Подчиняется законам наследования какая изменчивость

Обновлено: 30.06.2024

Принципы передачи наследственных признаков от родительских организмов к их потомкам, вытекающие из экспериментов Грегора Менделя. Скрещивание двух генетически различных организмов. Наследственность и изменчивость, их виды. Понятие о норме реакции.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 22.07.2015
Размер файла 19,2 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Закономерности наследования. Изменчивость

Почему же Менделю удалось опередить свое время и сделать открытие, признанное только через 35 лет? Успех Менделя связан с удачным выбором объекта исследования - самоопыляющегося растения (гороха), все изучаемые признаки которого оказались локализованными в разных хромосомах. В не меньшей степени способствовало успеху усовершенствование Менделем гибридологического метода исследования, заключавшегося в проведении точного количественного учета по каждой паре альтернативных признаков и статической обработке данных.

Гибридологический метод - это метод скрещиваний чистых линий для получения гибридов, которые затем скрещиваются между собой. Характер наследования признаков анализируется количественно от каждой родительской пары в каждом поколении.

Скрещивание двух генетически различных организмов называется гибридизацией, а потомство от такого скрещивания гибридным, или гибридом. Гибрид (от латинского hibrida помесь), например, ребенок, родившийся от римлянина и неримлянки.

Расщепление, касающееся одной пары - альтернативных признаков, т.е. одного локуса (от латинского locиs - место), называется моногибридным; от двух пар признаков (двух локусов) - дигибридным, а более двух пар аллелей (более двух локусов) - полигибридным.

Если скрестить растения гороха с желтыми и зелеными семенами (моногибридное скрещивание), то у всех гибридов, полученных от скрещивания чистых линий гибридов, семена будут желтыми. То же самое наблюдается и при других моногибридных скрещиваниях, когда родители отличаются друг от друга хотя бы по одной паре аллельных признаков: по форме семян (гладкой и морщинистой) - все растения первого поколения гибридов будут иметь гладкую форму семян; по окраске цветков (пурпурные и белые) - все растения будут пурпурными и т.д.

Первый закон Менделя - закон единообразия гибридов первого поколения. При скрещивании чистых линий, различающихся по одной паре альтернативных признаков, у гибридов первого поколения проявляются признаки одного из родителей. Второй признак как бы исчезает, не проявляется. Явление преобладания признака одного из родителей Мендель назвал доминированием, а признак, проявляющийся у гибридов первого поколения и подавляющий развитие второго признака, доминантным. Признак, подавленный доминантным и не проявившийся у гибридов первого поколения, получил название рецессивного. Если в генотипе имеются два одинаковых аллеля(либо доминантных АА, либо рецессивных аа), то такой организм называется гомозиготным по данному локусу. Если в одном локусе присутствуют два разных аллеля (Аа), то такой организм является гетерозиготным в отношении данного локуса.

Закон единообразия гибридов первого поколения называется также законом доминирования, т.к. у гибридов первого поколения проявляется доминантный признак и не проявляется рецессивный признак, если доминирование полное. Если доминирование неполное, то про явление признака носит промежуточный характер, а расщепления по генотипу и фенотипу совпадают.

Второй закон Менделя вытекает из анализа скрещивания гибридов первого поколения между собой. Гибриды первого поколения с генотипом Аа в отличие от своих родителей образуют не один, а два типа гамет: А и а. Обе гаметы отцовского и материнского происхождения имеют равную вероятность слияния при оплодотворении.

Следовательно, частота различных генотипов в F2 будет следующей: 1/4 АА : 1/2 Аа : 1/4 аа, или 1 : 2 : 1. При этом генотипы АА и Аа будут иметь одинаковое фенотипическое проявление - признак будет доминантным, а при генотипе аа проявится рецессивный признак, т.е. соотношение по фенотипу будет 3: 1.

Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несет доминантный признак, а часть - рецессивный, называется расщеплением.

Второй закон Менделя - закон расщепления. Он гласит: при скрещивании гибридов первого поколения в потомстве происходит расщепление по альтернативным признакам в соотношении 3: 1 соответственно особей с доминантным и рецессивным фенотипом. Это обусловлено наличием двух типов гамет (А и а) у гибрида в одинаковых пропорциях. Соотношение по генотипу не совпадает с таковым по фенотипу и составляет(1 АА : 2 Аа : 1 аа). Такое распределение потомков по генотипу и фенотипу носит статистический характер и выполняется при наличии большого числа потомков. В то же время наличие у гибрида двух типов гамет является биологической закономерностью, связанной с распределением хромосом, несущих аллели А и а, в анафазе первого мейоза.

Проанализировать распределение потомков от скрещивания гибридов Аа х Аа по генотипу и фенотипу легче всего, воспользовавшись решеткой Пеннета, в которой по горизонтали располагают гаметы одного родителя, а по вертикали другого.


Удивительно, но каждую минуту на Земле рождаются особи с неповторимым, уникальным генетическим устройством. Это обусловлено определенной наследственной изменчивостью, значение которой достаточно велико для эволюционного развития не только отдельной классификационной единицы, но и всего мира в целом. Давайте разберемся, что представляет собой наследственная изменчивость, каким законам она подчиняется и как влияет на филогенез.

Определение

Примерами наследственной изменчивости могут служить определенные комбинации генетического материала родителей или различного рода мутационные процессы в период формирования зиготы. В большинстве своем уникальность генотипа различных организмов обуславливается расхождением генов в случайном порядке в процессе мейоза.

Наследственная изменчивость

Ненаследственная изменчивость

Стоит отметить, что помимо наследственной изменчивости ненаследственная тоже играет большую роль в онтогенезе организма. Она формируется под воздействием окружающей среды, образа жизни и иных факторов не связанных с изменением генотипа. Именно в этом и заключается основное отличие наследственной и ненаследственной изменчивости.

Формы мутаций

Примером наследственной изменчивости, помимо независимого движения хромосом в процессе развития зародыша, также могут являться и определенного рода мутации, возникающие в результате тех или иных факторов. Давайте рассмотрим каждую из форм в отдельности.

Комбинативная

Комбинативная изменчивость - это один из основных рычагов эволюции определенного вида. Она носит постоянный характер и встречается повсеместно. Именно благодаря данному виду изменчивости, существует такое явление, как уникальность каждой особи внутри вида.

Комбинативная изменчивость возможна благодаря таким явлениям, как:

  • независимое расхождение элементарных генетических структур - хромосом, в процессе мейотического деления клетки;
  • слияние гамет случайным образом в процессе непосредственного оплодотворения;
  • обмен генетическим материалом в процессе такого явления, как кроссинговер.

Таким образом, комбинативная изменчивость является главной функциональной единицей, обеспечивающей уникальность генетического аппарата каждой особи в отдельности.

Комбинативная изменчивость

Мутационная

Мутационная изменчивость также является неотъемлемой частью процессов наследственной. Изменения могут принимать вид полезной уникальной особенности развивающейся особи, а могут быть настолько незначительными, что не выявляются вовсе и являются нейтральными по отношению к организму.

Но зачастую мутации носят негативный характер и проявляются в виде каких-либо отклонений, нарушений нормального функционирования организма, болезней. Опасность негативных изменений заключается в том, что закрепившись в генотипе, они могут предаваться по наследству.

Также мутации бывают разной локализации. По этому признаку их подразделяют на соматические и генеративные. Они затрагивают разные уровни генетического аппарата, что классифицирует их как хромосомные, генные или геномные.

Примеры

Примеры наследственной изменчивости очень разнообразны и часто встречаются в повседневной жизни. Одним из самых элементарных проявлений данного типа изменчивости является то, что ребенок некоторыми признаками может быть сильно похож на родителей. Например, унаследовать темные волосы матери и черты лица отца. Это пример комбинативной изменчивости. Но стоит учитывать то, что даже при сильной схожести потомство не будет точной копией родителей, как в фенотипическом так и, тем более, в генотипическом плане.

Изменчивость на примере семьи

Еще одним примером наследственной изменчивости может служить такое явление, как шестипалость, что является следствием непредвиденной мутации. Или такое неприятное заболевание, как фенилкетонурия, которое проявляется в виде нарушения аминокислотного обмена.

Мутация - шестипалость

Гомологические ряды

Одним из ученых, который активно занимался изучением такого явления, как наследственная изменчивость, был Н. И. Вавилов.

Он рассматривал так называемые гомологические ряды наследственной изменчивости, которые представляли собой некоторые аналоги в биологии гомологических рядов органических соединений.

Н. И. Вавилов

Зная определенные закономерности, можно вычислить особенности наследования у видов, которые обладают этими рядами. На этой основе был сформирован один из основных законов, трактующих закономерности наследования, который называется - закон гомологических рядов наследственной изменчивости. В настоящий момент данный закон активно используется в генетике.

Закон наследственной изменчивости

Данный закон, сформулированный на теории о гомологичных рядах, звучит так: роды и виды, которые имеют схожий генетический аппарат, отличаются рядами изменчивости по определенным параметрам. Исходя из этого, можно сделать вывод о том, что зная некоторые формы в пределах одного определенного вида, можно предугадывать нахождение таких же форм у похожих видов.

Н. И. Вавилов подкреплял закон гомологических рядов наследственной изменчивости определенной формулой для расчета.

Следствия закона

Данный закон, сформулированный Н. И. Вавиловым, во многом способствует трактованию особенностей эволюции организмов.

Так, например, на его основе, можно сделать вывод, что у видов, схожих своим генетическим аппаратом, и имеющих общее происхождение, могут возникать примерно одинаковые мутационные процессы. Кроме того, ученые, в результате многолетних исследований, установили, что даже у таких больших классификационных единиц, как классы, может наблюдаться так называемый параллелизм, основанный на наличии гомологических рядов.

Также стоит отметить, что подобного рода явления характерны не только для высших классов живых организмов, но для простейших.

Наследственные заболевания

Однако, как уже говорилось выше, не всегда наследственная изменчивость несет положительный эффект для конкретной особи и ее потомков. Например, различного рода мутации или нестандартное поведение генов в процессе зачатия и развития зародыша могут повлечь за собой отклонения в развитии особи различной степени сложности. Рассмотрим некоторые виды генетических заболеваний.

Синдром Дауна

Итак, наследственные заболевания можно подразделить на:

  • Хромосомные. Данные отклонения возникают в результате тех или иных изменений хромосом. Это может быть как изменение количества, так и самой структуры. Синдром Дауна считается самым распространенным заболеванием данной группы. Дети, страдающие этим синдромом, отличаются по степени его тяжести, но при правильной коррекционной и медицинской помощи, в дальнейшем могут быть вполне социализированы и самостоятельны.
  • Геномные. Мутации данного типа, затрагивающие весь геном полностью, случаются реже и почти всегда приводят к летальному исходу у животных и человека в частности. Примером такого заболевания может служить синдром Шерешевского-Тернера. Люди с данным синдромом, помимо многих других признаков отличаются плохим психическим здоровьем и слабовыраженными или стертыми половыми признаками.
  • Моногенные. В основе данных заболеваний лежит мутация в одном определенном гене. Она может быть как доминантной, так и рецессивной. Некоторые мутации сцеплены с полом, некоторые - с аутосомой.

Наследственная изменчивость в эволюции

Изменчивость - это основное и очень важное свойство живых организмов претерпевать изменения в процессе филогенеза. Без такой особенности, которая позволяет сохранять уникальность генетического материала и подстраиваться под особенности той или иной окружающей среды, организмы любой организации были бы обречены на гибель.

Эволюция человека

Благодаря наследственной изменчивости, существует такой немаловажный фактор эволюции, как естественный отбор. Именно из-за того, что каждая особь уникальна по своим генотипическим и фенотипическим свойствам, в природе регулируется численность, но в тоже время сохраняется возможность избежать полного исчезновения той или иной классификационной единицы.

Значение наследственной изменчивости неоценимо для эволюционного процесса. Ведь именно эта важнейшая особенность организмов любой сложности и классификации позволяет существовать такому явлению, как видовое разнообразие. Также огромное значение наследственная изменчивость имеет и для выживаемости вида. Постоянно варьирующиеся особенности окружающей среды вынуждают организмы приспосабливаться к имеющимся условиям. Без того или иного отражения в генотипе, это было бы невозможно и привело к вымиранию вида.


Наследственная изменчивость. Виды мутаций

Ключевые слова конспекта: наследственная (генотипическая) изменчивость: комбинативная, мутационная; мутации: биохимические, физиологические, анатомо-морфологические, прямые, обратные, спонтанные, индуцированные, ядерные, цитоплазматические, половые, соматические. Раздел ЕГЭ: 3.6. Закономерности изменчивости… Наследственная изменчивость: мутационная, комбинативная. Виды мутаций и их причины…

В отличие от модификационной изменчивости наследственная, или генотипическая, изменчивость затрагивает генотип и передаётся по наследству. Она бывает двух видов : комбинативная и мутационная.

Комбинативная изменчивость

Появление новых сочетаний признаков вследствие комбинации генов приводит к комбинативной изменчивости. Часто у потомков появляются такие сочетания признаков, которые не были характерны для родителей. Например, появление зелёных гладких и жёлтых морщинистых семян у гороха посевного при скрещивании гетерозиготных особей с гладкими жёлтыми семенами — результат комбинации признаков. Комбинация двух доминантных генов у кроликов приводит к появлению новых фенотипов. Примером комбинации служит проявление признаков у потомков при комплементарном взаимодействии генов (при скрещивании особей с розовидным и гороховидным гребнями появляются куры с ореховидным гребнем).


Комбинация признаков окраски и длины шерсти у кроликов

Основой комбинативной изменчивости являются следующие факторы:

  • 1) случайная комбинация негомологичных хромосом в мейозе и, как следствие, независимое наследование признаков;
  • 2) рекомбинация генов в результате кроссинговера в процессе мейоза;
  • 3) половой процесс, приводящий к случайному сочетанию отцовских и материнских генов.

Комбинативная изменчивость определяет разнообразие особей и способствует приспособлению вида к условиям окружающей среды. Наличие комбинаций определяет появление особей со специфическими признаками, которые используют при выведении новых сортов растений и пород животных.

Мутационная изменчивость

Мутации ослинника (энотеры)

Мутации ослинника (энотеры): 1 — нормальная форма; 2 — карликовая форма.

Мутации (от лат. mutatio — изменение) — это внезапные скачкообразные изменения наследственного материала клетки. Они, в отличие от модификаций, наследуются и связаны с изменением генотипа.

Мутационная изменчивость — это наследственные изменения генотипического материала (хромосом и генов). Под воздействием внешней среды могут возникнуть ошибки в репликации ДНК, нарушения в процессе деления клетки. Например, в результате мутации в гене у дрозофилы не развиваются крылья и появляются бескрылые особи. Иногда под воздействием химических агентов или при механических повреждениях у растений ядро клеток начинает делиться быстрее, чем сама клетка. Вследствие этого возникают клетки с удвоенным набором хромосом, которые могут дать начало цветкам и семенам с другим генотипом. Облучение зёрен пшеницы перед посевом рентгеновскими лучами приводит либо к образованию неполноценных колосьев, либо к отсутствию сформированного колоса, а иногда — к формированию более крупного полноценного колоса. Воздействие одинаковых условий вызывает разную реакцию у организма. В результате мутаций появляются новые типы белков, которые обусловливают появление новых признаков.

Наследственная изменчивость

Мутационная изменчивость имеет следующие особенности.

  1. Изменения затрагивают генотип организма и наследуются.
  2. Изменения носят скачкообразный характер. Не наблюдается последовательности в изменении свойств, модификации отсутствуют.
  3. Изменения индивидуальны и возникают у единичных особей.
  4. Изменения не адекватны условиям окружающей среды, т. е. носят независимый характер, и могут быть нейтральными, полезными, но чаще всего являются вредными.
  5. Мутации могут привести к образованию новых признаков у организма или к его гибели. Например, мутация окраски глаз у дрозофил привела к образованию в природе белоглазых мух.

Классификация мутаций

1) По характеру изменения фенотипа мутации могут быть биохимическими, физиологическими, анатомо-морфологическими. При биохимических мутациях изменению подвергаются белки-ферменты, которые могут ускорить синтез структурных белков, а в некоторых случаях, наоборот, прекратить его. Например, альбинизм — мутация, связанная с отсутствием в организме фермента, ответственного за синтез пигмента меланина.

При анатомо-морфологических мутациях наблюдаются аномалии в формировании органов или систем органов, например: недоразвитие желудка у серых каракулевых овец, гомозиготных по доминантному гену серой окраски. Большое количество мутаций выявлено у дрозофилы

Мутации у дрозофилы

Мутации у дрозофилы: 1 — величина и форма крыльев; 2 — пигментация и форма глаз

2) По степени приспособленности мутации делят на полезные и вредные. Чаще мутации вредны, так как понижают жизнеспособность особей, а иногда могут быть летальными и вызывать гибель организма.

Мутация всегда изменяет приспособленность организмов. Степень полезности или вредности мутации выявляется со временем. Если мутация позволяет организму лучше приспособиться к условиям среды, даёт дополнительный шанс выжить, то она закрепляется у организмов. Примером может служить серповидно-клеточная анемия у человека. При наличии такой мутации возникают нарушения в структуре гемоглобина, что приводит к образованию эритроцитов серповидной формы:


Неполное доминирование при серповидно-клеточной анемии: 1 — нормальные эритроциты (АА); 2 — гетерозиготы (Аа); 3 — аномальные эритроциты (аа)

Они не способны транспортировать достаточное количество кислорода, поэтому организм испытывает кислородное голодание и в конце концов погибает. Однако у гетерозигот по этому признаку эритроциты изменены незначительно, и организм вполне жизнеспособен. При этом у таких людей появляется одна особенность: они устойчивы к заболеванию малярией, так как в их изменённых эритроцитах не способен размножаться малярийный плазмодий — возбудитель малярии. В результате при массовом заболевании малярией гомозиготы с нормальными эритроцитами могут погибнуть, тогда как гетерозиготы выживают. В Африке, где свирепствует малярия, среди людей чаще, чем в других местах земного шара, встречаются гетерозиготы.

3) По направленности мутации бывают прямые и обратные:

ген А → ген А*, ген А* → ген А.

Последние встречаются реже. Обычно прямая мутация связана с дефектом функции гена. Вероятность обратной мутации в той же точке очень мала, чаще всего мутациям подвергаются другие гены.

4) По способу возникновения различают спонтанные и индуцированные мутации. Спонтанные мутации происходят в природе самопроизвольно. Они зависят как от внутренних, так и от внешних факторов. Индуцированные мутации возникают при воздействии на организмы мутагенов — факторов, вызывающих мутации. Это физические (радиация, электромагнитное излучение, температура и т. д.), химические (ароматические углеводороды, гербициды и т. д.), биологические (бактерии и вирусы) факторы.

5) По локализации в клетке мутации бывают ядерными и цитоплазматическими. Ядерные мутации связаны с аномалиями в хромосомном аппарате ядер и передаются по наследству. Цитоплазматические мутации связаны с нарушением ДНК в таких органоидах цитоплазмы, как хлоропласты и митохондрии. Так как эти органоиды сохраняются только в яйцеклетках, то цитоплазматическая мутация передаётся по материнской линии. Например, ДНК хлоропластов клеток растений управляет образованием пигмента хлорофилла, который обеспечивает развитие зелёной окраски. Решающим для окраски листа потомков является содержание генов пластид в яйцеклетках, а не в клетках пыльцевых зёрен. Митохондриальная ДНК регулирует синтез дыхательных ферментов в клетке. Нарушения проявляются по материнской линии, так как митохондрии содержатся в цитоплазме яйцеклетки — из сперматозоида при оплодотворении в зиготу переходит только ядро.


Соматическая мутация окраски глаза у дрозофилы. Пигментация в части глаза отсутствует

6) В зависимости от типа клеток различают половые и соматические мутации. Если изменения связаны с хромосомами половых клеток, то они передаются следующим поколениям при половом размножении. Мутации могут происходить и в соматических клетках, но они не наследуются. Примером соматической мутации является нарушение пигментации глаза у дрозофилы.

У человека появление белой пряди волос на голове иногда связано с соматической мутацией — нарушением образования пигмента. Эта мутация появляется не сразу, а в процессе жизни. Однако белая прядь волос может быть обусловлена и половой мутацией. В этом случае она передаётся по наследству и проявляется сразу при рождении.

У растений соматические мутации передаются по наследству при вегетативном размножении, например, пестролистность комнатных растений.

Большинство мутаций рецессивные, поэтому они скрыты и лишь изредка проявляются у единичных особей только в гомозиготном состоянии. Доминантные мутации встречаются гораздо реже, они проявляются сразу же и в случае летальности быстро исчезают с гибелью особей.


классификация мутаций

Без изменчивости живой организм не прожил бы и дня!

Мы едем на юг и хвастаемся шоколадным загаром — это изменчивость, по мере роста у детей немного изменяется цвет волос — это тоже изменчивость, ну и, наконец, мы не абсолютная копия наших родителей — и это тоже изменчивость.

модификационная изменчивость

ИЗМЕНЧИВОСТЬ — это способность живых организмов приобретать новые признаки и качества


Изменчивость нужна организмам для лучшей приспосабливаемости к непостоянным условиям среды

Организм, в зависимости от условий, может меняться довольно сильно, но всему есть пределы. Эти пределы определяются генотипом — как бы белый человек ни загорал, чернокожим он не станет…

Пределы изменчивости признака, ограниченные действием генотипа, называют его нормой реакции.


Закономерности изменчивости

Ч. Дарвин выделял еще один вид наследственной изменчивости — соотносительную. Соотносительная изменчивость возникает при влиянии гена на формирование двух и более признаков ( множественное действие генов). Например, у некоторых видов птиц длинные ноги и клюв — результат именно такой корреляции. У растений изменения окраски листьев сопровождается изменением окраски цветков и плодов.

Это ненаследственная изменчивость. Т.е. это изменения организма под действием окружающей среды.

изменчивость


Основные закономерности модификационной изменчивости:

  • Не передается по наследству (в лесах нашей страны большинство зайцев на зиму меняют окраску. Становятся зайцами — беляками. По наследству этот признак не передается — у серого зайца не рождаются белые зайчатки)
  • Распространяется на всю популяцию, носит массовый характер
  • Изменяются условия — изменяется (исчезает) и признак ( после приезда с юга загар постепенно уходит, заяц — беляк летом опять серый).
  • пределы вариаций признака — норма реакции — заложены в генотипе (рыжим заяц не станет, как бы не менялись условия, да и человек не станет чернокожим от обильного загорания на солнце). Норма реакции достаточно широкая.

Есть такая закономерность, что чем важнее признак, тем уже норма реакции.

Например, цвет белого медведя подразумевает определенную маскировку на снегу. Весной шерсть заметно желтеет, но при этом рыжим медведь никогда не бывает — диапазон изменения цвета достаточно узкий.

Наследственная изменчивость

Эта изменчивость обусловлена изменениями в генотипе. Это может быть вызвано какими-то изменениями в генах и хромосомах, может быть следствием изменения даже количества хромосом.


изменения в генах\хромосомах

Комбинативная изменчивость — это тоже изменение генотипа, но это скорее новая комбинация хромосом, новое сочетание генов — это происходит при половом размножении. Новый организма — это комбинация двух родительских организмов.

Основные закономерности комбинативной изменчивости:

  • передается по наследству
  • индивидуальна
  • признак не изменяется, даже если внешние условия изменяются и передается по наследству
  • своя достаточно узкая норма реакции

Мутационная изменчивость

Мутация — это стойкое нарушение генома организма

Про основные виды мутаций подробно читаем здесь

Закономерности изменчивости

Основные положения мутационной теории разработаны Г. Де Фризом в 1901—1903 гг. и сводятся к следующему:

Мутации возникают внезапно, скачкообразно , как дискретные изменения признаков.

В отличие от ненаследственных изменений мутации представляют собой качественные изменения, которые передаются из поколения в поколение .

Мутации проявляются по-разному и могут быть как полезными, так и вредными, как доминантными, так и рецессивными .

Вероятность обнаружения мутаций зависит от числа исследованных особей.

Сходные мутации могут возникать повторно.

Мутации ненаправленны (спонтанны) , т. е. мутировать может любой участок хромосомы, вызывая изменения как незначительных, так и жизненно важных признаков.

Закон гомологических рядов Н.И. Вавилова в наследственной изменчивости

виды и роды, генетически близкие, связанные друг с другом единством происхождения, характеризуются сходными рядами наследственной изменчивости.

В основе закона гомологических рядов фенотипической изменчивости у родственных видов лежит представление о единстве их происхождения от одного предка в процессе естественного отбора. Поскольку общие предки имели специфический набор генов, то их потомки должны обладать примерно таким же набором.

Из этого закона можно сделать два вывода:

зная, какие формы изменчивости встречаются у одного вида, можно предвидеть нахождение аналогичных форм у родственного ему вида

у родственных видов, имеющих общее происхождение, возникают и сходные мутации

Читайте также: