • большим количеством орудий и предметов труда, проводящих электрический ток;
  • подвижными механизмами, связанными с электроустановками, протяженными металлическими конструкциями, на которых возможно появление напряжения;
  • значительным количеством ручного электроинструмента и переносных пультов управления;
  • большим объемом электросварочных работ; наличием на предприятиях людей без специальной подготовки, но тем или иным образом связанных с эксплуатацией электроустановок;
  • проведением работ на открытых площадках с использованием электроэнергии;
  • выполнением работе использованием электроустановок в замкнутых токопроводящих резервуарах;
  • повышенной температурой и влажностью, отрицательно влияющими на изоляцию электроустановок в некоторых производственных помещениях.

Что положено в основу обеспечения электробезопасности?

Электробезопасность должна обеспечиваться:

  • выполнением требований (правил и норм) к конструкции и устройству электроустановок, установленных в стандартах Системы стандартов безопасности труда, а также в стандартах и технических условиях на электротехнические изделия;
  • техническими способами и средствами защиты;
  • организационными и техническими мероприятиями.

Как разделяются электроустановки по условиям электробезопасности?

В соответствии с правилами устройства электроустановок (Г1УЭ) электроустановки по условиям электробезопасности разделяются:

  • на электроустановки напряжением выше 1000 В в сетях с эффективно заземленной нейтралью (с большими токами замыкания на землю);
  • на электроустановки напряжением выше 1000 В в сетях с изолированной нейтралью (с малыми токами замыкания на землю);
  • на электроустановки напряжением до 1000 В с заземленной нейтралью;
  • на электроустановки напряжением до 1000 В с изолированной нейтралью.

Какие факторы должны учитываться при выборе технических способов и средств защиты?

Технические способы и средства защиты, обеспечивающие электробезопасность, должны устанавливаться с учетом:

  • номинального напряжения, рода и частоты тока электроустановки;
  • способа электроснабжения (от стационарной сети, ©т автономного источника питания электроэнергией);
  • режима нейтрали (средней точки) источника питания электроэнергией (изолированная, заземленная нейтраль) ;
  • вида исполнения (стационарные, передвижные, переносные);
  • характеристики помещений по степени опасности поражения электрическим током;
  • возможности снятия напряжения с токоведущих частей, на которых или вблизи которых должна производиться работа;
  • характера возможного прикосновения человека к элементам цепи тока (однофазное прикосновение, двухфазное прикосновение, прикосновение к металлическим нетоковедущим частям, оказавшимся под напряжением);
  • возможности приближения к токоведущим частям, находящимся под напряжением, па расстояние меньше допустимого или попадания в зону растекания тока;
  • видов работ (монтаж, наладка, испытание, эксплуатация электроустановок).

Какие технические способы и средства защиты должны применяться для обеспечения электробезопасности?

Для обеспечения электробезопасности должны применяться отдельно или в сочетании друг с другом следующие технические способы и средства:

  • защитное заземление;
  • зануление;
  • выравнивание потенциалов;
  • малое напряжение;
  • электрическое разделение сетей;
  • защитное отключение;
  • изоляция токоведущих частей (рабочая, дополнительная, усиленная, двойная);
  • компенсация токов замыкания на землю; оградительные устройства;
  • предупредительная сигнализация, блокировка, знаки безопасности;
  • средства защиты и предохранительные приспособления.

Как разделяются производственные помещения по условиям среды?

По условиям среды производственные помещения разделяются на сухие, влажные, сырые, особо сырые, жаркие, пыльные (с токопроводящей и нетокопроводящей пылью), помещения с химически активной или органической средой.

Сухими называются помещения, в которых относительная влажность воздуха не превышает 60%.

К влажным относятся помещения, в которых пары или конденсируемая влага выделяются лишь временно и притом в небольших количествах, относительная влажность воздуха — более 60%, но не превышает 75%.

Сырыми являются помещения, в которых относительная влажность воздуха длительно превышает 75%.

Особо сырые помещения, в которых относительная влажность воздуха близка к 100% (потолок, степы, пол и предметы, находящиеся в помещении, покрыты влагой). Жаркими считаются помещения, в которых температура превышает постоянно или периодически (более 1 сут) 35°С (например, помещения с сушилками, сушильными и обжигательными печами, котельные и т. непыльными называются помещения, в которых по условиям производства выделяется технологическая пыль в таком количестве, что она может оседать на проводах, проникать внутрь машин, аппаратов и т. п. и, отлагаясь на электроустановках, ухудшает условия охлаждения и изоляции. Пыльные помещения могут быть как с токопроводящей, так и с нетокопроводящей пылью.

Помещения с химически активной средой — это такие, в которых постоянно или в течение длительного времени содержатся агрессивные пары, газы, жидкости, образующие отложения или плесень, разрушающие изоляцию и токоведущие части электрооборудования.

Какие электроустановки считаются действующими?

Действующими считаются электроустановки, которые содержат в себе источники электроэнергии (химические, гальванические и полупроводниковые элементы), находятся под напряжением полностью или частично или на которые в любой момент может быть подано напряжение включением коммутационной аппаратуры.

Читайте также: