В чем заключается опыт короткого замыкания какие паспортные данные определяются из этого опыта

Обновлено: 02.07.2024

Если подключить первичную обмотку трансформатора к напряжению сети, а зажимы его вторичной обмотки замкнуть накоротко, то это приведет к опасному явлению короткого замыкания трансформатора. Токи короткого замыкания выделяют большое количество тепла в обмотках, что может привести к порче изоляции проводников обмоток, разложению и воспламенению масла, залитого в бак трансформатора. Механические усилия, возникающие в обмотках трансформатора при коротких замыканиях, иногда могут привести к разрушению обмоток.

Если же зажимы вторичной обмотки трансформатора замкнуть накоротко, а первичную обмотку подключить к пониженному напряжению, чтобы ток короткого замыкания I 2K был бы равен номинальному току I 2H , то при этом с трансформатором ничего опасного не произойдет. Этот опыт называется опытом короткого замыкания. Напряжение, под которое включается первичная обмотка трансформатора при опыте короткого замыкания, составляет несколько процентов от номинального напряжения этой обмотки, называется напряжением короткого замыкания и обозначается UK .

Силовые трансформаторы, изготовляемые в СССР, имеют напряжение короткого замыкания, равное 5—10% (в некоторых случаях 17%) от номинального первичного напряжения.

При испытаниях трансформаторов всегда снимают характеристики холостого хода и короткого замыкания.

Для снятия характеристики холостого хода трансформатора его вторичную обмотку размыкают, а в первичную обмотку включают амперметр, вольтметр и ваттметр. Постепенно увеличивают напряжение, к которому включена первичная обмотка, и записывают показания приборов. Примерная характеристика холостого хода трансформатора показана на фиг. 207.

При небольших напряжениях, соответствующих начальной части характеристики холостого хода, магнитная система трансформатора не насыщена и существует пропорциональность между напряжением U и током Iо. При дальнейшем увеличении напряжения сердечник трансформатора насыщается и при этом ток Iо начинает увеличиваться быстрее напряжения.

По данным опыта холостого хода подсчитываются сопротивления, коэффициент мощности, активная и реактивная составляющие тока холостого хода трансформатора. Мощность, подводимая к трансформатору при холостом ходе, идет на покрытие потерь холостого хода. Так как ток холостого хода Iо. мал, то потерями мощности на нагрев первичной обмотки, равными Iо 2 r1, можно пренебречь и считать, что мощность, потребляемая трансформатором при холостом ходе, идет на покрытие потерь в стали сердечника.


Для снятия характеристики короткого замыкания трансформатора в цепь его первичной обмотки включают амперметр, вольтметр и ваттметр, а вторичную обмотку замыкают через амперметр накоротко. Увеличивают напряжение, к которому подключена первичная обмотка, до тех пор, пока амперметр во вторичной обмотке не покажет вторичный номинальный ток. По данным опыта короткого замыкания подсчитываются сопротивления и напряжение короткого замыкания.


По данным опыта строится характеристика короткого замыкания, из которой видно, что между током и напряжением существует линейная зависимость. Это объясняется тем, что магнитный поток в сердечнике мал, так как напряжение короткого замыкания во много раз меньше номинального напряжения. Поэтому потерями в стали при опыте короткого замыкания можно пренебречь и считать, что мощность при этом опыте идет на покрытие потерь в меди в обмотках трансформатора . Примерная характеристика короткого замыкания Дана на фиг. 208.



5 Апрель, 2009 41899 ]]> Печать ]]>

Коэффициентом трансформации трансформатора называют отношение ЭДС обмотки высшего напряжения к ЭДС обмотки низшего напряжения.

При определении коэффициента трансформации однофазных трансформаторов или фазного коэффициента трансформации трехфазных трансформаторов отношение напряжений можно приравнять отношению чисел витков обмоток:

где Кф-фазный коэффициент трансформации; U-фазное напряжение обмотки ВН; U-фазное напряжение обмотки НН; w1-число витков обмотки ВН; w2-число витков обмотки НН.

При измерении линейного коэффициента трансформации трехфазного трансформатора равенство отношения высшего и низшего напряжений обмоток и соответственно числа витков ВН и НН сохранится лишь при одинаковых соединениях этих обмоток.

Для различных сочетаний соединения обмоток линейный коэффициент трансформации при указанных ниже соединениях примет следующий вид:

Коэффициент трансформации определяют из опыта холостого хода (рис.5.2) методом двух вольтметров. Подводимое напряжение к трансформатору не должно превышать номинальное и не должно быть слишком малым (не ниже 1% номинального напряжения). Используя индукционный регулятор, к трансформатору подводят напряжение (0,1÷ 0,5)UH и замеряют одноименные фазные напряжения первичной (комплект К505) и вторичной (вольтметр V1) обмоток, по которым определяют:

Затем находят среднее значение коэффициента трансформации

Опыт короткого замыкания.

Характеристики короткого замыкания представляют зависимость тока IK, потребляемой мощности РК и cosφK от подводимого напряжения при замкнутой накоротко вторичной обмотке трансформатора:

Опыт короткого замыкания проводят по схеме рис.5.4 при значительно пониженном напряжении, порядка (4÷12)% от UH, чтобы ток IK ≈IH. Поэтому после окончания опыта холостого хода устанавливают минимальное напряжение на выходе ИР. Опыт короткого замыкания может производиться со стороны любой из двух обмоток трансформатора.

Он входит в число обязательных приемо-сдаточных испытаний, которым подвергается каждый силовой трансформатор перед выпуском с завода. Обычно замыкается накоротко обмотка НН, а напряжение подводится к обмотке ВН. В этих условиях значения токов и напряжений наиболее удобны для измерений.

Опыт проводится следующим образом. Чтобы избежать значительного нагревания обмоток трансформатора, эксперимент начинают с режима, при котором ток равен (1,2÷1,3)IH. Затем устанавливают IК=IН и далее при постепенном понижении напряжения снимают характеристики, измеряя напряжение, ток и мощность. С целью уменьшения влияния нагрева обмоток на результаты измерений опыт нужно проводить как можно быстрее. Данные 5-6 точек записывают табл. 5.4. При проведении опыта короткого замыкания необходимо зафиксировать режим, соответствующий номинальному току.

Данные опыта короткого замыкания

№ п.п. Опытные данные Расчётные данные
UA B UB B UC B IA A IB A IC A PA вт PВ вт PС вт UК В IК А PК вт сosφК

Необходимые расчётные величины получают из соотношений:

По расчётным данным табл.5.4 строятся характеристики короткого замыкания, примерный вид которых представлен на рис.5.5.

Мощность, соответствующая номинальному току обмоток при температуре 75 о , принято называть номинальными потерями короткого замыкания (РКН):

Для силовых трансформаторов её величина должна удовлетворять требованиям ГОСТа.

Режим короткого замыкания, возникающий случайно в процессе эксплуатации при номинальном первичном напряжении, является аварийным процессом, сопровождающимся весьма большими токами в обмотках. Многократное повышение токов по сравнению с номинальными (в 10-20 раз) может привести к повреждению изоляции обмоток механическими силами, возникающими при этом режиме между обмотками.

По опытным данным для номинального тока IК = IН определяют параметры короткого замыкания трансформатора, то есть полное сопротивление короткого замыкания ZК и его составляющие – активную rК = r1 + r2 ' и индуктивную хК1 + х2 ' , которые характеризуют сопротивление первичной и вторичной обмоток трансформатора:

Определенное из опыта активное сопротивление приводят к температуре 75 о С (хК от температуры не зависит):

На основании характеристик короткого замыкания определяется значение напряжения короткого замыкания UК %, его активная UKa % и реактивная UKр % составляющие, соответствующие номинальному току при температуре обмоток, равной температуре окружающей среды. Эти значения следует привести к номинальной рабочей температуре обмоток 75 о С.

Обычно значение UK выражают в процентах от номинального напряжения той обмотки, со стороны которой делают измерения при опыте короткого замыкания:




Активную и реактивную составляющие напряжения короткого замыкания также выражают в процентах от номинального напряжения:

Активная составляющая UKa75, выраженная через отношение , определяет процентное значение потерь в обмотках трансформатора при номинальной нагрузке. Напряжение короткого замыкания является одним из важных факторов, характеризующих свойства трансформатора. По значению этой величины и её составляющих можно определить изменение вторичного напряжения трансформатора при изменении нагрузки и судить о возможности параллельной работы с другим трансформатором. Величину UK используют при определении установившегося и ударного токов, возникающих при коротком замыкании в условиях эксплуатации.

5. Определение параметров Т-образной схемы замещения трансформатора.

Параметры схемы замещения (рис.5.6) определяются по данным п.п.3-5.

Активное сопротивление обмоток трансформатора может быть получено умножением омического сопротивления на коэффициент kr, учитывающий

неравномерное распределение плотности тока по сечению проводника из-за возникновения вихревых токов в проводниках. Значение коэффициента kr

для обмоток электрических машин и трансформаторов определяется величиной потоков рассеяния и зависит от частоты тока, формы и размеров поперечного сечения проводников обмотки, от их взаимного расположения, от размеров и формы паза в электрических машинах, от высоты обмотки в трансформаторах и от других величин. В большинстве случаев для обмоток трансформаторов значение коэффициента kr лежит в пределах 1,01-1,05. Примем kr = 1,03. Тогда активное сопротивление первичной обмотки r1 = 1,03 r1 75, а вторичной обмотки r2 = 1,03 r2 75. Активное сопротивление вторичной обмотки необходимо привести к виткам первичной обмотки r2 ' = К 2 r2, где К – коэффициент трансформации. Индуктивные сопротивления обмоток, обусловленные потоками рассеяния (х1 и х2 ' ), можно приближенно принять одинаковыми и равными половине индуктивного сопротивления короткого замыкания: х1 = х2 ' = хК/2.

Параметры ветви намагничивания хm и rm определяются:

На схеме замещения надо указать значения сопротивлений, токов и напряжений.

6. Внешняя характеристика трансформатора.

Внешняя характеристика трансформатора представляет зависимость вторичного напряжения U2 от вторичного тока I2:

При испытаниях трансформаторов малой мощности внешнюю характеристику получают опытным путём, включая вторичную обмотку на регулируемую нагрузку (рис.5.7).

Внешнюю характеристику мощных трансформаторов получают аналитически, так как создание для них непосредственной нагрузки вызывает затруднения.

Порядок снятия внешней характеристики следующий. Трансформатор без нагрузки (Q1 и Q2 разомкнуты) подключают к сети и измеряют напряжение U2X. Далее, включив Q1 или Q2, загружают его до номинального тока, поддерживая постоянным значение cosφ2.


Внешнюю характеристику снимают обычно для двух значений коэффициента мощности: cosφ2= 1 и cosφ2= 0. внешняя характеристика для cosφ2= 1 снимается при замкнутом Q1, изменяя величину R1,

а для cosφ2= 0 (инд.) снимается при включённом Q2 и разомкнутом Q1. показания приборов записывают в таблицу 5.5.

Примерный вид внешних характеристик представлен на рис.5.8. Эти характеристики в пределах номинальной нагрузки прямолинейны, их наклон зависит от рода нагрузки. Причиной изменения напряжения на вторичной Таблица 5.5.

Опытные данные внешних характеристик

№ п.п. U2 I2 № п.п. U2 I2
B A B A
cosφ2=1 cosφ2=0(инд.)
. U . U

обмотке является падение напряжения на сопротивлениях Z1 и Z2 обмоток трансформатора. При активно-индуктивной нагрузке (φ2 > 0) напряжение U2 убывает с ростом тока I2; при сильно выраженной ёмкостной составляющей вторичного тока (φ2≈ − π/2) напряжение при нагрузке может быть больше напряжения при холостом ходе.

В трансформаторах средней и большой мощности реактивная составляющая напряжения короткого замыкания значительно больше, чем активная. Поэтому в таких трансформаторах реактивная нагрузка вызывает бóльшее изменение напряжения U2 , чем активная, т. е. чем меньше cosφ2, тем ниже проходит внешняя характеристика и значительно изменяется напряжение U2.

Внешние характеристики позволяют определить изменение вторичного напряжения, представляющее арифметическую разность между номинальным вторичным напряжением при холостом ходе и напряжением на зажимах вторичной обмотки при номинальном вторичном токе, номинальной частоте, заданном коэффициенте мощности и номинальном напряжении на зажимах первичной обмотки. Изменение напряжения ∆U выражается в процентах номинального вторичного напряжения:

При номинальной нагрузке трансформатора величина ∆U составляет от 2 до 5%. С достаточной точностью изменение напряжения может быть определено расчетом по формуле:

где β = – коэффициент загрузки трансформатора;

UKa и UKp – составляющие напряжения короткого замыкания, %.

Как видно из формулы, зависимость ∆U=ƒ(β) прямолинейна.

Значения ∆U, рассчитанные по данным UKa и U, могут быть использованы для получения внешней характеристики при испытании мощных трансформаторов. В этом случае при cosφ2=const. определяют ряд значений вторичного напряжения по формуле U2=U2H–∆U и строят зависимость U2 =ƒ(I2).

Задаваясь значениями отстающего и опережающего cosφ2 при I2=I2H (β=1), можно получить ряд значений ∆U по приведенной выше формуле и построить зависимость ∆U= ƒ(cosφ2), представленную на рис.5.9.Как видим, изменение вторичного напряжения в значительной мере зависит от характера нагрузки. Наибольшее значение ∆U% будет при φ2K. При чисто активной нагрузке φ2=0 и ∆U%= UКа; при чисто индуктивной нагрузке φ2=90 о и ∆U%=UКр; при

чисто емкостной нагрузке φ2= − 90 о и ∆U= − UКр. При активно-емкостном характере нагрузки величина ∆U% может быть отрицательной, т. е. вторичное напряжение может возрастать по сравнению с номинальным напряжением. В этом случае трансформатор получает намагничивающую мощность как со стороны первичной, так и со стороны вторичной сети. Потоки рассеяния, меняя фазу, оказывают в этом случае подмагничивающее действие.

Наличие индуктивных падений напряжения, вызываемых потоками рассеяния, ведет к нежелательному изменению напряжения трансформатора под нагрузкой. Для уменьшения потоков рассеяния первичные и вторичные обмотки выполняют на одних и тех же стержнях, по возможности приближая одну обмотку к другой. При концентрической обмотке на характер магнитного поля потоков рассеяния влияют токи обеих обмоток, и при режимах нагрузки, близких к номинальной, можно считать, что МДС первичной и вторичной обмоток равны по величине и находятся в противофазе. Поэтому сближение обмоток ведет к уменьшению потоков рассеяния.

Минимальное расстояние между обмотками ограничивается электрической прочностью изоляционного промежутка. Вследствие этого высоковольтные трансформаторы, в которых изоляционный промежуток больше, имеет относительно бóльшие потоки рассеяния и напряжения короткого замыкания, чем низковольтные трансформаторы. При чередующейся обмотки потоки рассеяния несколько больше, чем при концентрической.

Опыт коро́ткого замыка́ния — определение параметров элементов схемы замещения, используемой при расчете реальных схем, в частности, активных двухполюсников. В опыте короткого замыкания сопротивление внешней цепи полагают гораздо меньшим, чем внутреннее сопротивление источника. Исходя из закона Ома для полной цепи >" width="" height="" />
, при сопротивлении внешней цепи , сила тока достигает максимального значения. В случае переменного тока следует учитывать реактивные составляющие сопротивления измерительного прибора.

Целью этого опыта и является определение параметра тока генератора для схемы замещения.

Частный случай этого опыта проводится для трансформаторов переменного тока большой мощности, когда трансформатор вырождается из шестиполюсника в трехполюсник для трехфазного тока и из четырехполюсника в двухполюсник однофазного. Опыт короткого замыкания характеризует работу силового трансформатора в предельном режиме нагрузки при номинальном токе вторичной обмотки (I2=I2n) [1] .

Примечания

Литература

  • Бессонов Л.А. Теоретические основы электротехники. Электрические цепи. — М .: Гардарики, 2002. — 638 с. — ISBN 5-8297-0026-3

См. также

  • Эквивалентные схемы
  • Радиотехнические величины и параметры
  • Электричество

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Опыт короткого замыкания" в других словарях:

опыт короткого замыкания пары обмоток — опыт к. з. пары обмоток Режим короткого замыкания, осуществляемый с целью опытного определения потерь напряжения короткого замыкания и других параметров и характеристик пары обмоток трансформатора при номинальной частоте и пониженном против… … Справочник технического переводчика

Опыт короткого замыкания пары обмоток — 8.7. Опыт короткого замыкания пары обмоток Опыт к. з. пары обмоток Режим короткого замыкания, осуществляемый с целью опытного определения потерь напряжения короткого замыкания и др. параметров и характеристик пары обмоток трансформатора при… … Словарь-справочник терминов нормативно-технической документации

опыт внезапного короткого замыкания — staigaus trumpojo jungimo bandymas statusas T sritis radioelektronika atitikmenys: angl. sudden short circuit test vok. Stoßkurzschlußversuch, m rus. опыт внезапного короткого замыкания, m pranc. essai de court circuit brusque, m … Radioelektronikos terminų žodynas

Режим короткого замыкания — Для улучшения этой статьи желательно?: Проставить интервики в рамках проекта Интервики. Режим короткого замыкания в электротехнике сост … Википедия

Опыт — 2. Опыт Воспроизведение исследуемого явления в определенных условиях проведения эксперимента при возможности регистрации его результатов Источник: ГОСТ 24026 80: Исследовательские испытания. Планирование эксперимента. Термины и определения … Словарь-справочник терминов нормативно-технической документации

опыт КЗ — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999] испытание в режиме короткого замыкания [Интент] Тематики электротехника, основные понятия Синонимы испытание в… … Справочник технического переводчика

ГОСТ 16110-82: Трансформаторы силовые. Термины и определения — Терминология ГОСТ 16110 82: Трансформаторы силовые. Термины и определения оригинал документа: 8.2. Аварийный режим трансформатора Режим работы, при котором напряжение или ток обмотки, или части обмотки таковы, что при достаточной… … Словарь-справочник терминов нормативно-технической документации

Короткое замыкание — Возникновение пожара вследствие замкнутых электрических проводов У этого термина существуют и другие значения, см. Короткое замыкание (значения). Короткое замыкание (КЗ) электрическое соединение двух точе … Википедия

Метод эквивалентного генератора — метод преобразования электрических цепей, в котором схемы, состоящие из нескольких ветвей с источниками ЭДС, приводятся к одной ветви с эквивалентным значением. Применение Метод эквивалентного генератора используется при расчёте сложных схем в… … Википедия

Источник ЭДС — Рисунок 1 Обозначение на схемах источника ЭДС (слева) и реального источника напряжения (справа) Источник ЭДС (идеальный источник напряжения) двухполюсник, нап … Википедия

Информ-портал об электричестве и работам с ним

Трансформаторы представляют собой сложное оборудование, которое предназначено для изменения параметров тока в цепи. Они могут повышать или понижать мощность, напряжение электричества в соответствии с требованиями потребителей.

В оборудовании при работе определяются некоторые потери мощности. Поэтому не вся электроэнергия, которая поступила на первичную обмотку, доходит к потребителю. При этом греется трансформатор (магнитопривод, обмотки и прочие детали). В различных конструкциях этот показатель неодинаков.

Режим холостого хода трансформатора

Холостой ход трансформатора позволяет определить токовые потери. Эта методика применяется в сочетании с определением напряжения в режиме короткого замыкания трансформатора. Этот процесс называется опытом агрегата. Он выполняется по определенной схеме.

Общее устройство и виды

Чтобы понять, что такое опыт холостого хода различных трансформаторов, необходимо рассмотреть, что собой представляет подобное оборудование.

Основные типы

Трансформаторами называются машины неподвижного типа, которые работают благодаря электрическому току. Они меняют входное напряжение. Существует несколько видов подобных аппаратов:

  1. Силовые.
  2. Измерительные.
  3. Разделительные.
  4. Согласующие.

Чаще всего в энергетическую цепь требуется подключение силового трансформатора. Они могут иметь две или более обмоток. Аппарат может быть однофазный (бытовая сеть) или многофазный (промышленная сеть).

Особенности установок

Отдельно выделяются автотрансформаторы. В них есть только одна совмещенная обмотка. Также бывает сварочный аппарат. Они имеют определенную сферу применения.

В однофазном и многофазном оборудовании может устанавливаться различная номинальная мощность. Она может определяться в диапазоне от 10 до 1000 кВА и более. Маломощные однофазные и многофазные приборы могут быть в диапазоне до 10 кВА. Средние разновидности будут иметь мощность 20 кВА, 250 кВА, 400 кВА, 630 кВА и т. д. Если же этот показатель больше 1000 кВА, это установка высокой мощности.

Опыты холостого хода и короткого замыкания трансформатора

Р е ж и м х о л о с т о г о х о д а.Под холостым ходом трансформатора понимают такой режим его ра­боты, при котором к первичной обмотке подводится напря­жение, а вто­ричная обмотка разомкнута ( ). В этом случае система уравне­ний (4.7) примет такой вид:

Опыт холостого хода трансформатора проводят по схеме, представленной на рисунке 4.2. К первичной обмотке подводят но­минальное напряжение и замеряют ток , мощность и напря­жение .

Опыт холостого хода позволяет определить следующие параметры транс­форматора:

1) коэффициент трансформации

,равный отношению первичного и вторичного напряжений при холостом ходе;

2) ток холостого хода,

выраженный в процентах, ;

3) мощность холостого хода

или, исходя из схемы заме­щения, . Обычно
,
поэтому мощность идет в основ­ном на покрытие потерь в стали трансформатора, т. е. . В мало­мощных трансформаторах потери в стали рас­считывают с учетом электриче­ских потерь в первичной обмотке:

4) параметры ветви намагничивания

которые для транс­формато­ров определяют по формулам:


Рисунок 3.2 – Схема трансформатора при опыте холостого хода

При этом для маломощных трансформаторов потоками рассеяния пренебре­гают, т. е. считают

Сопротивления r, и xs1при холостом ходе не учитывают, поэтому

Р е ж и м к о р о т к о г о з а м ы к а н и я. Под коротким замыканием трансформатора понимают такой режим работы, при котором его вторичная обмотка замкнута накоротко ( ). В этом случае система уравнений (3.7) примет вид

Короткое замыкание при номинальном первичном напряжении опас­но для трансформатора, так как токи в его обмотках во много раз пре­высят номиналь­ные значения. Поэтому опыт короткого замыкания про­водят при пониженном напряжении согласно рисунку 4.3, только зажимы вторичной обмотки замы­кают накоротко, т. е. вместо вольтметра включают амперметр .

При проведении этого опыта ЭДС , следовательно, и магнитный поток в сердечнике малы, так как мало напряжение .Для создания такого потока требуется очень малый ток и его значением обычно пренебрегают. Тогда ток в первичной и вторичной обмотках равны по значению .

Рисунок 3.3 – Схема трансформатора при опыте короткого замыкания


Опыт короткого замыкания позволяет рассчитать следующие пара­метры:

1) параметры схемы замещения:

; ; Сопротивления и приводят к рабочей тем­пературе 75 °С, пользуясь формулами
,
;

2) коэффициент мощности

3) мощность потерь

Так как при коротком замыкании основной магнитный поток очень мал, то потерями в стали, вызванными им, практически пренебрегают. Следовательно, номинальная мощность идет почти полностью на покрытие электриче­ских потерь в обмотках трансформатора.

Мощность потерь приводят к температу­ре : ;

4) напряжение

и его составляющие .

Методология проведения опыта

Потери холостого хода трансформатора определяются при создании определенного режима. Для этого прекращается снабжение током всех обмоток. Они остаются разомкнутыми. После этого производится снабжение цепей электричеством. Оно определяется только на первом контуре. Аппаратура должна работать под напряжением, которое устанавливается при его производстве производителем.

Через первичный контур силовой, сварочной или прочей установки протекают токи, которые носят название ХХ. Их величина равняется не более 3-9% от заданного производителем показателя. При этом на обмотке вторичного контура электричество отсутствует. На первичном контуре ток производит магнитный поток. Он пересекает витки обеих обмоток. При этом возникает ЭДС самоиндукции на контуре первичном и взаимоиндукции – на обмотке вторичного типа.

Например, напряжение холостого хода сварочного трансформатора небольшой и средней мощности представляет собой ЭДС взаимоиндукции.

Подход к проведению измерений

Замер потерь холостого хода может производиться в двух аспектах. Их называют потерями в стали и меди. Второй показатель говорит о рассеивании тепла в обмотках (они начинают греться). В процессе проведения опыта этот показатель очень мал. Поэтому им пренебрегают.

Данные о потере тока холостого хода трансформатора представляются в виде таблицы. В ней рассчитаны параметры для стали определенных сортов и толщины. Ток холостого хода трансформатора рассматривается в аспекте мощности, которая создается в магнитом потоке и именуется потерей в стали. Она затрачивается на нагрев листов из специального сплава. Они изолируются друг от друга лаковым покрытием. При создании таких магнитоприводов не используется метод сварки.

Таблица значений холостого хода

Суть измерения

Если по какой-то причине нарушается изоляционный слой между пластинами магнитопривода, между ними возрастают вихревые токи. При этом система начинает нагреваться. Лаковый слой постепенно разрушается. Потери при работе установки возрастают, его эксплуатационные характеристики ухудшаются.

В таком случае потери мощности в стали увеличиваются. При проведении расчетов этих характеристик в режиме холостого хода можно выявить возникшие нарушения в работе агрегата. Именно по этой причине производится соответствующий расчет.

Как проводится опыт холостого хода

При проведении опыта холостого хода появляется возможность определить следующие характеристики агрегата:

  • коэффициент трансформации;
  • мощность потерь в стали;
  • параметры намагничивающей ветви в замещающей схеме.

Для опыта на устройство подаётся номинальная нагрузка.

Также читайте: Какое влияние трансформаторная будка может оказывать на человека

При проведении опыта холостого хода и расчёте характеристик на основе данной методики необходимо учитывать разновидность устройства.

В данном состоянии трансформатор обладает нулевой полезной мощностью по причине отсутствия на выходной катушке электротока. Поданная нагрузка преобразуется в потери тепла на входной катушке I02×r1 и магнитные потери сердечника Pm. По причине незначительности значения потерь тепла на входе, их в большинстве случае в расчёт не принимают. Поэтому общее значение потерь при холостом ходе определяется магнитной составляющей.

Далее приведены особенности расчёта характеристик для различных видов трансформаторов.

Для однофазного трансформатора

Опыт холостого хода для однофазного трансформатора проводится с подключением:

  • вольтметров на первичной и вторичной катушках;
  • ваттметра на первичной обмотке;
  • амперметра на входе.

Приборы подключаются по следующей схеме:

Для определения электротока холостого хода Iо используют показания амперметра. Его сравнивают со значением электротока по номинальным характеристикам с использованием следующей формулы, получая итог в процентах:

Iо% = I0×100/I10.

Чтобы определить коэффициент трансформации k, определяют величину номинального напряжения U1н по показаниям вольтметра V1, подключённого на входе. Затем по вольтметру V2 на выходе снимают значение номинального напряжения U2О.

Коэффициент рассчитывается по формуле:

K = w1/w2 = U1н/ U2О.

Величина потерь составляет сумму из электрической и магнитной составляющих:

P0 = I02×r1 + I02×r0.

Но, если пренебречь электрическими потерями, первую часть суммы можно из формулы исключить. Однако незначительная величина электрических потерь характерна только для оборудования небольшой мощности. Поэтому при расчёте характеристик мощных агрегатов данную часть формулы следует учитывать.



Потери холостого хода для трансформаторов мощностью 30-2500 кВА

Для трёхфазного трансформатора

Трёхфазные агрегаты испытываются по аналогичной схеме. Но напряжение подаётся отдельно по каждой фазе, с соответствующей установкой вольтметров. Их потребуется 6 единиц. Можно провести опыт с одним прибором, подключая его в необходимые точки поочерёдно.

Также читайте: Для чего нужна и как проверяется каска в электроустановках

При номинальном напряжении электротока обмотки более 6 кВ, для испытания подаётся 380 В. Высоковольтный режим для проведения опыта не позволит добиться необходимой точности для определения показателей. Кроме точности, низковольтный режим позволяет обеспечить безопасность.

Применяется следующая схема:


Работа аппарата в режиме холостого хода определяется его магнитной системой. Если речь идёт о типе прибора, сходного с однофазным трансформатором или бронестержневой системе, замыкание третьей гармонической составляющей по каждой из фаз будет происходить отдельно, с набором величины до 20 процентов активного магнитного потока.

В результате возникает дополнительная ЭДС с достаточно высоким показателем – до 60 процентов от главной. Создаётся опасность повреждения изолирующего слоя покрытия с вероятностью выхода из строя аппарата.

Предпочтительнее использовать трехстержневую систему, когда одна из составляющих будет проходить не по сердечнику, с замыканием по воздуху или другой среде (к примеру, масляной), с низкой магнитной проницаемостью. В такой ситуации не произойдёт развитие большой дополнительной ЭДС, приводящей к серьёзным искажениям.

Для сварочного трансформатора

Для сварочных трансформаторов холостой ход – один из режимов их постоянного использования в работе. В процессе выполнения сварки при рабочем режиме происходит замыкание второй обмотки между электродом и металлом детали. В результате расплавляются кромки и образуется неразъёмное соединение.

После окончания работы электроцепь разрывается, и агрегат переходит в режим холостого хода. Если вторичная цепь разомкнута, величина напряжения в ней соответствует значению ЭДС. Эта составляющая силового потока отделяется от главного и замыкается по воздушной среде.

Чтобы избежать опасности для человека при нахождении аппарата на холостом ходу, значение напряжения не должно превышать 46 В. Учитывая, что у отдельных моделей значение данных характеристик превышает указанное, достигая 70 В, сварочный агрегат выполняют со встроенным ограничителем характеристик для режима холостого хода.

Также читайте: СИЗ — средства индивидуальной защиты для электрика

Блокировка срабатывает за время, не превышающее 1 секунду с момента прерывания рабочего режима. Дополнительная защитная мера – устройство заземления корпуса сварочного агрегата.

Видео: измерение тока холостого хода












Коэффициент трансформации

При определении работы установки применяется такое понятие, как коэффициент трансформации. Его формула представлена далее:

Отсюда следует, что напряжение на вторичном контуре будет определяться соотношением количества витков. Чтобы иметь возможность регулировать выходное электричество, в конструкцию установки вмонтирован специальный прибор. Он переключает число витков на первичном контуре. Это анцапфа.

Для проведения опыта на холостом ходу регулятор ставится в среднее положение. При этом измеряется коэффициент.

Однофазные приборы

Для проведения представленного опыта, при использовании понижающего или повышающего бытового агрегата, в расчет берется представленный коэффициент. При этом используют два вольтметра. Первый прибор подключается к первичной обмотке. Соответственно второй вольтметр подсоединяется к вторичному контуру.

Схема трансформатора при холостом ходе

Трехфазные приборы

Для трехфазных агрегатов в ходе проведения опыта исследуются показатели на всех контурах. При этом потребуется применять сразу 6 вольтметров. Можно использовать один прибор, который будет подключаться поочередно ко всем точкам измерения.

Если установленное производителем значение на первичной обмотке превышает 6 кВ, на нее подают ток 380 В. При измерении в высоковольтном режиме нельзя определить показатели с требуемым классом точности. Поэтому замер производят в режиме низкого напряжения. Это безопасно.

Применение коэффициента

В процессе проведения измерения анцапфу перемещают во все установленные производителем положения. При этом замеряют коэффициент трансформации. Это позволяет определить наличие в витках замыкания.

Если показания по фазам будут иметь разброс при замерах больше, чем 2%, а также их снижение в сравнении с предыдущими данными, это говорит об отклонениях в работе агрегата. В первом случае в системе определяется короткое замыкание, а во втором – нарушение изоляции обмоток. Агрегат не может при этом работать правильно.

Такие факты требуют подтверждения. Например, это может быть измерение сопротивления. Влиять на увеличение разброса показателей коэффициента могут возрастание сопротивления между контактами анцапфы. При частом переключении возникает такая ситуация.

Измерение потерь

Потери в магнитоприводе замеряют исключительно при использовании мощной установки. При этом можно брать для расчетов пониженное напряжение, которое подключено к первичному контуру через ваттметр. Это прямой метод измерения.

При учете показателей вольтметра или амперметра потребуется умножить их мощности друг на друга. Это косвенный метод. При этом результат имеет определенную погрешность. Искажение происходит из-за невозможности учесть при таком расчете коэффициент мощности. Это конус угла, который образуется в векторной схеме между напряжением и током. В режиме холостого хода между ними появляется угол 90º.

Режимом короткого замыкания трансформатора называется такой режим, когда выводы вторичной обмотки замкнуты токопроводом с сопротивлением, равным нулю (ZH = 0). Короткое замыкание трансформатора в условиях эксплуатации создает аварийный режим, так как вторичный ток, а следовательно, и первичный увеличиваются в несколько десятков раз по сравнению с номинальным. Поэтому в цепях с трансформаторами предусматривают защиту, которая при коротком замыкании автоматически отключает трансформатор.
В лабораторных условиях можно провести испытательное короткое замыкание трансформатора, при котором накоротко замыкают зажимы вторичной обмотки, а к первичной подводят такое напряжение Uк, при котором ток в первичной обмотке не превышает номинального значения (Iк


находят из показаний ваттметра и амперметра. Зная Zк и RК, можно вычислить индуктивное сопротивление обмоток:


Зная Zк, Rк и Хк трансформатора, можно построить основной треугольник напряжений короткого замыкания (треугольник ОАВ на рис. 2), а также определить активную и индуктивную составляющие напряжения короткого замыкания:



5. Как и для чего проводится опыт холостого хода трансформатора.


Для чего проводится опыт холостого хода: Опыты холостого хода и короткого замыкания проводятся для определения коэффициента трансформации, потерь в трансформаторе и параметров схемы замещения. Холостой ход трансформатора – это один из предельных режимов работы трансформатора.
Опыт холостого хода.Холостым ходом трансформатора называется такой режим его работы, при котором первичная обмотка включена на номинальное напряжение , а вторичная обмотка разомкнута (рис. 10.1)


Рис. 10.1. Схема опыта холостого хода

Режим холостого хода позволяет опытным путем установить следующие характерные для трансформатора величины: а) коэффициент трансформации; б) ток холостого хода; в) потери мощности в стали.

Коэффициент трансформации трансформатора

где и – число витков обмоток.

Мощность определяет затраты энергии в пределах трансформатора. Она приблизительно равна потерям в стали, поскольку потери в стали независимы от нагрузки трансформатора, так как при работе трансформатора магнитный поток почти не меняется. Поэтому при любой нагрузке.

При холостом ходе . Коэффициент мощности нагруженного трансформатора в основном зависит от коэффициента мощности нагрузки. При холостом ходе обычно не превышает 0,2…0,3.

Автор: Губко А.А., Губко Е.А.

Одной из причин нарушения нормальной работы систем электроснабжения может быть короткое замыкание. Коротким замыканием (к.з.) назы-вается замыкание между фазами, а в системах с заземленной нейтралью — замыкание одной или нескольких фаз на землю или нулевой провод. При возникновении к.з. общее электрическое сопротивление цепи резко уменьшается, что вызывает увеличение тока в сети. Главная причина возникновения к.з. — нарушение изоляции элементов электрооборудования. Эти нарушения могут быть вызваны перенапряжением, механическими повреждениями, старением изоляционных материалов, попаданием в распределительные устройства или в аппараты посторонних предметов, загрязнением изоляторов токопроводящей пылью, при неосторожном монтаже или демонтаже электрооборудования и т.д. Причиной возникновения к.з. могут быть и ошибки, допущенные обслуживающим персоналом при выполнении переключений.

В системах трехфазного переменного тока возможны следующие виды коротких замыканий:
• трехфазное к.з. — одновременное замыкание трех фаз между собой;
• двухфазное к.з. — замыкание двух фаз;
• однофазное к.з. — замыкание одной фазы на землю.

Однофазное замыкание на землю имеет место только в сетях с неизолированной нейтралью.
В системах с изолированной нейтралью возможны только трехфазные и двухфазные к.з.
В электроустановках выше 1000 В ток короткого замыкания может достигать больших величин и при несвоевременном отключении вызвать разрушение кабелей, электроаппаратуры и других элементов сети. При проектировании и эксплуатации электроустановок предусматриваются мероприятия, уменьшающие вероятность возникновения к.з, а при возникновении их — ограничивающие вредное воздействие.

К этим мероприятиям относятся: выбор более рациональных схем электроснабжения; выбор электрооборудования, устойчивого к действию токов к.з; применение специальных аппаратов для ограничения токов к.з; применение специальных защит от токов к.з. и перенапряжений. Наибольшего значения токи к.з. достигают при возникновении их в местах установки источников питания. При расчете токов к.з. за источники питания принимают турбо- и гидрогенераторы электростанций. Как дополнительные источники питания могут учитываться синхронные и асинхронные двигатели при их мощности более 1000 кВт, установленные вблизи от места к.з. Электрические величины (ток, напряжение мощность и др.), относящиеся к различным видам к,з. обозначаются соответствующими символами с верхними цифровыми индексами в круглых скобках.

Знать токи к.з. в общем случае необходимо для выбора электрооборудования, проектирования релейной защиты и выбора средств ограничения токов к.з. Рассмотрим процесс трехфазного короткого замыкания в электрической цепи (рис 1). При нормальном режиме работы в цепи протекал ток нагрузки iн При возникновении к.з. сопротивление цепи уменьшается и ток возрастает. Так как электрическая цепь содержит не только активное, но и индуктивное сопротивление (обмотки трансформаторов, двигателей), то увеличение тока происходит не мгновенно, а через некоторый промежуток времени. Возникает переходный процесс, в течение которого ток изменяется от начального значения до какого-то установившегося. Процесс короткого замыкания состоит из двух периодов: неустановившегося режима, когда значение тока меняется во времени и установившегося, когда тюк остается постоянным.


Рисунок 1 – Процесс короткого замыкания

Суммарный ток к.з. в первый период (переходный процесс неустановившегося режима) состоит из двух составляющих: апериодической составляющей ia, которая возникает в момент к.з. и затухает до нуля через 0,1-0,2 с после возникновения кз вследствии наличия в цепи активного сопротивления, и периодической составляющей in, являющейся вынужденным синусоидальным током промышленной частоты. Значение периодической составляющей в начальный момент времени называют начальным значением тока короткого замыкания I" (I0). Данная величина используется при выборе уставок и проверке чувствительности релейной защиты.

Мгновенное значение полного тока к.з. для произвольного момента времени равно:


Максимальное мгновенное значение полного тока к.з. получило название ударного тока короткого замыкания iу. Это значение используется при проверке элекчрооборудования и токопроводов на электродинамическую устойчивость. Наибольшее значение ударный ток достигает через половину периода после возникновения к.з, т.е. через 0,01 с. Силовые выключатели на отключающую способность проверяют по действующему значению периодической составляющей тока к.з, I0,2, т.е. через 0,2 с от начала возникновения к.з. Для быстродействующих выключателей это время может уменьшится до 0,1 с. В установившемся режиме, после затухания апериодической составляющей, в цепи будет протекать установившийся ток к.з. Ioo. По этому току проверяют электрические аппараты, шины, кабели, проходные изоляторы на термическую стойкость. Наибольшее значение установившегося тока равно:


При трехфазном коротком замыкании действующее значение периодической составляющей тока к.з. за первый период после возникновения к.з. определяют по формуле:

В энергетических системах существуют различные устройства, предназначенные для производства, преобразования и передачи электроэнергии на большие расстояния. Среди них следует особо отметить конструкции силовых трансформаторов, без которых любые действия были бы невозможны. Именно они преобразуют одно значение напряжение в другое, в зависимости от потребностей в тот или иной момент времени. Важнейшей характеристикой является напряжение короткого замыкания трансформатора, отражаемое в паспорте каждого устройства.

Данная величина соответствует конкретному изделию и полностью зависит от его конструкции. Зная ее, возможно установить способность трансформатора к параллельной работе, позволяющей избежать увеличения токов, снизить перегрузки, более эффективно решать задачи электроснабжения.

Общие сведения о трансформаторах

Практически на всех объектах энергосистемы практикуется установка трехфазных трансформаторов. Их потери по сравнению с однофазными устройствами снижены на 12-15%, а себестоимость на 20-25% ниже, чем у трех преобразователей с аналогичной суммарной мощностью.

Каждый трансформатор имеет собственную предельную единичную мощность, которая полностью зависит от размеров, веса и условий доставки оборудования к месту монтажа. Так мощность трехфазных устройств на 220 кВ составляет около 1000 МВА, при 330 кВ этот показатель повышается до 1250 МВА и т.д.


Применение однофазных трансформаторов встречается значительно реже. Они устанавливаются при невозможности выбора или изготовления трехфазного устройства с запланированной мощностью. Многие трехфазные преобразователи сложно доставлять к месту установки из-за больших размеров и веса. Поэтому однофазные устройства группируются в зависимости от требуемой общей мощности. Приборы на 500 кВ составляют 3х533 МВА, на 750 кВ – 3х417 МВА, на 1150 кВ – 3х667 МВА.

В соответствии с числом обмоток, рассчитанных на разные потенциалы, преобразователи могут быть двух- или трехобмоточными. В свою очередь, обмотки с одним и тем же напряжением бывают разделены на параллельные ветви в количестве две и выше. Они разъединены между собой перегородками и разделяются изоляцией с заземляющими элементами. Подобные обмотки называются расщепленными, и в соответствии с напряжением, которое бывает высшим, средним или низшим, они обозначаются как ВН, СН и НН.

Наиболее значимые характеристиками трансформаторов:

  • Номинальная мощность. Это наибольший показатель, до которого преобразователь может быть беспрерывно нагружен в обычных условиях, определенных паспортными данными
  • Номинальное обмоточное напряжение. Включает в себя сумму потенциалов обмоток №№ 1 и 2 в режиме холостого хода. При подключении к потребителю и подаче на обмотку-1 обыкновенного напряжения, во вторичной обмотке оно будет снижено на величину потерь. Отношение высшего напряжения к низшему называется коэффициентом трансформации.
  • Номинальные токи. Их величина отмечена в документации и должна обеспечивать нормальную функциональность трансформатора в течение продолжительного времени.
  • Номинальный ток обмоток. Величина определяется номинальной мощностью и потенциалом преобразователя.
  • Напряжение КЗ трансформатора. Образуется в условиях, когда обмотка-2 коротко замыкается, а к первичной подходит обычный номинальный ток. Данный показатель определяется по спаду напряжения и характеризует величину полного сопротивления трансформаторных обмоток.

Характеристика напряжения короткого замыкания

Рассматриваемый параметр является одной из основных характеристик трансформаторных устройств. Его показатели должны быть минимальными во избежание чрезмерных ограничений токов КЗ. Проводимые испытания устанавливают их соответствие нормам и требованиям, определяемым ПУЭ. Одновременно проверяется состояние изоляции проводов.

В трансформаторах с двумя обмотками напряжением, КЗ является величина, приведенная к заданной температуре и номинальной частоте, подводимая к одной из обмоток, в то время как другая замыкается накоротко. После этого номинальный ток устанавливается в каждой обмотке, а переключатель занимает положение, обеспечивающее подачу номинального напряжения.


Используя напряжение КЗ, можно установить падение напряжения, внешние характеристики и токи короткого замыкания преобразователя. Эти данные учитываются при дальнейшем включении трансформатора в параллельную работу. Напряжение короткого замыкания включает в себя активную и реактивную составляющие.

Величина активной составляющей определяется в процентах и вычисляется по следующей формуле: Ua = (Pоб1 + Pоб2)/10Sн = Роб/10Sн, в которой Роб – общие потери в трансформаторных обмотках, Sн – номинальная мощность устройства (кВА).

Значение реактивной составляющей определяется по собственной формуле, в которой все переменные величины определяются заранее: Хк = √Zk2 – Rk2. В ней Zk2 и Rk2 являются общим и активным сопротивлением вторичной обмотки.

Лабораторные испытания

В режиме КЗ обмотка-2 оказывается перемкнутой проводником тока, сопротивление которого стремится к нулю. В процессе деятельности трансформатора, короткое замыкание приводит к возникновению аварийного режима, поскольку величина первичного и вторичного токов многократно возрастает в сравнении с номиналом. В связи с этим для таких устройств предусматривается специальная защита для самостоятельного отключения.


В лабораториях короткое замыкание используется для испытания трансформаторов. С этой целью на обмотку-1 подается напряжение Uк, не превышающее номинал. Обмотка-2 замыкается коротко и в ней возникает напряжение, обозначаемое uK, которое является напряжением короткого замыкания трансформатора, выраженное в % от Uк. При этом ток короткого замыкания равен номинальному. Как формула — это будет выглядеть в виде uK = (Uк х 100)/U1ном, где U1ном будет номинальным напряжением в первичной обмотке.

Напряжение КЗ напрямую связано с высшим напряжением трансформаторных обмоток. Если оно составляет от 6 до 10 кВ, то величина uK будет 5,5%, при 35 кВ – 6,5-7,5%, при 110 кВ – 10,5% и далее по нарастающей. Быстро найти значение поможет специальная таблица.

Опыт и напряжение КЗ

Установить параметры трансформатора с достаточно высокой точностью позволяет опыт короткого замыкания. Для этой цели используется специальная методика, при которой обмотка-2 коротко замыкается с помощью токопроводящей перемычки или проводника. Сопротивление замыкающего элемента очень низкое и стремится к нулю. В обмотку-1 поступает напряжение (Uк), при котором сила тока (Iном) будет номинальной. К выводам подключаются измерительные приборы – амперметр, вольтметр и ваттметр, необходимые для выявления требуемых показателей трансформатора.


В режиме КЗ напряжение короткого замыкания uK будет слишком маленьким, что вызывает многократное снижение потерь холостого хода по сравнению с номиналом. Следовательно, можно условно принять мощность первичной обмотки равной нулю – Рпо = 0, а мощность, замеряемая ваттметром, будет потерянной мощностью короткого замыкания (Рпк), вызванной под влиянием активного сопротивления трансформаторных обмоток.

При режиме с одинаковыми токами можно определить величину номинальных потерь мощности, связанных с нагревом обмоток, известные как потери короткого замыкания или электрические потери (Рпк.ном).

Потери холостого хода и короткого замыкания

Помимо напряжения короткого замыкания существуют и другие, не менее важные параметры трансформаторных устройств. Например, экономичность их работы во многом определяется потерями холостого хода (Рх) и короткого замыкания (Рк).


В первом случае затраты связаны с потерями в стальных компонентах, задействованных в создании вихревых токов и перемагничивании. Они снижаются за счет использования специальной электротехнической стали, содержащей малое количество углерода и определенные виды присадок. Для защиты используется жаростойкое изоляционное покрытие. Существуют разные уровни потерь холостого хода и причины, от чего зависит величина их для преобразователей. Удельные потери уровня А составляют до 0,9 Вт/кг, а на уровне Б они будут не выше 1,1 Вт/кг.

Потери КЗ включают в себя потери в обмотках, находящихся под нагрузкой, а также дополнительные потери в обмотках и конструктивных элементах. На их появление оказывают влияние магнитные поля рассеяния, способствующие возникновению вихревых токов в витках, расположенных по краям обмотки и самих деталях устройства. Снизить такие потери возможно за счет использования в обмотках многожильного транспонированного провода, а на стенках бака устанавливаются экраны из магнитных шунтов.

Читайте также: